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Abstract—This study investigates the discrimination between
cold speech and healthy speech using features based on em-
pirical mode decomposition (EMD). The EMD is employed to
break down the signal into several intrinsic mode functions
(IMFs). From each IMF, various statistical values like mini-
mum, maximum, mean, standard deviation, first, second, and
third quartiles, skewness, kurtosis, and energy of each IMF
are extracted and used as a feature for distinguishing cold
and healthy speech. The T-test examines the importance of
EMD-based features for classifying cold speech. EMD-based
feature performance is assessed using the deep neural network
(DNN) classifier. The findings show that EMD-based features
effectively discriminate between cold and healthy speech classes.
Combining Mel-Frequency Cepstral Coefficients (MFCC) char-
acteristics with EMD-based features improves the performance
for identifying healthy and cold speech classes. On the URTIC
database, the combination of MFCC and EMD-based features
achieve a UAR of 66.92%.
Index Terms: Common cold, Empirical mode decomposi-
tion, Deep neural network.

I. INTRODUCTION

The speech signal contains linguistic as well as paralinguis-
tic information. The computational paralinguistic deals with
nonverbal aspects of speech, such as emotion, physical and
mental health detection. Speech is produced by the brain and
respiratory systems. Therefore a variety of respiratory and
brain-related illnesses may affect the acoustic parameters of
speech signals. These changes in the acoustic parameters of
speech caused by different health conditions may be evaluated
using relevant speech features for disease diagnosis [1], [2],
[3]. Pathology detection based on speech signals is gaining
popularity since it is non-invasive and may be transmitted
remotely with relative simplicity. Nasal congestion, runny
nose, and a sore throat are all signs of the common cold
[4]. The common cold has an effect on both the nose and the
throat, and this has a knock-on effect on speech produced
during a common cold. Speech that is considered to be cold
is the speech of a person who is sick with a cold.

Cold speech analysis and categorization might help with
the diagnosis of the common cold and its accompanying
ailments. It might give useful information for remote health
monitoring of patients. In general, normal or healthy speech

is used for training in speech recognition and speaker recog-
nition systems. If these systems are evaluated using cold
speech, their performance can deteriorate. Therefore, cold
speech analysis may be utilized to enhance the effectiveness
of these man-machine interaction systems [5], [6].

Researchers have investigated the the common cold im-
pact on speaker identification systems and the categorizing
healthy and cold speech. Tull et al. [7] noted that there
are differences in the Mel-Frequency Cepstral Coefficients
(MFCC) for cold and healthy speech. The INTERSPEECH
2017 Cold Challenge was organized to detect a person with
upper respiratory tract infections utilizing speech [8]. Suresh
et al. [9] utilized a phoneme state posteriorgram (PSP) feature
to classify common cold from speech using a Gaussian
mixture model (GMM). Cai et al. [10] utilized the perception
aware spectrum to diagnose the common cold. Deb et al.
[11] decomposed speech signal into number of modes, and
from each mode, various statistics are extracted and used as
a feature for the classification of the common cold. Warule et
al. [12] extracted MFCC features from vowel-like regions of
speech for diagnosis of the common cold. Deb et al. [13] em-
ployed MFCC, linear prediction coefficients (LPC) features,
and deep neural network (DNN) for distinguishing cold and
healthy speech. Warule et al. [14] analyzed the importance
of voiced and unvoiced speech segments for distinguishing
healthy and cold speech. Warule et al. [15] employed the
sinusoidal model-based features for distinguishing healthy
and cold speech.

This study explored a novel feature extraction methodology
utilizing empirical mode decomposition (EMD) for distin-
guishing healthy and cold speech. The EMD has been used
successfully in various speech processing and classification
applications. Khonglah et al. [16] used statistical characteris-
tics based on EMD to distinguish between speech and music.
Mainkar and Mahajan [17] employed EMD-based feature
extraction for discriminating environmental sounds in the real
world. Ravindran and Nair [18] classified pathological and
normal speech using statistical features obtained from EMD
and MFCC features. Sharma and Prasanna [19] explored the
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effectiveness of EMD in characterizing glottal activity from
voice signals.

The EMD decomposes the speech signal into the number
of intrinsic mode functions (IMF). The literature review
findings indicate that IMF provides important information
for classifying speech signals. The IMFs or various frequency
scales derived from the EMD of the speech signal provide dis-
criminating information for differentiating the various speech
classes. This motivates us to utilize EMD-based statistical
measures to categorize healthy and cold speech.

In this study, we have used the Upper Respiratory Tract
Infection Corpus (URTIC) database. The URTIC database
was utilized for the cold sub-challenge of the 2017 IN-
TERSPEECH Computational Paralinguistics Challenge [8].
The URTIC database contains speech recordings from 630
people (382 male and 248 female). The database has 28,652
speech samples with cold and healthy classes divided into
train, develop, and test partitions. The train, develop and test
partitions of the database consist of 9505, 9596, and 9551
speech samples, respectively.

This paper follows the following structure: Section II
explores the empirical mode decomposition algorithm. The
proposed methodology for categorizing healthy and cold
speech is described in Section III . Section IV contains results
and a discussion of the findings. The conclusion of the study
is drawn in Section V.

II. EMPIRICAL MODE DECOMPOSITION

Huang et al. [20] proposed the empirical Mode Decomposi-
tion algorithm. The fundamental idea of EMD is to find ap-
propriate time scales that reveal the physical properties of the
signals and then decomposing the signal into modes known as
IMF. These IMFs are signals that meet the following criteria:

1) The total zero crossings and extrema should be the
same or differ by no more than one.

2) At any given point, the mean values of the envelope
formed by local minima and maxima is zero.

The objective of EMD is to describe an arbitrary signal
using a set of IMFs mi(n) and the residual signal r(n). Using
EMD, the speech signal s(n) is decomposed as

s(n) = r(n) +

M∑
i=1

mi(n) (1)

where M represents the total number of IMFs obtained, r(n)
is the residual signal and mi(n) is the imf of ith mode. The
algorithmic flow chart for EMD is shown in Fig. 1. The
signal is decomposed into IMFs by identifying the speech
signal’s extrema points and constructing the lower and upper
envelopes by interpolating the extrema points. The first IMF
is derived by subtracting the mean of the lower and upper
envelopes from the original signal. The residual component
created by subtracting the computed IMF from the original
signal is used as new data, and the procedure is repeated to
determine the next IMF. The procedure is repeated till the
residual signal turns into a monotonic function.

III. METHODOLOGY

Fig. 2 represents the block schematic of the proposed EMD-
based framework for the healthy and cold speech classifica-
tion. It includes pre-processing of the input speech signal,

Start

Speech signal s(n)

Find extrema of s(n)

i=1

Calculate upper and 
lower envelop

Calculate mean of upper 
and lower envelop ai(n)

mi(n) = s(n) - ai(n)

Is mi(n) 
IMF?

Yes

s(n)=mi(n) 

Find residue  
ri(n) = s(n) - mi(n)

No

Is ri(n)
monotonic?

Yes

s(n) = rM(n) +σ𝑖=1
𝑀 mi(n)

No

s(n)=mi(n)
i=i+1 

End

Fig. 1: The algorithmic flow chart for empirical mode de-
composition.

Decomposition of the speech signal into several IMFs using
EMD, statistical features extraction from each IMF, and DNN
classifier for categorizing healthy and cold speech.

A. Pre-processing

Pre-processing comprises normalization, silence removal,
framing, and windowing. Normalization of the speech signal
is performed with reference to the maximum value. Then,
utilizing short time energy, silence is eliminated from the
speech signal [21]. Each speech is segmented into segments
of 20 milliseconds with 10 milliseconds overlap. Then, the
Hamming window is multiplied to each speech segment.

B. Empirical Mode Decomposition Based Feature Extraction

After pre-processing, EMD is performed on each speech
segment as discussed in Section II to decompose it into a
number of IMFs. Then from each IMF, following features
are are extracted and used as a feature to classify cold and
healthy speech.

1) Statistical features: The various statistical measures,
including minimum, maximum, mean, standard deviation,
first, second, and third quartiles, skewness, and kurtosis, are
extracted from each IMF to capture the variations in IMF for
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Fig. 2: Proposed EMD-based framework for distinguishing cold and healthy speech.

cold and healthy speech. Skewness is a statistical measure of
the asymmetric distribution of data, and kurtosis is a statistic
that helps identify whether the distribution has light-tailed or
heavy-tailed compared to a normal distribution. Skewness S
and kurtosis K are calculated as

S =
1

N

∑N
n=1(mi(n)−mi)

3

s3
(2)

K =
1

N

∑N
n=1(mi(n)−mi)

4

s4
(3)

where mi(n) is the ith IMF, N denotes total number of
samples in mi(n) , mi and s denote the mean and standard
deviation of samples in mi(n).

2) Energy: The energy associated with each IMF is also
considered as a feature for distinguishing cold and healthy
speech. The energy of ith IMF is given by

Ei =

N∑
n=1

|mi(n)|2 (4)

where mi(n) is the ith IMF and N is the samples in IMF.

C. Mel-Frequency Cepstral Coefficients (MFCC) Features

This study employs MFCC characteristics in addition to
the proposed characteristics for classifying cold and healthy
speech. The MFCC features are commonly used to distin-
guish between pathological and normal speech [22], [23],
[24], [2], [14]. The morphology of the vocal tract influences
which phonemes are produced during human speech. The
MFCC features reflect the shape of the vocal tract for each
spoken sound [25]. In order to extract MFCC characteristics
from the speech, the number of speech frames that have a
length of 20 milliseconds and an overlap of 50 percent are
segmented. After that, the DFT is applied to every frame in
order to obtain the power spectrum. After that, mel-scale filter
banks are utilized in order to process the power spectrum.
Finally, the discrete cosine transform (DCT) is used to get the
MFCC values after converting the power spectrum to the log
domain. In this study, the 13 MFCC coefficients and the first
and second order MFCC difference (∆MFCC & ∆∆MFCC)
are extracted from every single speech frame.

D. Deep Neural Network (DNN)

The DNN has been found effective in speech related appli-
cations like natural language processing, speech recognition,
and speech pathology detection [26], [23], [27]. In this study,
we have employed two hidden layers of DNN with 128 and
32 neurons. At the hidden layers of a DNN, the rectified linear
unit (ReLU) activation is employed, whereas the sigmoid
activation is used at the output layer.

The performance of DNN is evaluated using unweighted
average recall (UAR). As the URTIC database is extremely
unbalanced, the identification rates of both the cold and
healthy classes are crucial. The UAR is calculated by taking
the average of recalls of cold and healthy class.

IV. RESULTS & DISCUSSION

This section analyzes the statistical significance and per-
formance of EMD-based features for categorizing healthy
and cold speech classes. The effectiveness of the proposed
framework is also evaluated using the combination of MFCC
and EMD-based features. The achieved results are compared
with the results of the state-of-the-art (SOTA) methods.

To analyze the statistical significance of EMD-based fea-
tures, T-test [28] is conducted on EMD-based features. A
T-test is a way to compare the means of two groups. The
t-value and the p-value are calculated for each feature in
the T-test. The feature has a greater t-value and a lower p-
value (less than 0.0001), indicating that it is more relevant
for classification. The t-values and the p-values between
cold and healthy speech classes are calculated for the EMD-
based features extracted from all speech samples of the train
partition, as shown in Table I. The obtained t-values are
higher, and the corresponding p-values are less than 0.0001,
with a few exceptions. This reveals that the EMD-based fea-
tures successfully categorize cold and healthy speech classes.
Therefore, these features can be used for distinguishing cold
and healthy speech classes.

To evaluate the proposed framework, EMD-based features
and MFCC features are extracted from each speech signal of
the URTIC database as discussed in Section III-B. The fea-
tures extracted from the train partition are used for training,
and feature extracted from the develop partition are used for
testing the DNN.
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TABLE I: The results of the T-test for the EMD-based features.

IMF-1 IMF-2 IMF-3
Fearure t-value p-value t-value p-value t-value p-value

Minimum 3.9898 <0.0001 5.3766 <0.0001 3.6488 0.000265
Maximum 4.1225 <0.0001 5.3394 <0.0001 3.2014 0.0013
Mean 3.9378 <0.0001 5.5140 <0.0001 4.4017 <0.0001
Standard deviation 3.4465 0.0005 5.6579 <0.0001 4.2056 <0.0001
First quartile 2.4377 0.0147 5.7004 <0.0001 5.1140 <0.0001
Second quartile 1.2643 0.2061 4.1236 <0.0001 4.1769 <0.0001
Third quartile 2.6001 0.0093 5.3744 <0.0001 4.5759 <0.0001
Skewness 4.5417 <0.0001 3.9955 <0.0001 7.7153 <0.0001
Kurtosis 2.4652 0.0137 6.9877 <0.0001 9.0467 <0.0001
Energy 0.3460 0.7292 4.4808 <0.0001 5.2208 <0.0001

The confusion matrices in % for the classification results
achieved using the EMD-based features, MFCC features, and
combination of MFCC and EMD-based features are shown in
Figs. 3a, 3b, and 3c, respectively. The EMD-based statistical
features extracted from the IMFs achieve the UAR of 64.14%
with recalls for healthy and cold classes are 59.84% and
68.44%, respectively. The MFCC features achieve the UAR
of 65.28% with recalls for healthy and cold classes are
71.36% and 59.21%, respectively. It is observed that the
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A
c

tu
a

l 

Cold 

(a)

59.84 40.16

31.56 68.44

UAR = 64.14

Healthy         Cold

Healthy 

Predicted

A
c

tu
a

l 
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71.36 28.64

40.79 59.21

UAR = 65.28

Healthy         Cold

Healthy 

Predicted

A
c

tu
a
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Cold 

(c)

69.56 30.44

35.71 64.29

UAR = 66.92

Fig. 3: The confusion matrices (%) of DNN for (a) EMD
based features, (b) MFCC features, (c) MFCC + EMD based
features.

TABLE II: Performance of proposed framework using DNN
classifier on the URTIC database.

Feature % UAR
EMD 64.14
MFCC 65.28
EMD + MFCC 66.92

UAR achieved using MFCC features is higher than EMD-
based features. The EMD-based features provide a greater
recall for the cold class, and MFCC features provide a
greater recall for the healthy class. The achieved UAR is
improved up to 66.92% using a combination of MFCC and
EMD-based features. The combination of MFCC and EMD-
based features gives 69.56% recall for the healthy class
and 64.29% recall for the cold class. Table II shows the
effectiveness of the proposed framework using the DNN
classifier for distinguishing cold and healthy speech on the
URTIC database.

TABLE III: The performance evaluation of the proposed
framework with the SOTA methods.

Research Work %UAR
ComParE features + SVM [8] 64.00
ComParE BoAW features + SVM [8] 64.20
MFCC features + GMM [10] 64.80
CQCC features + GMM [10] 65.40
PSP features + SVM [9] 64.00
MOD features + DNN [29] 67.95
VMD features + SVM [11] 66.84
VLR MFCC features + DNN [12] 61.93
Proposed EMD features + MFCC + DNN 66.92

The performance evaluation of the proposed framework
with the SOTA methods is given in Table III. Using the
ComParE and BoAW features, baseline performances of 64%
and 64.20% UAR were obtained for INTERSPEECH 2017
Cold Challenge [8]. Cai et al. [10] obtained 64.80% and
65.40% UAR, respectively, using constant Q cepstral coeffi-
cients (CQCC) and MFCC features. Suresh et al. [9] obtained
a UAR of 64% using PSP features and GMM. Using spectral
modulation feature (MOD), Huckvale and Beke [29] obtained
a UAR of 67.95%. Deb et al. [11] used variational mode
decomposition (VMD)-based features to reach a UAR of
66.84%. Warule et al. [12] achieved a UAR of 61.93% using
vowel-like region (VLR) MFCC features. In this research,
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we got comparable outcomes with the SOTA methods. The
combination of MFCC and EMD-based features provides a
UAR of 66.92%.

V. CONCLUSION

In this investigation, we have used the EMD-based frame-
work for categorizing healthy and cold speech. The EMD
decomposed the speech signal into several IMFs. Then for
each IMF various statistical parameters and energy of each
IMF are calculated and used as features for classification.
Statistical analysis using the T-test shows that the EMD-
based features can discriminate between cold and healthy
speech classes. The DNN classifier is used to evaluate the
effectiveness of EMD-based features. The effectiveness of
the proposed framework is improved when MFCC and EMD-
based features are used together for distinguishing cold and
healthy speech classes.
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