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Abstract—A robust decentralized control method is proposed
in this paper for an islanded DC microgrid. A state-space model
of the islanded DC microgrid system is derived based on the
small-signal model of the system. Parametric uncertainties like
load resistance, filter inductance and capacitance are modelled
using the upper linear fractional transformation technique.
A loop-shaping H∞ controller is designed to ensure robust
stability and satisfaction of desired performance criteria. The
proposed control technique is applied to an islanded DC
microgrid test system comprising a dispatchable distributed
generation unit, a photovoltaic unit following the maximum
power point tracking algorithm, and a battery energy storage
system unit. Simulation studies validate the efficacy of the
proposed control approach for an islanded DC microgrid.

Index Terms—DC microgrid, Robust control, Robust stabil-
ity, H∞ loop shaping

I. INTRODUCTION

Recently, small-scale generation sources, known as dis-
tributed generation (DG), are being added close to the
customer site to meet load demands partly or fully. DG can be
non-dispatchable (renewable-based sources like photovoltaic
(PV) and wind) or dispatchable (controllable sources like
microturbine (MT), fuel cell (FC), diesel generator, gas
turbine (GT), etc.). A medium voltage (MV) or low voltage
(LV) distribution network comprising DG, storage units,
and controllable loads in a clearly defined control area is
called a microgrid (µG) [1]. AC µGs are more widely used.
However, DC-Microgrid (DCµG)s are also becoming popular
for applications like data centres, remote rural electrification,
smart buildings, etc., [2].

The control schemes for voltage control of a DCµG can
be broadly classified as centralized, decentralized, and dis-
tributed. Master-slave control is an example of a centralized
control scheme, where one DG unit maintains the DC link
voltage, while others follow pre-set power references [3].
The Master-slave control is suitable for a small DCµG. The
reliability of operation can be enhanced by adopting a decen-
tralized control architecture. Droop control is an example of
a decentralized scheme, where individual DG units receive
commands from local controllers. A hierarchical control
architecture was proposed in [4], where the primary level
involved droop control for communication-less power shar-
ing among multiple dispatchable DG units. The secondary
and tertiary controls perform voltage restoration and optimal

operation functions. Several modifications of the basic droop
control strategy, like robust droop [5], adaptive droop [6], and
optimal droop [7], have been reported. Distributed control
schemes incorporate the benefits of centralized and decen-
tralized control philosophies and involve communication be-
tween neighbouring units [8], [9]. Robust control techniques
have also been used for voltage control of DCµGs. A robust
decentralized scheme was proposed for voltage control of a
DCµG incorporating uncertainties of plug and play (PnP),
topological changes, and load [10]. A combination of L2

norm and H∞ performance criterion was used in the above
work. The authors in [11] modelled parametric uncertainties
using a “Lebesque-measurable matrix” and implemented a
centralized H∞ control approach for a DCµG.

In this work, a decentralized H∞ loop-shaping design
(H∞ LSD) control scheme is designed for a small isolated
DCµG system comprising a dispatchable DG source, PV
unit, and a battery energy storage system (BESS). The
robust controller is designed for all the units. Parametric
uncertainties of load and filter elements and disturbances
are considered using a structured upper linear fractional
transformation (ULFT) representation. The efficacy of the
proposed approach is validated using simulation studies.

II. NOMINAL MODEL OF THE DCµG

The DCµG comprises a dispatchable source, a PV unit,
and a BESS, as shown in fig. 1. The dispatchable source
and the PV units are interfaced with the DC bus using
buck converters, while the BESS is interfaced using a bi-
directional buck-boost converter.

A. Nominal small-signal Model

The small-signal averaged model of the system is shown
in fig. 2. The output capacitances of the three converters
are clubbed and represented by a single capacitor Ceq

in the small-signal model. All upper-case variables denote
quiescent operating points, while lower-case variables with
hats denote small perturbations of variables around quiescent
operating points. For instance, D1 denotes the quiescent
operating duty cycle of the buck converter used with the
dispatchable unit, and d̂1 denotes a small perturbation. The
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Figure 1. DCµG test System

Figure 2. DCµG small-signal model

small-signal linear state space model of the system is as
follows:
dv̂

dt
= − 1

RCeq
v̂ +

1

Ceq
î1 +

1

Ceq
î2 +

1

Ceq
î3 −

1

Ceq
î01 (1)

dî1
dt

=
1

L1
(−v̂ − r1î1 + d̂1Vg1 +D1v̂g1) (2)

dî2
dt

=
1

L2
(−v̂ − r2î2 + d̂2Vbess +D2v̂bess) (3)

dî3
dt

=
1

L3
(−v̂ − r3î3 + d̂3Vpv +D3v̂pv) (4)

dv̂pv
dt

=
1

C4
(−D3î3 − I3d̂3 + îpv) (5)

In the above state-space representation, the state-variable
vector is: x = [v̂, î1, î2, î3, v̂pv]

T , the control input vector

comprises the duty cycles: u = [d̂1, d̂2, d̂3]
T , and the distur-

bance vector is: w = [̂i01, v̂g1, v̂bess, îpv]
T . We can expand

the above state space model to include more generation and
storage units. However, the above model does not include
parametric uncertainties. Also, the state equations for each
unit are coupled with state variables belonging to other units.
For example, in eq. (1), terms involving î2 and î3 represent
the interaction between the dispatchable unit, the PV and the
BESS.

B. Decoupling of interactive states

This work aims to design fully decentralized primary
controllers for the units so that local control units use
only local measurements. Therefore, in this paper, we have
designed individual controllers for each converter using local
measurements of the same converter and treating the inter-
action terms as exogenous disturbance inputs. Therefore, the
state space model is modified as follows:

1) Dispatchable Unit converter: The state space equation
eq. (1) of the dispatchable converter is modified as follows:

dv̂

dt
= − G

Ceq
v̂ +

1

Ceq
î1 +

1

Ceq
(ŵe1) (6)

Where ŵe1 = î2+î3−î01 is the exogenous disturbance input
due to interactions with other converters. G = 1

R . (2) is not
modified since no interaction term exists. Therefore, the state
space model of the dispatchable unit converter consists of (6)
and (2).

2) BESS converter: The variation in DC bus voltage (v̂) is
the exogenous disturbance input. Therefore, (3) is modified
as under:

dî2
dt

=
1

L2
(−r2î2 + d̂2Vbess +D2v̂bess)−

1

L2
ŵe2 (7)

Where ŵe2 = v̂ is the exogenous disturbance.
3) PV converter: The variation in DC bus voltage (v̂) is

the exogenous disturbance input. Therefore, (4) is modified
as under:

dî3
dt

=
1

L3
(−r3î3 + d̂3Vpv +D3v̂pv)−

1

L3
ŵe3 (8)

Where ŵe3 = v̂ is the exogenous disturbance. (5) is
not modified since it does not contain interaction terms.
Therefore, the state space model of the PV converter is given
by (8) and (5). A robust local controller is designed for
each converter by treating the interaction terms as exogenous
disturbance inputs. The impact of exogenous disturbance
inputs (including the interaction terms) on the measured
output of each converter is minimized by minimizing the H∞
norm of the corresponding transfer function. This approach
helps mitigate possible instability and poor performance
due to interactions between different converters and control
loops.

III. H∞ LOOP-SHAPING DESIGN PROCESS

The first step is to model the parametric uncertainties using
the ULFT representation.

A. System model with parametric uncertainty

Parametric uncertainties are modelled for each converter.
The equations describing the dynamic behaviour of the
uncertain plant (ith converter) are as follows:
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dxi

dt
= Aixi +B1iwi +B2iui

zi = C11ix1 +D11iwi +D12iui

yi = C21ix1 +D21iwi +D22iui

(9)

xi denotes the states, wi the disturbance inputs, and ui

the control inputs for the ith converter. zi and yi are the
controlled and measured outputs, respectively.

1) Dispatchable unit converter: The controller of the
converter should maintain the DC bus voltage, i.e., track
the DC bus voltage reference. In a realistic system, the
parameters are not precisely known. However, the parameter
values lie within a certain range. The uncertain parameters
are modelled as: G = G0(1 + pgδg), L1 = L10(1 + pl1δl1),
Ceq = Ceq0(1 + pc1δc1), r1 = r10(1 + pr1δr1). G0, L10,
Ceq0, r10 represent the nominal values. pg , pl1, pc1, and
pr1 denote the per unit variation from the nominal values.
−1 ≤ δg, δl1, δc1, δr1 ≤ 1. If pg = 0.5, the load conductance
can vary up to 50%. For the converter used with the dis-
patchable unit, states: x1 = [v̂, î1]

T , the disturbance inputs:
w1 = [δg v̂, δc1

dv̂
dt , δl1

dî1
dt , δr1î1, ŵe1, v̂g1]

T , the control input:
u1 = d̂1, the controlled outputs: z1 = [v̂, dv̂

dt ,
dî1
dt , î1]

T , and
the measured output: y1 = v̂. The first four terms in the
disturbance input are due to parametric uncertainties. The
system matrices are as follows:

A1 =

[
− G0

Ceq0

1
Ceq0

− 1
L10

− r10
L10

]
;B21 =

[
0

Vg1

L10

]
;D221 = 0

B11 =

[
− G0

Ceq0
pg −pc1 0 0 − 1

Ceq0

0 0 −pl1 − r10pr1

L10
0 D1

L10

]

C111 =


1 0

− G0

Ceq0

1
Ceq0

− 1
L10

− r10
L10

0 1

 ;D121 =


0
0

Vg1

L10

0



D111 =


0 0 0 0 0 0

− G0

Ceq0
pg −pc1 0 0 − 1

Ceq0

0 0 −pl1 − r10pr1

L10
0 D1

L10

0 0 0 0 0 0


D211 =

[
0 0 0 0 0 0

]
;C211 =

[
1 0

]

(10)

The representation of uncertain parameters as ULFT diagonal
∆ block is:

δg v̂
δc1

dv̂
dt

δl1
dî1
dt

δr1î1

 =


δg 0 0 0
0 δc1 0 0
0 0 δl1 0
0 0 0 δr1




v̂
dv̂
dt
dî1
dt

î1

 (11)

2) BESS converter: In this work, the BESS controller
should track a current (charging/discharging) reference from
the control hierarchy’s upper layer. The uncertain parameters
are r2 = r20(1 + pr2δr2), L2 = L20(1 + pl2δl2), with −1 ≤
δr2, δl2 ≤ 1. The state variables: x2 = î2, the disturbance
inputs: w2 = [δl2

dî2
dt , δr2î2, v̂bess, ŵe2]

T , the control input:
u2 = d̂2, the controlled outputs: z2 = [dî2dt , î2]

T , and the
measured output: y2 = î2. The first two disturbance inputs
are due to parametric uncertainties. The system matrices for
boosting operation are as follows:

A2 =
−r20
L20

;C12 =

[
− r20

L20

1

]
;B22 =

V

L20
;C22 = 1

B12 =
[
−pl2 − r20pr2

L20

1
L20

− 1−D2

L20

]
;D222 = 0

D212 =
[
0 0 0 0

]
;D122 =

[
V
L20

0

]
D112 =

[
−pl2 − r20pr2

L20

1
L20

− 1−D2

L20

0 0 0 0

] (12)

The system matrices for buck operation are as follows:

A2 =
−r20
L20

;C12 =

[
− r20

L20

1

]
;B22 =

V

L20
;C22 = 1

B12 =
[
−pl2 − r20pr2

L20
− 1

L20

D2

L20

]
;D222 = 0

C12 =

[
− r20

L20

1

]
;D212 =

[
0 0 0 0

]
D112 =

[
−pl2 − r20pr2

L20
− 1

L20

D2

L20

0 0 0 0

]
D122 =

[
V
L20

0

]
(13)

The uncertain parameters are represented as ULFT diago-
nal ∆ block as follows:[

δl2
dî2
dt

δr2î2

]
=

[
δl2 0
0 δr2

] [
dî2
dt

î2

]
(14)

The proposed theory can be used for voltage control appli-
cations also if desired.

3) PV converter: The controller of the buck converter
used with the PV unit should track the maximum power point
tracking (MPPT) voltage (Vpv). The parametric uncertainties
are modelled as C4 = C40(1+pc4δc4), L3 = L30(1+pl3δl3),
r3 = r30(1 + pr3δr3), with −1 ≤ δc4, δl3, δr3 ≤ 1. The
state variables are x3 = [v̂pv, î3]

T , the disturbance inputs
w3 = [δc4

dv̂pv
dt , δl3

dî3
dt , δr3î3, îpv, ŵe3]

T . The first three terms
in the disturbance input vector are due to parametric uncer-
tainties. The control input is u3 = d̂3. The controlled output
vector is given by z3 = [

dv̂pv
dt , dî3

dt , î3]
T , while y3 = v̂pv is

the measured output. The system matrices are as follows:

A3 =

[
0 − D3

C40
D3
L30

− r30
L30

]
;B23 =

[
− I3

C40
Vpv

L30

]
;D223 = 0

B13 =

[
−pc4 0 0 1

C40
0

0 −pl3 − r30pr3

L30
0 − 1

L30

]

D113 =

−pc4 0 0 1
C40

0

0 −pl3 − r30pr3

L30
0 − 1

L30

0 0 0 0 0


C13 =

 0 − D3

C40
D3

L30
− r30

L30

0 1

 ;D123 =

− I3
C40

Vpv

L30

0


C23 =

[
1 0

]
;D213 =

[
0 0 0 0 0

]

(15)

The uncertain parameters are represented as ULFT diagonal
∆ block as follows:δc4

dv̂pv
dt

δl3
dî3
dt

δr3î3

 =

δc4 0 0
0 δl3 0
0 0 δr3




dv̂pv
dt
dî3
dt

î3

 (16)
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B. H∞ LSD procedure

The closed-loop objectives (as “singular values of
weighted transfer function”) are specified in the H∞ syn-
thesis approach [12]. However, the choice of appropriate
weights and closed-loop objectives are involved. Also, the
nominal plant and the synthesized controller may have an
undesirable pole-zero cancellation. An alternative synthe-
sis approach called the H∞ LSD procedure combines the
classical loop-shaping approach with the H∞ design and
obviates the limitations of H∞ design. Moreover, the H∞
LSD method is not iterative and computationally efficient.
Let matrices (M̃, Ñ) ∈ H+

∞ be the left coprime factorisation
of the nominal plant model G. Let the perturbed plant be
G∆ = (M̃ + ∆M̃ )−1(Ñ + ∆Ñ ). (∆M̃ ,∆Ñ ) are stable but
unknown transfer functions representing the plant uncertain-
ties. The aim is to stabilize the family of perturbed plants as
follows [13]:

Gϵ = {(M̃+∆M̃ )−1(Ñ+∆Ñ ) : ∥[∆M̃ ,∆Ñ ]∥∞ < ϵ} (17)

Where ϵ > 0 denotes the stability margin. The feedback
controller K makes the feedback system (∆M̃ ,∆Ñ ,K, ϵ)
robustly stable if and only if (G,K) is internally stable and
[13]: ∥∥∥∥[K(I −GK)−1M̃−1

(I −GK)−1M̃−1

]∥∥∥∥
∞

≤ ϵ−1 (18)

The robust stability of the closed-loop system is maximized
by minimizing γ defined as follows:

γ :=

∥∥∥∥[KI
]
(I −GK)−1M̃−1

∥∥∥∥
∞

(19)

The lowest possible value γ for all stabilizing controllers K
is given by :

γ0 = (1−
∥∥∥[ÑM̃ ]

∥∥∥2
H
)−

1
2 (20)

∥.∥H is the “Hankel norm”. Let K = UV −1 represent all
controllers which optimize γ. U and V are stable, and the
right coprime factorization of K [13]:∥∥∥∥[−Ñ∗

M̃∗

]
+

[
U
V

]∥∥∥∥
∞

=
∥∥[Ñ M̃

]∥∥
H

(21)

The above problem can be solved using the algorithm pro-
posed in [14]. The H∞ LSD process involves the following
steps [13]:

• Design a pre-compensator W1 and a post-compensator
W2 to modify the singular values of the nominal plant G
for achieving the desired loop shape. The shaped system
becomes GS = W2GW1. GS should not contain any
hidden unstable modes.

• Synthesize a robust feedback controller KS for robust
stability of the normalized left coprime factorization of
GS with a stability margin of ϵ. Frequency responses of
KSW2GW1 and W2GW1 will be similar for ϵ ≥ 0.2
[12].

• Combine the H∞ controller KS with weighting func-
tions W1 and W2 to obtain the feedback controller
Kfb = W1KSW2.

Table I
SYSTEM PARAMETERS

Parameter Value Parameter Value
r10 = r20 = r30 0.2Ω L20 2 mH
L10 1.8 mH Vg1 100 V
Ceq0 9.4 mF Vbess (nominal) 24 V
C40 2.0 mF fsw (Switching frequency) 10 kHZ
L30 1.0 mH Vpv (MPPT voltage) 58 V

IV. SIMULATION STUDIES

The proposed control strategy is validated by simulation
studies using an islanded small DCµG system shown in
fig. 1.

A. Test System

The nominal value of the DC bus voltage is 48 volts.
Nominal values of system parameters are given in table I.
The converter filter parameters are chosen to keep the current
and voltage ripples under 5%. A Li-Ion BESS unit, having a
nominal voltage of 24 V and a rated capacity of 200 Ah, has
been considered. The fully charged voltage of the BESS is
27.9357 V, while the nominal discharge current is 86.9565
A. The Ah capacity is 180.8696 Ah at nominal voltage.
The internal resistance of the BESS unit is 0.0012 Ω. The
initial state of charge is 50%, and the BESS response time
is 1 s. The PV system comprises two parallel strings with
two series-connected modules in each string. The maximum
power of each module is 213.15 W. There are 60 cells in
each module. The open-circuit voltage is 36.3 V, and the
short-circuit current is 7.84 A. The voltage and current at the
maximum power point for each module are 29 V and 7.35 A,
respectively. The temperature coefficient of the open-circuit
voltage is −0.36099%/◦C while the temperature coefficient
of the short-circuit current is 0.102%/◦C. All the converters’
switching frequency (fsw) is 10 kHZ [15].

The quiescent point duty cycle for the buck converter used
with the dispatchable unit is D1 = 0.48, and the nominal
load conductance G0 = 1

3℧. The H∞ LSD controller for the
buck converter used with the dispatchable unit is designed
considering 50% parameter variation in G, Ceq , L1, and r1
from the nominal values. The quiescent point duty cycle
for the bi-directional converter used with the BESS unit is
D2 = 0.50 for both charging and discharging operations. The
H∞ LSD controller is designed considering 50% parameter
variation in r2 and L2 from their nominal values. The
quiescent point duty cycle for the converter used with the
PV unit is D3 = 0.82 and I3 = 17.9268 A. We have
considered 50% parameter variation in r3, C4, and L3 from
their nominal values while designing the H∞ LSD controller.

B. Simulation Results

The pre-compensator and the post-compensator for the
buck converter used with the dispatchable unit are chosen as
W1(s) =

9.471s2+8222s+1.648e06
s2+1.782e04s and W2(s) = 1 to achieve

a phase-margin of 67◦ and a crossover frequency of 504.80
Hz (see fig. 3). Also, the shaped plant has a high dc gain and
good disturbance attenuation characteristics. The stability
margin of the designed controller is ϵ = 0.5947, which
indicates that the robust feedback controller gives the desired
frequency response characteristics. The pre-compensator and
the post-compensator for the bi-directional converter used
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Figure 3. Frequency response of the shaped nominal plant-Buck converter
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Figure 4. Frequency response of the shaped nominal plant-Bidirectional
buck-boost converter

with the BESS unit are chosen as W1(s) = 0.16s+3.2
s and

W2(s) = 1 for both charging and discharging modes. The
plant is shaped to yield a phase margin of 84.35◦ and a
crossover frequency of 504.43 Hz (see fig. 4). The stability
margin is ϵ = 0.7144. The pre-compensator and the post-
compensator for the converter used with the PV unit are
W1(s) =

230s+14.38
s and W2(s) = 1. The shaped plant has a

phase margin of 62.81◦ and a crossover frequency of 495.29
Hz (see fig. 5). The stability margin is ϵ = 0.5630. The
controller design is carried out using MATLAB R2015a. The
time domain analysis is carried out in SIMULINK.

1) Tracking performance of nominal closed loop system:
The following sequence of events is considered:

• 0 ≤ t < 0.25 s: The DC link voltage reference is
48 V, the MPPT voltage reference is 58 V, the BESS
discharging current reference is 1 A.

• At t = 0.25 s: The DC link voltage reference changes
to 48.5 V.

• At t = 0.50 s: The MPPT voltage reference changes to
55 V.

• At t = 0.75 s: The BESS discharging current reference
changes to 2 A.
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Figure 5. Frequency response of the shaped nominal plant-PV converter

Figure 6. Response with DC bus voltage reference change at t = 0.25 s

Figure 7. MPPT voltage with reference change at t = 0.5 s

Figure 8. BESS current with reference change at t = 0.75 s

The DC bus voltage is shown in fig. 6, while the MPPT
voltage tracking is shown in fig. 7. The tracking of the BESS
current is shown in fig. 8. The time domain results demon-
strate proper reference signal tracking with zero steady-state
error for all quantities within 0.005 s. Also, the transient
response is excellent, with minimal overshoots. Therefore,
the designed controller ensures stability and excellent robust
performance of the closed-loop system when subjected to
reference signal changes.

2) Robustness to uncertain load, filter parameters, and
power injection from PV and BESS units: The following
operating sequence is considered:
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Figure 9. DC bus voltage with load and power injection uncertainty

Figure 10. DC bus voltage with filter elements, load and power injection
uncertainty

• 0 ≤ t < 0.5 s: The load resistance is 3Ω, the solar
irradiation is 500 W/m2, and the BESS discharging
current reference is 1A.

• At t = 0.5s, the solar irradiation increases to 600
W/m2.

• At t = 0.9s, the BESS discharging current reference
changes to 2 A.

• At t = 1.2s, the BESS switches to charging mode with
a current reference of 2.5 A.

• At t = 1.5s, the solar irradiation reduces to 400 W/m2

• At t = 1.8s, the BESS charging current reference
becomes 10 A.

• At t = 2.2s, the load resistance becomes 2.25Ω

The plot of the DC link voltage is shown in fig. 9. From
fig. 9, it is observed that the DC link voltage stays at 48 V
following short and negligible transients after changes in load
and power injections from the PV and BESS unit. Therefore,
the designed controller is robust and maintains the stability
and desired performance of the closed-loop system.

The exact sequence of operation as mentioned above is
followed, albeit with L1 = 1.9 mH and Ceq = 9.0 mF, i.e.,
with non-nominal filter parameters for the buck converter.
The DC bus voltage is shown in fig. 10. In this case,
the designed controller exhibits robustness and maintains
stability and desired performance of the closed-loop system.

3) Amenability to PnP operation: The robust stability and
performance of the closed-loop system with the designed
controller are validated for PnP operation. The PV unit
is switched out at t = 0.25 s and again plugged back at
t = 0.35 s. The DC bus voltage is shown in fig. 11, from
which it is observed that the closed-loop system is stable and
robust with desired performance under PnP operation with
the designed robust controllers.

V. CONCLUSIONS

A robust decentralized controller has been proposed for
an islanded DCµG in this paper. The robust controller has
been designed using the H∞ LSD procedure considering
parametric uncertainties of converter filters and loads. The
controller for each converter uses local information from the

Figure 11. DC bus voltage for PnP operation

converter for which the controller is designed. The interaction
terms between different converters have been modelled as
exogenous disturbances to avoid possible instability and poor
performance. The controller minimizes the impact of exoge-
nous disturbances and parametric uncertainties on the output
by minimizing the H∞ norms. The parametric uncertainties
have been modelled using the ULFT structured diagonal
∆ matrices. Simulation results on a test DCµG system
reveal that the closed loop system is robust and provides
excellent transient performance and zero steady-state error
when subjected to parametric uncertainties, load changes,
disturbances and PnP operation.
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