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Abstract—The penetration of embedded generation, including
renewable power sources (wind and solar), is gradually increas-
ing in power distribution networks. Also, the transition from
conventional fossil fuel-based transportation to e-transportation
has introduced electric vehicle charging stations as a new
load class. The conventional distribution system architecture
alteration has made the system operation rather challenging.
Therefore, an efficient energy management scheme is crucial to
the satisfactory operation of an active distribution system from
techno-economic considerations. This paper proposes an optimal
operating strategy to simultaneously minimize the operating
cost, average voltage deviation, and line loadings and improve
the voltage stability of an active distribution network. The
distribution system is assumed to have a soft open point and
smart transformer for smooth active and reactive power control.
The demand response flexibility (offered by responsive electrical
demands and public and residential electric vehicle charging
stations) is coordinated by controlling a smart transformer and a
soft open point to realize multiple objectives. The multi-objective
problem is solved in the fuzzy domain using a combination of
linear programming and particle swarm optimization. Simulation
results on a sixty-nine-bus radial distribution system validate the
proposed method’s effectiveness.

Index Terms—Electric Vehicles, Renewable Energy, Demand
Response, Soft Open Points, Particle Swarm Optimization, Smart
Transformer.

I. INTRODUCTION

With the increasing integration of distributed energy re-
source (DER) and electric vehicle (EV), the operation of
an active distribution network has become challenging. The
distribution network operator (DNO) can compensate for the
renewable energy source (RES) generation and EV load vari-
ability by demand response (DR) implementation or by using
distributed battery energy storage system (DBESS). Further,
power electronic devices like the soft open point (SOP) and
smart transformer (ST) allow smooth control of active and
reactive power and automation of a distribution system [1].
Therefore, DR has the potential to ensure grid security and
increase the efficiency of the power network. In this context, an
effective energy management scheme (EMS) is needed for the
satisfactory operation of a distribution system from a techno-
economic viewpoint.

The DR participation is ensured through price or incentive-
based options. A data-driven incentive-based DR was for-
mulated in a robust optimization framework to address the
uncertainties from the load demands, renewable energy gener-
ations, and DR resources [2]. A tri-level two-stage price-based
demand response (PBDR) in a non-cooperative game theoretic
framework using a two-loop Stackelberg game is proposed [3].

A coordinated optimization scheme for incorporating battery
energy storage system (BESS) and SOP in combined DR and
conservation voltage reduction (CVR) scheme is presented in
[4]. A two-stage stochastic optimization with integrated DR
is proposed for community integrated energy system (CIES)
to schedule various energy equipment following the changes
in user demand patterns and energy prices [5]. Recent studies
reveal that an SOP in coordination with DR can reduce the
active power losses, increasing voltage stability index (VSI),
reducing average voltage deviation (AVD), decreasing the line
loading, and ultimately enhancing hosting capacity (HC) of a
distributions system [6]. A two-layer control strategy is pro-
posed using an SOP in the form of load regulation considering
the economic operation area of the transformers and peer-to-
peer control of each port to suppress the voltage fluctuation [7].
A multi-objective probabilistic EMS is proposed to simultane-
ously reduce the cost of operation, improve the voltage profile,
and minimize AVD in a distribution network considering SOP
[8]. A multi-time scale EMS framework has been proposed
using for multi-terminal SOP-based active distribution network
(ADN) considering Stackelberg theoretic game relationship
between the ADN and microgrids [9].

This paper proposes a multi-objective EMS for simultaneous
cost minimization, VSI improvement, AVD minimization, and
minimization of line current loading in a power distribu-
tion network considering RES and plug-in electric vehicle
(PEV) loads. The multi-objective multi-constraint optimization
problem has been solved using particle swarm optimization
(PSO). The remainder of this paper is arranged as follows.
Mathematical modelling is presented in section II, solution
approach in section III, and simulation studies in section IV
followed by conclusions in section V.

II. MATHEMATICAL MODELING

The distribution network comprises RES (i.e., solar photo-
voltaic generation system (SPGS) and wind power generation
system (WPGS)), electrical loads, an SOP, residential and
public electric vehicle charging station (EVCS). A fraction of
the electrical loads, residential and public EVCSs participate
in the DR program and provide flexibility to the distribu-
tion system operator (DSO). A ST interfaces the distribution
network with the upstream grid. The distribution network
is further equipped with an SOP. The ST and SOP offer
further flexibility in the distribution network operation. The
DSO gathers information about the hourly grid power price
and the price of DR participation from the day-ahead energy
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market. An optimal EMS is followed by the DSO to reduce
the total cost of operation, improve the voltage stability,
reduce the AVD, and reduce the line loadings. The objective
values are of different orders. Therefore, each objective is
normalized by assigning a fuzzy membership function (FMF).
The maximum value of a FMF is 1, which denotes complete
satisfaction of the objective. On the other hand, the minimum
value of the FMF is 0 and denotes non-satisfaction of the
objective. A high value of the FMF signifies the attainment
of the objective to a greater extent. The multi-objective multi-
constraint optimization problem is described below.

A. Objective functions

Each objective function is described below:
1) Reduction of total operating cost: The total cost of

operation (κ) is given by :

κ =
∑
t∈Ωt

κt =
∑
t∈Ωt

λtgP
t
g + λtdr

∑
m2∈ωb

((P 0t
l (m2) + P 0t

rev(m2)

+ P 0t
pev(m2))− (P tl (m2) + P trev(m2) + P tpev(m2)))

(1)

The first term on the right hand side (RHS) of (1) denotes
the cost of energy drawn from the grid, while the second
term denotes the price of DR implementation. t denotes a
time window (taken as one hour in this paper), and Ωt is
the set of all one-hour windows under consideration (taken
as 24 hours for a day). Superscript t denotes the value of a
variable at time t. λtg denotes the price of electricity procured
from the grid, P tg denotes the power imported from the main
grid, and λtdr denotes the DR price for the time slot t. P tl /P 0t

l

denotes the load demand after/before implementation of the
DR program during the time window t. P trev/P 0t

rev denotes the
residential EV’s load demand after/before implementation of
the DR program during the time window t. P tpev/P 0t

pev denotes
the public EV’s load demand after/before implementation of
the DR program during the time window t. m2 denotes a
bus in the system, and Ωb is the set of all system buses. The
following FMF is assigned to the objective (t ∈ Ωt):

µt1 =


κt
max−κ

t

κt
max−κt

min
: κtmin ≤ κt ≤ κtmax

1 : κt < κtmin
0 : κt > κtmax

(2)

where κtmax and κtmin are upper and lower thresholds of κt.
The FMF attains the maximum value of 1 when κt ≤ κtmin,
and the minimum value of 0 when κt ≥ κtmax. The value of
the FMF decreases linearly in between. Therefore, reducing
the total operating cost will lead to a higher value of the FMF.

2) Improvement of VSI: The VSI of a bus m2 (υt(m2)) in
a radial distribution network is computed by [10]:

υt(m2) =(|V t(m1)|4 − 4(P t(m2)xl −Qt(m2)rl)
2

− 4(P t(m2)rl −Qt(m2)xl))(|V t(m1)|)2
(3)

where m1 and m2 denote the sending and receiving end
buses of line l having resistance and reactance values of rl and
xl, respectively. P (m2) and Q(m2) denote the total active and
reactive powers fed through the bus m2. |V (m2/m1)| is the
voltage magnitude at bus m2/m1. In this paper, the objective

is to maximize the VSI of the most vulnerable bus, i.e., to
maximize the minimum value of the VSI (νt) as given below:

νt = min
m2

{υt(m2)} m2 ∈ Ωb \ 1 (4)

Ωb denotes the set of all buses. The objective is to improve
the value of VSI, i.e., a higher value of VSI should yield a
higher value of the FMF. Therefore, the following FMF is
assigned:

µt2 =


νt−νt

min

νt
max−νt

min
: νtmin ≤ νt ≤ νtmax

0 : νt < νtmin
1 : νt > νtmax

(5)

where νtmax and νtmin are upper and lower thresholds of νt

3) Reduction of AVD: The AVD (ηt) in a network is given
as follows :

ηt =
1

#Ωb

∑
b∈Ωb

|(1.0− |V t(b)|)| (6)

The ideal/nominal voltage magnitude is considered as 1.0 p.u.
in this paper. Since the objective is to reduce the AVD a FMF
similar to that assigned in section II-A1 is assigned:

µt3 =


ηtmax−η

t

ηtmax−ηtmin
: ηtmin ≤ ηt ≤ ηtmax

1 : ηt < ηtmin
0 : ηt > ηtmax

(7)

where ηtmax and ηtmin are upper and lower thresholds of ηt.
4) Reduction of line loading: Integration of EV load and

RES can lead to feeder overloads. Therefore, an important
objective is to minimize feeder loadings. In this paper, the
objective is to minimize the percentage loading of the most
heavily loaded feeder (ψt) as given below:

ψt = max
l

{ |It(l)|
Irat(l)

× 100} l ∈ Ωl (8)

where |I(l)| and |Irat(l)| denote the actual and the rated
current magnitudes of line l, respectively. Ωl denotes the set
of all feeders. Since this objective is to be minimized, the
following FMF is allocated:

µt4 =


ψt

max−ψ
t

ψt
max−ψt

min
: ψtmin ≤ ψt ≤ ψtmax

1 : ψt < ψtmin
0 : ψt > ψtmax

(9)

5) Combined objective: Multi-objective optimization in-
volves simultaneously attaining multiple goals and finding a
trade-off solution. If the ith objective is only considered in the
EMS, then µi = 1.0. Therefore, the utopian point is 1.0 for
each objective. The trade-off solution in this paper is obtained
by minimizing the Euclidian distance to utopia points for each
objective as given below [11]:

min∆t =

√√√√ 4∑
i=1

(1− µi)2 : i = {1, 2, 3, 4} (10)
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B. Constraints

The system constraints are as follows:

P ts(m1) + P tw(m1) + P tsop(m1)− (P tl (m1) + P trev(m1)

+ P tpev(m1)) = |V t(m1)|
∑

m2∈Ωb

|V t(m2)||Y (m1)(m2)|cos(

δt(m1)− δt(m2)− θt(m1)(m2)) : m1 ∈ Ωb \ 1;m2 ∈ Ωb
(11)

Qts(m1) +Qtw(m1) +Qtsop(m1)− (Qtl(m1) +Qtrev(m1)

+Qtpev(m1)) = |V t(m1)|
∑

m2∈Ωb

|V t(m2)||Y (m1)(m2)|sin(

δt(m1)− δt(m2)− θt(m1)(m2)) : m1 ∈ Ωb \ 1;m2 ∈ Ωb
(12)

P tg = |V t(1)|
∑

m2∈Ωb

(|V t(m2)||Y (1)(m2)|cos(δt(1)−

δt(m2)− θt(1)(m2))) : m2 ∈ Ωb

(13)

Qtg = |V t(1)|
∑

m2∈Ωb

(|V t(m2)||Y (1)(m2)|sin(δt(1)−

δt(m2)− θt(1)(m2))) : m2 ∈ Ωb

(14)

Algorithm 1: Algorithm for optimization

/* Stage 1-Solve using Linear
Programming */

Data: P 0t
l (m2), P 0t

rev(m2), P 0t
pev(m2), λtg , λtdr

t ∈ Ωt,m2 ∈ Ωb
minκ s.t (19) and (20)
Result: P tl (m2), P trev(m2), P tpev(m2)

t ∈ Ωt,m2 ∈ Ωb
/* Stage 2-Solve using PSO */
Data: Result from stage 1, network data, SOP, ST data
Set t = 1; while t ≤ 24 do

Set i = 1;while i ≤ 4 do
if i = 1 then

Obj: minκt s.t. constraints
else if i = 2 then

Obj: max νt s.t. constraints
else if i = 3 then

Obj: min ηt s.t. constraints
else

Obj: minψt s.t. constraints
Use PSO to optimize; record all objective

values;
/* Finding lower and upper bounds

of objectives */
κtmin = mini κ

t; κtmax = maxi κ
t;

νtmin = mini ν
t; νtmax = maxi ν

t;
ηtmin = mini η

t; ηtmax = maxi η
t;

ψtmin = mini ψ
t; ψtmax = maxi ψ

t;
Run PSO to min∆t s.t. constraints ; // Use
upper & lower bounds of objectives
for FMF

Result: P tsop(m1), Qtsop(m1), Qtsop(m2), |V (1)t|

|It(l)| ≤ |Irat(l)| : t ∈ Ωt; l ∈ Ωl (15)

|V tmin| ≤ |V t(m2)| ≤ |V tmax| : t ∈ Ωt;m2 ∈ Ωb (16)√
(P tg)

2 + (Qtg)
2 ≤ Sstmax (17)

0.95 ≤ |V t(1)| ≤ 1.05 t ∈ Ωt (18)


∑
t∈Ωt

P tl (m2) =
∑
t∈Ωt

P 0t
l (m2) m2 ∈ Ωb \ 1∑

t∈Ωt
P trev(m2) =

∑
t∈Ωt

P 0t
rev(m2) m2 ∈ Ωb \ 1∑

t∈Ωt
P tpev(m2) =

∑
t∈Ωt

P 0t
pev(m2) m2 ∈ Ωb \ 1

(19)
(1− λtl)P

0t
l (m2) ≤ P tl (m2) ≤ (1 + λtl)P

0t
l (m2)

(1− λtrev)P
0t
rev(m2) ≤ P trev(m2) ≤ (1 + λtrev)P

0t
rev(m2)

(1− λtpev)P
0t
pev(m2) ≤ P tpev(m2) ≤ (1 + λtpev)P

0t
pev(m2)

(20)

P tsop(m1) + (1− ksop)P
t
sop(m2) = 0 : (m1,m2) ∈ Ωsop(ζ)

(21)√
(P tsop(m1))2 + (Qtsop(m1))2 ≤ Ssop(m1) (22)√
(P tsop(m2))2 + (Qtsop(m2))2 ≤ Ssop(m2) (23)

The active and reactive power balances at system buses,
including the substation bus are given by (11), (12),
(13), and (14). Ps(m1)/Qs(m1), Pw(m1)/Qw(m1), and
Psop(m1)/Qsop(m1) denote the active/reactive powers in-
jected at bus m1 by SPGS, WPGS, and SOP, respectively.
The magnitude and angle of the element in the m1th row
and m2th column are given by Y (m1)(m2) and θ(m1)(m2),
respectively. δ(m1) denotes the voltage angle of the m1th

bus. Pg and Qg denote the active and reactive power injection
to the distribution network from the load side converter of
the ST. The current rating constraint of a feeder is given
by (15). The bus voltage constraint is given by (16). |Vmin|
and |Vmax| denote the minimum and maximum allowable
limits, respectively. The apparent power rating constraint of
the ST is given by (17). Sstmax is the apparent power rating
of the load side converter of the ST. (18) denotes that the
voltage setting of the load side converter of the ST can be
set between 0.95 p.u. and 1.05 p.u. (19) denotes that the
energy of responsive/flexible loads (electrical, residential EV,
and public EV) cannot be curtailed over a day; they can only
be shifted. (20) states that the shift of responsive loads should
be within given limits. λl, λpev , and λrev denote the limits of
shiftable responsible loads for different customers (electrical
loads, residential EV and public EV charging loads). The
power balance equation of an SOP ζ is given by (21). The
loss factor of the SOP is denoted by ksop. Ωsop denotes the
set of SOPs in the network. The apparent power constraint of
the SOP is given by (22) and (23). The apparent power rating
of the voltage source converter of the SOP connected to bus
m1 is given by Ssop(m1).

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1089



III. SOLUTION APPROACH

The problem is solved in two stages. In stage 1, the
DR is implemented using linear programming. The following
optimization problem is solved:

minκ (24)

s.t. (19) and (20). P tg is computed by neglecting the system
loss at this stage (i.e., P tg is found by subtracting the total
effective generation of RES from the total effective load (i.e.,
electrical loads, residential EV, and commercial EV). The
control variables Ξ = {P tl , P trev, P tpev}. The optimization
problem is solved using the “linprog” toolbox of MATLAB.
The optimal setting of {P tl , P trev, P tpev} are fed to stage 2.

Stage 2 of the optimization program uses PSO to optimize
the settings of the SOP and ST. Therefore, the control variables
are Ξ = {P tsop(m1), Qtsop(m1), Qtsop(m2), |V t(1)|}. The
equality constraints are met by running a distribution power
flow (i.e., losses are considered at this stage). If a control
variable hits the lower or upper bound, the control variable is
fixed to the bound being violated. Inequality constraints are
handled using a penalty function method. More on PSO is
available in [12]. The upper and lower bounds of objectives
used in the FMF are obtained from individual optimization
results. The algorithm can be understood from algorithm 1.

IV. TEST SYSTEM AND SIMULATION STUDIES

A. Test System

The numerical studies are carried out on the modified sixty-
nine (69) bus medium voltage radial distribution network. It
is modified to incorporate RES, residential and public EVCS.
The base voltage and the base power of the system are
12.66 kV and 1 MVA, respectively. The network and load
data are available in [13]. Forty-eight (48) SPGS units, each
with an installed capacity of 48 kW, are dispersed across
the network. Also, forty-eight (48) WPGS units, each of 200
kW capacity, are spread across the distribution network. The
locations of the RES units have been adopted from [14]. There
are thirty (30) residential EVCS in the network, locations of
which are detailed in [14]. Each residential EVCS is equipped
with “Standard-Type 2” chargers [14], and there are ten (10)
charging outlets, each of capacity 22 kW. In other words, the
total capacity of each residential EVCS is (10×22) kW = 220
kW. On the other hand, each public EVCS uses a fast charger
of 50 kW rating [14]. Each public EVCS has six (6) outlets,
i.e., the total capacity of each public EVCS is 6 × 50 kW
= 300 kW. There are seventeen (17) EVCS in the distribution
network, locations of which are adopted from [14]. Also, an
SOP of 2.0 MVA rating is connected between the buses 25 and
26 [15]. The hourly profile of electrical load demands, RES
generation, residential and public EV charging requirements
have also been adopted from [14]. The hourly prices of grid
power and demand response participation are shown in Fig.
1a. 10% loads are considered flexible. The loss in the SOP is
considered 2%. Lines #1−#8, #17−#23, #31−#39, and
#52−#57 are rated for 337.50 A. Other lines are rated for
260 A.

TABLE I
SUMMARY OF RESULTS

Details Scenarios
S0 S1 S2 S3 S4 S5

Daily Energy loss (MWh) 4.018 3.888 3.888 4.103 3.888 4.095
Daily Operating Cost (INR in Lakhs) 3.1 2.904 2.904 2.917 2.904 2.917
Avg of min VSI in a day (pu) 0.765 0.958 0.958 0.837 0.958 0.888
Avg of AVD in a day (p.u.) 0.023 0.036 0.036 0.021 0.036 0.03
Avg of max line loading in a day (%) 51.97 51.46 51.46 52.96 51.46 52.6

B. Simulation Results

The following case studies/scenarios are considered:
• Base case/Scenario S0: In the base case scenario, DR

implementation, and controls of SOP and ST are not
considered. All other scenarios are compared with the
base case.

• Scenario S1: The objective is to minimize the daily cost
of operation using DR, SOP, and ST coordination.

• Scenario S2: The objective is to improve the VSI using
DR, SOP, and ST coordination.

• Scenario S3: The objective is to minimize the AVD using
DR, SOP, and ST coordination.

• Scenario S4: The objective is to minimize the line loading
using DR, SOP, and ST coordination.

• Scenario S5: Combined objective using DR, SOP, and
ST coordination.

The results for different scenarios are summarized in table I.
The optimal settings of the SOP and the ST in different
scenarios are shown in Fig. 2 and Fig. 3, respectively. The
hourly profiles of electrical load, residential and public EVCS
loads before and after implementation of the DR program are
shown in fig.1b, fig.1c, and fig.1d, respectively. It is observed
that the electrical demand and charging power profile for
public EVCS are shifted to the period between hours #11 to
#17. The peak of the residential EVCS is between hours #18
and #22. From table I, it is noted that the reduction in daily
operating cost in scenario S1 is ∼ 6.32%. Similar figures are
also noted in scenarios S2 (VSI improvement) and S4 (line
loading reduction). The reduction in daily operating cost in
scenario S3 (reduction of AVD) is ∼ 5.91%. In scenarios S1,
S2, and S4, the load-side converter of the ST is set to 1.05 p.u.
Therefore, the distribution network has comparatively higher
bus voltages leading to lower line currents, lower losses, and
improved VSI. Since the active power loss is reduced, the
power drawn from the substation bus also decreases, resulting
in a lower energy cost. From table I, it is also noted that
the energy loss, operating cost, and VSI figures are similar in
scenarios S1, S2, and S4. Therefore, objectives S1, S2, and
S4 are aligned. Improvement in one of the three objectives
improves the other two objectives. Compared to the base
case scenario, the loss reduction is ∼ 3.23% − 3.24%, the
improvement in VSI is ∼ 6.32%, and the reduction in line
loading is ∼ 0.97% in scenarios S1, S2, and S4. Since the
load side converter of the ST is set to 1.05 p.u., voltages at
many buses exceed the nominal value of 1.00 p.u. Therefore,
the AVDs are more in scenarios S1, S2, and S4 compared to
the base case scenario S0. Therefore, an attempt to reduce the
cost, improve the VSI, or reduce the line loading will increase
the AVD.

The objective in scenario S3 is to minimize the AVD, i.e., to
keep the bus voltages close to the nominal value of 1.00 p.u.
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Fig. 2. SOP settings in different scenarios

It is observed that the ST setting changes hourly to realize the
objective. However, the ST setting is never 1.05 p.u. Therefore,
compared to scenarios S1, S2, and S4, the bus voltages are
lower. It increases line loadings, active power loss, and energy
costs (see table I). Further, the VSI becomes comparatively
poor (see table I). The AVD reduces by ∼ 9.80% compared
to the base case (i.e., scenario S0). Therefore, objective S3
contradicts the requirements of objectives S1, S2, and S4.

Therefore, an attempt to reduce the AVD will increase the
operating cost and line loading and reduce the VSI.

Multi-objective optimization is solved in scenario S5, where
all four objectives are to be met simultaneously. A compromise
solution is needed in this scenario. From table I, it is observed
that the cost reduction is ∼ 5.92%, the VSI improves by
∼ 16.08%, while the AVD and line loading deteriorates
slightly. The authors also have verified that the solution of the
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multi-objective optimization obtained by the proposed method
by comparing with “controlled elitist multi-objective genetic
algorithm”. The optimal solutions are found to be on the Pareto
front.

V. CONCLUSIONS

A multi-objective EMS is proposed for an active distribution
network to simultaneously minimize the cost of operation,
improve the voltage stability, minimize the AVD, and reduce
the line loadings. The distribution network comprises SPGS
and WPGS, SOP, and ST. Moreover, residential and public
EVCSs are also energized from the distribution network. A
section of the electrical demand and residential and public
EVCSs provide flexibility to the DSO by participating in
the DR program. The DR scheduling is coordinated with
the optimal setpoints of the SOP and the ST to meet the
desired objectives. The multi-objective optimization problem
is mapped to the fuzzy domain and solved using the min-
imum Euclidian distance to the utopia point approach. The
optimization is carried out in two stages: linear programming
and particle swarm optimization. The proposed algorithm has
been validated on the modified version of the sixty-nine-
bus radial distribution system. Simulation studies reveal that
the operating cost can be reduced by ∼ 5.92%, and the
VSI improves by ∼ 16.08%. However, reducing costs and
improving the VSI causes slightly higher line loading and
AVD.
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