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Abstract— Vasovagal syncope (VVS) is the commonest cause 

of short-term loss of consciousness, which negatively impacts 

quality of life. To gather diagnostic information, medical 

professions often perform a head-up tilt test (HUTT) during direct 

observation. During this test, subjects may experience common 

symptoms such as nausea, pallor, sweating, palpitations, near faint 

and syncope. The purpose of the study was to develop an algorithm 

that uses electrocardiography (ECG) and blood pressure (BP) 

recordings from HUTT to predict VVS before its onset. In this 

study, the calculated cumulative risk based on the analysis of the 

three specific sets of features was compared to a pre-established 

VVS risk threshold. The purpose of this comparison was to 

determine if the cumulative risk was above or below the threshold 

and whether an alert should be generated. An alert would only be 

triggered when the cumulative risk exceeded the threshold. The 

prediction time was defined as the duration between the first alert 

and the actual syncope episode. A total of 137 subjects were 

recruited in this study. Our proposed model accurately predicted 

syncope onset in 87 out of 120 subjects. The model’s sensitivity was 

81.6% while its specificity was 66.2%. The precision was 

determined to be 62.5%, the F1 score was 70.8%. Additionally, the 

model was able to predict syncope before its onset with a median 

prediction time of 221.45 seconds (Interquartile range: 180.0 - 

294.0 s). In conclusion, while predicting VVS can be challenging 

due to its complex nature, recognizing, and treating the underlying 

causes as well as implementing appropriate treatment methods, 

can significantly improve outcomes for individuals at risk. The 

proposed algorithm shows promise in reducing discomfort 

associated with symptom reproduction with HUTT. 

Keywords— Vasovagal syncope, head-up tilt test, autonomic 

nervous system, early prediction. 

I. INTRODUCTION  

Vasovagal syncope (VVS), which is a reflex syncope, is 
the most frequent cause of transient loss of consciousness [1]. 
When sympathetic tone is reduced and the parasympathetic 
nervous system briefly becomes overactive, arterial 
hypotension and cerebral hypoperfusion occur, which lead to 
VVS [2]. Over 40% of people experience a temporary loss of  

 

 

consciousness in their lifetime, and two-thirds of these cases 
are due to reflex syncope, also known as neurally mediated 
syncope [2]. Depending on the situation and the person's 
medical history, VVS might result in different outcomes. It 
typically doesn't have any major or lasting effects. However, 
in some circumstances, it can result in harm, especially if the 
person falls during the episode. Injuries can vary widely from 
minor cuts and bruises to more serious wounds like head 
trauma, fractures, or dislocations [3]. VVS could be crippling 
and have a negative impact on a person's quality of life, 
especially if it happens unexpectedly or while performing 
tasks that require concentration and focus, such as driving or 
operating large machinery [4]. In addition, VVS poses a risk 
to people in high-risk professions and older adults who do not 
exhibit any warning signs [5]. Therefore, early identification 
of syncope will lead to better outcomes, lower the risk of 
accidents, and provide the support needed to optimize 
management.  

If typical symptoms are present, VVS can be diagnosed 
from the patient's history alone. In cases with atypical 
presentation, absence of a clear prodrome and frequent, 
disabling symptoms, head up tilt test (HUTT) is frequently 
conduction with direct medical observation to acquire 
diagnostic information. The objective of the HUTT would be 
to reproduce subjects’ symptoms including nausea, sweating, 
pallor, palpitations, near faints and faints.  

Heart rate (HR) and blood pressure (BP) are controlled by 
the autonomic nervous system (ANS), which is made up of the 
sympathetic nervous system (SNS) and parasympathetic 
nervous system (PNS) [6]. The two systems quickly switch off 
and on in healthy individuals to maintain the regulatory 
balance in physiological autonomic function. Potential key 
indicators towards prediction of pre-syncopal and syncopal 
symptoms before they occur are systolic blood pressure 
(SBP), a frequency domain variable of SBP, and heart rate 
(HR). These indicators are considered more important than 
heart rate variability (HRV) in predicting VVS. The goal of  
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this study was, therefore, to create an algorithm capable of 
forecasting VVS before it occurred using ECG and blood 
pressure recordings from the HUTT. 

II.  METHODS 

A. System Overview 

All processing steps were conducted on a laptop with Intel 
(R) Core (TM) i7-6600U 2.60 GHz CPUs and 8GB of RAM. 
To easily modify and visualize data and keep track of the code 
and investigation in a reproducible manner, an open-source 
web tool, Jupyter Notebook, was utilized. The python 
packages deployed were numpy, pandas, and matplotlib. 

B.  Data Collection 

Data collection took place at the cardiorespiratory 
laboratories, Universiti Malaya Medical Centre (UMMC). 
Involving patients referred for HUTT due to  syncope or near-
syncope. Prior to the test, patients were provided with the 
necessary information, and informed consent was obtained. 
The study received approval from both Universiti Tunku 
Abdul Rahman (UTAR) Scientific and Ethical Review 
Committee (U/SERC/218/2020) and the UMMC Medical 
Research Ethics Committee (MREC ID NO: 2020913-9066). 
The HUTT was performed in a controlled environment and 
involved the administration of 800 micrograms of glyceryl 
trinitrate (GTN) under the tongue to provoke a 
pharmacological response. The patients were tilted at a 70-
degree angle using a tilt-table with a footplate and remained 
in that position for 20 minutes after a 10-minute supine rest 
period [7]. During the test, non-invasive monitoring 
equipment (Task Force Monitor, CNSystem, Austria) was 
used to measure hemodynamic parameters such as ECG and 
beat-to-beat BP signals. The test is considered positive if 
physical changes, such as decrease in heart rate, cardiac 
interruptions, and low blood pressure. Conversely, if neither 
physical changes nor symptoms are present during the test, the 
results are considered negative [8]. 

C. Early Vasovagal Syncope Prediction Algorithm 

The sampling rate for the beat-to-beat BP signal was 
100Hz, and 1000Hz for the non-intrusive continuous ECG 
data. Twenty-four  beat-to-beat variables from the HUT test, 
which included both supine and 70-degree tilting positions. 
HR, SBP, DBP, and their frequency domain characteristics are 
among the twenty-four beat-to-beat variables collected or 
derived. High frequency normalized power, low frequency 
normalized power, and the ratio of low-frequency to high-
frequency systolic blood pressure variability normalized 
power are illustrations of frequency domain measurements. 
The study employed numerous iterations of the trial-and-error 
process to select the elements of the early VVS prediction 
algorithm. Feature combinations for our early VVS prediction 
system are listed below: 

 1. SBP, HR and LFHF_SBPV 

 2. SBP, HR and HFnu_SBPV 

 3. HR, SBP, LFnu_HRV and Lfnu_SBPV 

The study took the past three minutes' worth of supine 
position signal in order to obtain a steady signal. Then, from 
the chosen features, we derived the mean and standard 
deviation. The values of SBP, HR, Lfnu_SBPV (normalized  

 

low-frequency power of systolic blood pressure variability), 
LFHF_SBPV (ratio of low-frequency to high-frequency 
systolic blood pressure variability), HFnu_SBPV (normalized 
high-frequency power of systolic blood pressure variability) 
were standardized with respect to the baseline because the 
ranges of the attributes vary, bringing them to comparable 
levels. Formula (1) as shown below was used to normalize the 
tilting position signals: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑋𝑖 −  𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
      (1) 

 

1. 𝐺_𝑟𝑖𝑠𝑘 = −(𝑤𝑓𝑆𝐵𝑃 ∗ 𝑁𝑜𝑟𝑆𝐵𝑃) + (𝑤𝑓𝐻𝑅 ∗ 𝑁𝑜𝑟𝐻𝑅) −
(𝑤𝑓LFHF_SBPV ∗

𝑁𝑜𝑟𝐿𝐹𝐻𝐹_SBPV)                                                                     (2)  

 

2. 𝐺_𝑟𝑖𝑠𝑘 = −(𝑤𝑓𝑆𝐵𝑃 ∗ 𝑁𝑜𝑟𝑆𝐵𝑃) + (𝑤𝑓𝐻𝑅 ∗
𝑁𝑜𝑟𝐻𝑅) + (𝑤𝑓HFnu_SBPV ∗

𝑁𝑜𝑟HFnu_SBPV)                                                                      (3)   

 

3. 𝐺_𝑟𝑖𝑠𝑘 = (𝑤𝑓𝐻𝑅 ∗ 𝑁𝑜𝑟𝐻𝑅) − (𝑤𝑓𝑆𝐵𝑃 ∗ 𝑁𝑜𝑟𝑆𝐵𝑃) −
(𝑤𝑓𝐿𝐹𝑛𝑢_𝐻𝑅𝑉 ∗ 𝑁𝑜𝑟𝐿𝐹𝑛𝑢_𝐻𝑅𝑉) − (𝑤𝑓Lfnu_SBPV ∗

𝑁𝑜𝑟Lfnu_SBPV)                                                                        (4)   

 

      Calculated values of below 1 were represented as -1. 

Calculated values above 1 were indicated by the number 1. 

The resulting normalized values fall into the range of -1 to 

1, with -1 denoting a strong reduction from baseline, 0 a no 

change, and 1 a high rise. The sum of the weighting factors 

for the various features, which were also chosen by trial and 

error, should not be greater than 1. Then, using the formulas 

below, the cumulative sum of the global risk was 

determined. Here 𝐺_𝑟𝑖𝑠𝑘  was represented as global risk, 

𝑤𝑓 as weighting factor and nor as normalized. The total 

global risk was the result of adding the corresponding 

features' normalized sums and weighting factors. The 

computation for the normalized heart rate and HFnu_SBPV 

only considers positive signs because it raises the overall 

risk. SBP, LFHF_SBPV, LFnu_HRV, and Lfnu_SBPV all 

exhibit normalized values with negative signs in VVS test 

positive patients, indicating a reduction in those specific 

parameters while an increase in these components lowers 

the total risk. A fall in blood pressure causes VVS, which 

also causes a slowing of the heartbeat and pulse. VVS 

would also be caused by a malfunction in the autonomic 

control of the circulatory system. Studies evaluating the 

impact of HUTT on frequency domain analyses of HRV 

and BPV in healthy people have shown a notable rise in the 

LF power spectrum in addition to the withdrawal of the high 

frequency or parasympathetic tone.  

 

Abnormal autonomic balance may contribute to 

activation of the Bezold-Jarisch reflex contributing to the 

mechanism leading to syncope [9]. In normal physiological 

conditions, when a individual has postural change from 

lying down to standing up, the body's internal regulating  
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mechanism begins to operate to prevent large changes in 

cerebral blood flow (CBF) during the action.  

 

In postural hypotension, individuals may experience a 

short period of dizziness or syncope because of rapid 

reduction in cerebral perfusion when getting up quickly, 

particularly if both abnormalities cerebral autoregulation 

and ANS are present. HUTT can be used to simulate a 

similar situation and provide comprehensive information 

including the possible causes and severity of postural 

hypotension. During the process of posture change, 

biophysiological signals such as HR, BP and CBF can be 

changed dependently or independently, and HUTT can 

make the correct diagnosis from analysis of the signals 

during the test and raise the alarm if patients’ systemic or 

cerebral haemodynamic changes crosses the risk threshold 

and mark them as syncope positive; or otherwise, mark 

them as syncope negative.  

 

Our early syncope prediction system's cumulative risk 

gauges how likely it is that the patient will experience a 

syncope episode. It is measured and put up against a 

warning threshold that has been determined through 

adoption of gridsearch concept, 0.01 for each increment, 

within the range of 0 – 1. The system predicts a syncope 

episode upon exceeding the threshold and generates an alert 

(Fig. 2.). 

D. Performance Evaluation 

The evaluation of the early prediction algorithm included 
the use of several performance evaluation metrics        
including recall, specificity, precision and F1 score. The 
following formulas were used to calculate our proposed 
models. 

Recall (Sensitivity) =
TP

TP + FN
                                           (5) 

Specificity =           
TN

FP + TN
                                                  (6) 

Precision =             
TP

TP + FP
                                                  (7) 

F1 scor = 2 ∗
Precision ∗ Recall

Precision + Recall
                                      (8) 

 

Where, true positive (TP), false positive (FP), false negative 

(FN), and true negative (TN) are all included in the 

calculation of the confusion matrix. A test positive patient is 

designated as TP when the model predicts them as test 

positive. FP is used to indicate a test negative patient that has 

been predicted as a test positive. A test negative patient, on 

the other hand, is identified as TN. A test positive patient is 

predicted as test negative and is indicated by FN. 

III. RESULTS AND DISCUSSION 

A total of 137 participants were selected in the study. 
However, due to missing beat-to-beat data, only 120 patients’ 
data  were used for the early prediction algorithm analysis.  

The average age of test individuals who were positive was 
66.87 ± 20.44 years, while test negative subjects were aged 
65.34 ± 20.0 years. 

The mean was calculated by taking the total number of 
values in a dataset and dividing it by the number of values, 
which represents the data’s dominant trend. The standard 
deviation is an indicator of how much variety there is in a set 
of data. It is determined by averaging the squared deviations 
between each value in the dataset and the mean, which is the 
variance, then dividing that result by the square root of the 
variance. One way to understand the typical gap between data 
points and the mean is to imagine it as the regular distance that 
separates the data points from the central value. A low 
standard deviation implies that the data points are within a 
restricted range of the mean, whereas a high standard 
deviation suggests that the data points are dispersed 
throughout a wide range of values. If the data are distributed 
normally, the standard deviation may be less than, equal to, or 
larger than the mean depending on how the data are distributed 
specifically. Our standard deviation is higher than the mean 
due to the occurrence of extreme values at both ends (Table I). 
In some cases, skewed or artificially exaggerated standard 
deviations may have resulted from the way data was collected 
or measured. These extreme numbers can have a significant 
impact on the data's variability. 

 In datasets with unbalanced classes, accuracy may be 
misleading when one class has disproportionately large 
numbers of instances compared to the other. Sensitivity is a 
better choice in these circumstances. The three feature 
combinations SBP, HR, and LFHF_SBPV produce the best 
outcomes. Therefore, the most efficient pairings include SBP 
= 0.89, HR = 0.1, LFHF_SBPV = 0.01and risk threshold = 0.6. 
Our model correctly predicted 87 subjects. With a sensitivity 
of 81.6%, a specificity of 66.2%, a precision of 62.5%, and a 
F1 score of 70.8%, the proposed methodology successfully 
predicted VVS patients before its onset. The VVS prediction 
time was 544.2 ± 545.6 seconds. TABLE I presents the early 
syncope prediction outcomes.  It is important to note that 
while all three sets of features are combined, the intention is 
to capture a more holistic representation of the complex 
physiological processes underlying early VVS. However, as 
our analysis found that the combined all three feature set 
performed worse than individual set, potentially due to 
leveraging the strength of some important parameters.  

 When data is skewed and not normally distributed, relying 
on the minimum prediction time could not be the best option, 
as it is greatly influenced by outliers and may not represent the 
typical prediction time for most cases. To ensure timely and 
accurate VVS prediction, the use of the median prediction 
time is recommended instead. This provides a more realistic 
estimate of the time required for the majority of cases and is 
less sensitive to outliers, reducing the risk of delayed or 
missed diagnoses.  

The emphasis of this study differed from previous studies 
through its focus on predicting the occurrence of a condition 
based on specific physiological data (TABLE II). Previous 
studies, except Eickolt et al. 2013 [11], achieved higher 
sensitivity values in early VVS prediction using labelled data, 
which our algorithm did not use. However, our algorithm was 
able to predict VVS earlier than the previous studies (TABLE 
II). Labelled data can improve model accuracy, leading to  
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differences in sensitivity values. Nevertheless, our algorithm’s 
ability to predict VVS disease earlier is a valuable advantage 
in real-time situations where early diagnosis is essential. VVS 
can limit patients’ ability to participate in normal activities, 
affecting their quality of life. Real-time prediction of VVS 

would help patients from experiencing the syncope pain again 
while reducing assessment time. 

.

 

Fig. 1. The flowchart of the proposed model. It begins with carefully selection of important features that are relevant to cardiovascular 
parameters and their connections to autonomic nervous system activity. These features are divided into three sets and evaluated to determine 
their potential contributions in the prediction system. A baseline duration of 180 seconds is set as a reference point. The selected features are 
then normalized to ensure consistency and comparability. Multiple combinations of weighting factors are examined to assess their impact on 
the prediction process. A crucial step in the model involves determining a threshold for the risk of VVS. This threshold value is fine-tuned 
through a trial-and-error process using the dataset, indicating its adaptation to the study. Once the threshold is established, the model proceeds 
to calculate the VVS risk for each individual. Finally, if an individual's VVS risk surpasses the determined threshold, the algorithm issues an 
alarm, signaling the potential occurrence of a syncope episode. 

 

 

Fig 2. An illustration of the calculation of forecast time using the vasovagal syncope (VVS) risk. The VVS risk threshold is crucial in 
determining when to issue notifications, indicating an increased likelihood of syncope. When the VVS risk exceeds the threshold, VVS 
notifications are generated. Prediction time is calculated from the first notification to the actual episode, providing an estimate of available 
time. The baseline calculation establishes a reference point, enabling identification of trends unrelated to VVS risk and enhancing accurate 
prediction by considering both underlying patterns and deviations.
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TABLE I.  SUMMARY OF OUR PROPOSED MODEL PERFORMANCES’ 

1st set of selected features and their values 

SBP HR LFHF-SBPV 
Risk 

Threshold 
Performance (%) 

Prediction Time 

(sec) (mean ± SD) 

Min 

Time 

(sec) 

Median 

Time 

(sec) 

0.89 0.1 0.01 0.6 
Sen: 81.6; Spe: 66.2; Pre: 62.5; 

F1 score: 70.8 
544.2 ± 545.6 120.6 221.45 

0.8 0.1 0.1 0.5 
Sen: 81.6; Spe: 63.4; Pre: 60.6; 

F1 score: 69.6 
549.8 ± 541.9 120.6 216.70 

0.84 0.1 0.06 0.5 
Sen: 81.6; Spe: 62.0; Pre: 59.7; 

F1 score: 69.0 
563.8 ± 543.4 120.6 210.90 

1 0 0 0.5 
Sen: 81.6; Spe: 62.0; Pre: 59.7; 

F1 score: 69.0 
567.6 ± 551.8 120.6 211.07 

0 1 0 0.5 
Sen: 73.5; Spe:14.1; Pre: 37.1; 

F1 score: 49.3 
562.6 ± 438.2 99.8 143.65 

0 0 1 0.5 
Sen: 42.9; Spe: 57.7; Pre: 41.2; 

F1 score: 42.0 
493.9 ± 402.1 120.6 277.90 

0.5 0.5 0 0.5 
Sen: 67.3; Spe: 49.3; Pre: 47.8; 

F1 score: 55.9 
603.7 ± 557.0 120.6 201.37 

0.5 0 0.5 0.5 
Sen: 34.7; Spe: 81.7; Pre: 56.7; 

F1 score: 43.0 
430.2 ± 342.9 146.32 384.50 

2nd set selected features and their values 

SBP HR HFnu_SBPV 
Risk 

Threshold 
Performance (%) 

Prediction Time 

(sec) (mean ±S D) 

Min 
Time 

(sec) 

Median 
Time 

(sec) 

0.89 0.1 0.01 0.6 
Sen: 81.6; Spe: 66.2; Pre: 62.5; 

F1 score: 70.8 
546.2 ± 548.1 120.6 221.45 

0.82 0.1 0.08 0.6 
Sen: 77.6; Spe: 67.6; Pre: 62.3; 

F1 score: 69.1 
553.7 ± 537.1 120.6 222.37 

0.8 0.1 0.1 0.5 
Sen: 81.6; Spe: 63.4; Pre: 60.6; 

F1 score: 69.6 
604.84 ± 602.1 120.6 255.70 

3rd set of selected features and their values 

HR SBP LFnu_HRV Lfnu_SBPV 
Risk 

Threshold 
Performance (%) 

Prediction Time 

(sec) (mean ± SD) 

Min 

Time 

(sec) 

Median 

Time 

(sec) 

0.125 0.5 0.125 0.25 0.5 

Sen: 51.0; Spe: 

83.1; Pre: 67.6; F1 

score: 58.1 

532.3 ± 432.2 120.6 249.30 

0.125 0.5 0.11 0.265 0.5 

Sen: 42.9; Spe: 

83.1; Pre: 70.0; F1 

score: 53.2 

504.7 ± 401.1 120.6 249.30 

0.125 0.5 0.11 0.265 0.43 
Sen: 51.0; Spe: 

80.3; Pre: 64.1; F1 

score: 56.8 

653.7 ± 599.5 120.6 234.30 

Note: HR, heart rate; SBP, systolic BP; SBPV, SBP variability; HFnu, normalized high frequency power; LFHF, normalized ratio of HF and LF; LFnu, 

normalized low frequency power; Sen, sensitivity; Spe, specificity; Pre, precision 

TABLE II.  COMPARISON WITH OTHERS REAL-TIME EARLY SYNCOPE PREDICTION TECHNIQUES 

Authors’ Signals 
No. of 

samples 

Prediction Time (sec) 

(mean ± SD) 
Performance (%) 

Virag et al 2008 [5] ECG, BP 1155 128 ± 216 Sen: 95.0; Spe: 93.0 

Meyer et al 2011 [10] ECG, PPG 14 99 ±108 Sen: 100; Spe: 100 

Eickolt et al. 2013 [11] ECG, PPG 44 203 ± 227 Sen: 81; Spe:85 

Mereu et al 2013 [12] ECG, BP 145 44.1±6.6 Sen: 86.2; Spe:89.1 

Muhlsteff et al. 2013 [13] ECG, PPG 43 77.71 ± 71.78 Sen: 90.5; Spe: 83.3 

R. Couceiro et al 2016 [14] ECG, PPG 43 116.4 ± 155.5 Sen: 95.2; Spe: 95.4 

Proposed ECG, BP 120 544.18 ± 545.58 
Sen: 81.6; F1 Score: 70.8; Spe: 66.2 

Pre: 62.5 
N.B: ECG, electrocardiography; ICG, impedance cardiography; BP, blood pressure; sensitivity; Spe, specificity; Pre, precision; N, syncope negative subjects; 

P, syncope positive subjects. 
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IV. CONCLUSION 

Our findings suggest that combining the extracted features 

could be crucial in predicting impending VVS. The proposed 

methodology was able to predict VVS patients before its 

onset with a sensitivity of 81.6%, specificity of 66.3%, 

precision of 62.5% and F1 score of 70.8%. The median 

prediction time was 221.5 seconds (Interquartile range = 

180.0 - 294.0 seconds).  The proposed algorithm could 

possess a great deal of promise to reduce the discomfort 

associated with reproduction of distressing symptoms in 

individuals with VVS. 

V. LIMITATION AND FUTURE WORKS     

For the investigation, only ECG and BP signals were 

analysed. Impedance Cardiography (ICG) signal could also 

be used to predict test positive subjects. A few cardiodynamic 
parameters, such as stroke volume, cardiac output, ventricular 

ejection time, and pre-ejection interval, are processed 

continuously by the ICG, a safe technique that measures the 

total electrical conductivity of the thorax and changes in that 

conductivity over time. It is used to detect impedance changes 

brought on by a high-frequency, low- amplitude current 

passing between two additional pairs of electrodes outside the 

measured area in the thorax.  
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