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Abstract—As we are aware that thousands of fires break out
every day around the world, which results in high numbers
of casualties and serious threat to property safety and forest
vegetation. Hence, it becomes particularly important to detect
the fire at its early stage, because once the fire has spread in an
area, it gets cataclysmic and difficult to control. In particular,
the early detection of fire is associated with rising smoke.
Therefore, the smoke can be considered as a good indicator
to predict fire. In the presented work, smoke detection is per-
formed with the help of its dynamical features. The dynamical
features are considered in the form of optical flow color map.
The motivation of this work is to use fractional order optical
flow instead of images to provide the precise location and rate
of growth. The estimation of optical flow is carried out using a
non-local weighted fractional order variational model, which is
capable in preserving dynamical discontinuities in the optical
flow. Optical flow helps to find the active region of the images
(video). This non-local weight also incorporates the robustness
against noise. Further, the optical flow field is converted into
a color map using an RGB color wheel. These color maps are
used in different deep learning models for training and testing.
The experiments are conducted on a dataset consisting of 18
smoke and 17 non-smoke videos. Different accuracy metrics are
used for performance evaluation and detailed comparisons in
order to demonstrate the significance of optical flow color maps
over images in smoke detection.

Keywords Convolutional neural network, Fire predic-
tion, Fractional order optical flow, Non-local regularization,
Smoke classification.

I. INTRODUCTION

Fires are frequently occurring globally and around
300, 000 casualties have been reported world wide annually,
which is the fourth highest cause of accidental events [1].
Therefore, early detection of fire is very crucial in preventing
extensive damage. Fire can be detected in its early stage by
the utilization of smoke because in the smoldering phase
of the fire, no flames are visible but smoke is produced,
which is easily visible from long distances. The literature
contains several traditional smoke detectors, which are based
on ionization, photoelectric effect, and the presence of carbon
monoxide [2]. These traditional smoke detection approaches
suffer from the problems of limited detection range, utility
in outdoor environments and false alarm rates [3]. However,
vision based techniques offer a viable solution as these
can provide a broader detection range and also feasible for
outdoor fire detection. Moreover, we are aware that with the
advancement in digital camera technology, surveillance cam-
eras have become quite economic and can be easily installed
in various locations such as buildings, hill stations, rural

areas, etc. These cameras store the information in the form
of digital videos (image sequences). These image sequences
contain many information of objects such as motion, shape
and texture, etc. Therefore, when a scene contains smoke,
these videos can come out as a useful tool in predicting
fire breakouts. The manual processing of these substantial
data volumes is an exceedingly laborious task. The literary
corpus is dedicated with a significant amount of efforts in
the direction of smoke detection in videos. Typically, smoke
detection framework is principally classified into two ap-
proaches, which are based on: (1) traditional computer vision,
(2) deep learning [4]. Traditional computer vision approaches
are developed by using mathematical formulations, while the
deep learning techniques approaches rely upon training and
testing of a deep neural network [5], [6]. Researchers [7],
[8] have presented various techniques in the literature that
leverage shape, color, texture, and motion features for smoke
detection, and also highlighted the challenges associated with
smoke. Hanh et al. [9] conducted a study on the fire detec-
tion by utilizing aerial forest videos. They employed RGB,
YCbCr, and HSI color spaces to detect the regions affected
by fire. The principal issue with traditional approaches is
their lack of generalization in complex scenes [10]. To tackle
this problem, researchers started looking at artificial neural
networks (ANNs). Since, an image contains two dimensions,
which allows it to store spatial information. In order to utilize
ANNs for fire detection, an image is needed to be flatten into
a one dimensional vector. This dimensionality change results
in the loss of crucial spatial information. In order to resolve it,
works such as [11], [12] have implemented CNNs for image
based fire detection. Xu et al. [11] developed a framework
for smoke characterization using the deep domain adapta-
tion techniques. Their approach leveraged synthetic data in
conjunction with convolutional neural networks (CNNs) to
achieve accurate smoke detection. Moreover, the fine-tuned
GoogleNet architecture proposed by Muhammad et al. [12]
enables the accurate detection of fire and smoke in natural
videos with low computing complexity. All these approaches
are based on image datasets and therefore, rely upon the static
characteristics of smoke such as color, texture, shape, etc.

Nowadays, the researchers have shown that utilizing dy-
namic features of smoke can result in a more accurate
smoke detection [13], [14]. The dynamic features of an
object in a scene are generally calculated in terms of optical
flow [15], [16]. Optical flow is a 2D vector plot in which
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each vector corresponds to the displacement of a pixel on
the object in the reference image frame. The optical flow
computation is followed by an assumption that no intensity
value alterations can be done on an object in an image
sequence. Generally, optical flow estimation is carried out
using the variational techniques [15], [16]. This is due to
their simplicity in modelling a problem and accuracy in the
estimated solutions [16]. Wu et al. [17] carried out with
video smoke detection by implementing local binary patterns
along with dense flow estimators. Their work employed HSV
color conversion of flow field color maps, and specified HSV
parameter values. Muller et al. [18], derived two models for
optical flow computation in order to perform fire detection,
which rely upon the fire saturated flames and their dynamic
texture. However, the optical flow estimation models used in
all these frameworks are based on integer order derivatives,
which can not fully demonstrate the motion of fire-smoke
due to rapid and discontinuous changes in their spatial
characteristics [18]. Kumar et al. [19] generalized these varia-
tional models from integer to fractional order derivatives, and
demonstrated an increased accuracy in optical flow estima-
tion.The work such as [20] showed that smoke has a tendency
of moving upwardly and this behaviour can be successfully
applied in smoke detection. Therefore, this paper computes
the dynamic smoke features by imbedding fractional order
derivatives into the proposed variational model. Additionally,
these derivatives can be employed to calculate the fractional
order derivatives of order in (0, 2), and demonstrate the
long-term memory effect, which makes the proposed model
capable of computing non-local variations in a function [21]–
[23].

The literature contains several works on smoke detection
such as [11], [20]. All these works rely upon the static
smoke features such as color, texture, and structure for smoke
detection. The novelty of the proposed work is that it utilizes
both static and dynamic smoke features. As the Smoke
has a tendency to move in upward direction, therefore this
movement is considered as a dynamic feature of smoke, and
can be computed in terms of optical flow. Moreover, in order
to compute an accurate and motion preserving optical flow
field, a non-local fractional-order variational model has been
developed. Further, 20 different deep-learning models have
been implemented for carrying out smoke detection using the
computed dynamic and static smoke features.

This paper introduces a fire-smoke detection framework
based on a non-local weighted fractional order optical flow
and deep learning models. Optical flow color maps provide
the dynamic features of smoke, and employed in devising an
approach to capture the region of interest. In a color map, the
colors and their intensities are in a one-to-one corresponds
with flow directions and magnitudes, respectively. Due to
the discontinuity and texture present in smoke, the proposed
variational model is a preferable choice for estimating its
optical flow, as it is capable of demonstrating information
from an arbitrarily large discontinuous region. This helps
in dealing the against rapid spatial variations. Finally, the
estimated optical flow color maps are used for the training
and testing of deep learning models. Different accuracy
metrics are considered for evaluating and comparing the
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Fig. 1. Proposed framework for fire-smoke detection.

performance of the presented framework. The experiments
are carried on a dataset composed of 18 smoke and 17 non-
smoke videos.

II. METHODOLOGY

The overall methodology of the proposed framework is
depicted in Fig. 1. The dataset used in the presented work
is comprised of 18 smoke (360 frames) and 17 non-smoke
(340 frames) videos, which are publicly available at [24].
Each image frame in these videos is in RGB format and of
size 384 × 384. These videos cover a wide range of indoor
and outdoor scenes such as forests and roads with different
levels of crowds, fog, brightness, and other environmental
factors. Few sample reference image frames corresponding to
smoke and non-smoke videos are illustrated in Fig. 2. These
video frames are passed to the proposed NLWFOPF model
to estimate the object motion in terms of optical flow. The
optical flow is used to indicate the region of interest. Thus,
a total number of 342 color maps for smoke and 323 color
maps for non-smoke videos are obtained. Further, these color
maps are fed into different convolutional bases and finally,
classify with different machine learning classifiers.

III. NON-LOCAL WEIGHTED FRACTIONAL OPTICAL FLOW
(NLWFOPF) ESTIMATION

Let I(X ,Y, T ) and I(X + δX ,Y + δY, T + δT ) be
the pixel intensity values at spatiotemporal coordinates
(X ,Y, T ) and (X+δX ,Y+δY, T +δT ), respectively. Thus,
according to the brightness constancy assumption (BCA) as
given in [23], we get

I(X ,Y, T ) = I(X + δX ,Y + δY, T + δT ) (1)

where, I : Ω ⊂ R3 → R is a real valued function represent-
ing pixel intensity and Ω ⊂ R3 is a volume describing the
image sequence. Hence, using the Taylor series expansion in
the right side of (1), we have

(∇I)T u + IT = 0 (2)

where, ∇I = (IX , IY)T is the spatial gradient of intensity
I and u = (u, v)T is the optical flow with u and v as
the flow components along X and Y directions, respectively.
Also, IT denotes the temporal partial derivative of I. The
expression obtained in (2) is known as optical flow constraint.
In order to regularize the flow field, an additional expression
known as the smoothness term is added to the optical flow
constraint [15]. The purpose of including this term is to
reduce the effect of the outliers such as noise [25]. Thus,
the proposed non-local weighted fractional order variational
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model in optical flow estimation is defined as

ENM (u) =
∫
Ω
[W((∇I)T u + IT )2 + β2H1(u, v)

+ λH2(D
αu,Dαv)]dX (3)

where, W = W(x, y) denotes the value of the non-local
weight function at position (x, y) with respect to the center
of the rectangular window. This non-local weighted function
illustrates rotational invariance and can be written as

W(x, y) =
1

Z(x, y)
e−

||I(P (xj,yj))−I(P (x,y))||2

σ2 (4)

Here, (xj , yj) denotes the jth pixel coordinate in Ω, while σ
is the Gaussian variance parameter. Here, P (x, y) denotes the
patch value at position (x, y), while P (xj , yj) represents the
window mask at position (xj , yj), and Z(x, y) is a parameter
for normalization and is defined as

Z(x, y) =
∑

(x,y)∈Ω

e−
||I(P (xj,yj))−I(P (x,y))||2

σ2 (5)

Thus, it is observed that the value of this weight is very
large near to the center of the window mask, while small at
the points away from the center. In the proposed variational
model (3), Dα = (Dα

X , D
α
Y)

T denotes the fractional deriva-

tive of order α ∈ (0, 1), and |Dαu| =
√
(Dα

Xu)
2 + (Dα

Yu)
2

and |Dαv| =
√

(Dα
X v)

2 + (Dα
Yv)

2. The terms, H1(u, v) =

|u|2 and H2(D
αu,Dαv) = (|Dαu|2 + |Dαv|2) are the

convex functions and known to be the flow rate driven [23].
The motivation to use fractional order derivatives instead of
integer order is that these can be used even if the function
is not continuous, and also more capable to preserved the
texture and edge associated discontinuous information in the
estimation [21], [23]. In addition to it, the fractional order
models illustrate the optimal fractional order corresponding
to the stable solution [23]. Thus, the proposed model can
generalize the existing variational models for different values
of parameters.

A. Minimization
In order to find the optical flow field u = (u, v)T from the

expression (3), we need to minimize the variational functional
in (3) through the system of Euler-lagrange equations. Let
us suppose that u∗(X ,Y) and v∗(X ,Y) are the required
functions, and η(X ,Y) and ψ(X ,Y) ∈ C∞ are the two
arbitrary functions such that
u(X ,Y) = u∗(X ,Y) + ϵη(X ,Y) v(X ,Y) = v∗(X ,Y) +

ϵψ(X ,Y)
Now, substituting these expressions in equation (3), we

obtain

ENM (ϵ) =

∫
Ω

[W(IX (u∗ + ϵη) + IY(v∗ + ϵψ) + IT )2

+ β2((u∗ + ϵη)2 + (v∗ + ϵψ)2) + λ

(|Dα(u∗ + ϵη)|2 + |Dα(v∗ + ϵψ)|2)]dX (6)

On simplifying the expression in (6), we have

ENM (ϵ) =

∫
Ω
[W(IX (u∗ + ϵη) + IY (v∗ + ϵψ) + IT )2 + β2

((u∗ + ϵη)2 + (v∗ + ϵψ)2) + λ((Dα
Xu

∗ + ϵDα
X η)

2

+ (Dα
Yu

∗ + ϵDα
Yη)

2 + (Dα
X v

∗ + ϵDα
Xψ)

2

+ (Dα
Yv

∗ + ϵDα
Yψ)

2)]dX (7)

Now, differentiating equation (7) w.r.t ϵ and putting ϵ = 0,
the following expression is obtained

E′NM (0) = 2

∫
Ω

[
W(x, y)(IXu∗ + IYv∗ + IT )(IX η + IYψ)

+ β2(u∗η + v∗ψ) + λ(Dα
Xu

∗Dα∗
X η +Dα

Yu
∗Dα∗

Y

η +Dα
X v

∗Dα∗
X ψ +Dα

Yv
∗Dα∗

Y ψ)
]
dX = 0 (8)

where, Dα∗ represents the right fractional derivative of order
α. Thus, according to the fundamental problem of calculus
of variations [21], equated to zero the coefficients of η and
ψ in (8), we obtain the required system of Euler-Lagrange
equations as

W(IXu
∗
+ IYv

∗
+ IT )IX + β

2
u
∗
+ λ(D

α∗
X D

α
Xu

∗
+ D

α∗
Y D

α
Yu

∗
) = 0

(9)
W(IXu

∗
+ IYv

∗
+ IT )IY + β

2
v
∗
+ λ(D

α∗
X D

α
X v

∗
+ D

α∗
Y D

α
Yv

∗
) = 0

(10)

B. Numerical Discretization and implementation

The numerical discretization of the system of equations
in (9) and (10) is carried out using the Grünwald-Letnikov
(GL) definition [26]. For this purpose, let us consider the
pixel position (i, j) in the image window mask of size W
and the mesh grid size ∆h. Thus, as per the definition of GL
derivative, the fractional derivative of u can be discretized as

Dα
Xu(i, j) =

∞∑
s=0

w(α)su(i− s, j) (11)

where w(α)s = (−1)s
(
α
s

)
denotes the binomial expres-

sion and w(α)0 = 1, w(α)s =
(
1− (α+1)

s

)
w(α)s−1 , s =

1, 2, 3 · · · Thus, on using the right Riemann-Liouville defi-
nition of fractional derivative on (11), we obtain

Dα∗
X Dα

Xu(i, j) = −
0∑

s=−∞
w(α)|s|u(i− s, j)−

∞∑
s=0

w(α)su(i− s, j)

(12)
Since,

∑∞
s=0 w

(α)s = 0, therefore for the image points of
view, the expression in (12) can be written as

D
α∗
X D

α
Xu(i, j) = −

0∑
s=−W

w
(α)|s|∇u(i − s, j) −

W∑
s=0

w
(α)s∇u(i − s, j)

(13)

where ∇u(i − s, j) = u(i − s, j) − u(i, j). Similarly, the
derivative of u with respect to Y can be represented as

D
α∗
Y D

α
Yu(i, j) = −

0∑
s=−W

w
(α)|s|∇u(i, j − s) −

W∑
s=0

w
(α)s∇u(i, j − s)

(14)

Thus, the derivative discretization expression of u in com-
bined form is given as

Dα∗
X Dα

Xu
∗ +Dα∗

Y Dα
Yu

∗ =
∑

(̄i,j̄)∈χ(i,j)

w
(α)sīj̄ {u∗(i, j)− u(̄i, j̄)}

(15)
where, χ is the set of all the pixels in the neighborhood
of pixel position (i, j) in X and Y directions and sīj̄ =
max [|̄i− i|, |j̄ − j|]. Similarly, the discretized expression of
v is defined as

Dα∗
X Dα

X v
∗ +Dα∗

Y Dα
Yv

∗ =
∑

(̄i,j̄)∈χ(i,j)

w
(α)sīj̄ {v∗(i, j)− v(̄i, j̄)}

(16)
Now, on simplifying the equations (9), (10), (15) and (16),
the following system of equations is found

(WI2
X + β2 + λρ)u∗ +WIXIYv∗ = λū−WIXIT (17)
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WIXIYu∗ + (WI2
Y + β2 + λρ)v∗ = λv̄ −WIYIT (18)

where,

ρ =
∑

(̄i,j̄)∈χ(i,j)

w
(α)sīj̄ , ū =

∑
(̄i,j̄)∈χ(i,j)

w
(α)sīj̄ u(̄i, j̄) and

v̄ =
∑

(̄i,j̄)∈χ(i,j)

w
(α)sīj̄ v(̄i, j̄)

C. Numerical scheme

The equations (17) and (18) are solved for obtaining the
discretized system of equations corresponding to u and v as,

u(n+1) =
λ ∗ ū−WIxt −WIxyv(n)

D1
(19)

v(n+1) =
λ ∗ v̄ −WIyt −WIxyu(n+1)

D2
(20)

where D1 = (WI2
X +β2+λρ) and D2 = (WI2

Y +β2+λρ).
Now, the solution of these equations are determined with the
help of Gauss-Seidel method [27].

IV. CONVOLUTION BASES AND ML CLASSIFIERS USED IN
CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional base is a term that refers to a pretrained
CNN architecture such as VGG16, VGG19, ResNet50,
MobileNetV2, and DenseNet121, without their top dense
layer [28]. These convolution bases are the backbone of the
CNNs implemented in the presented work. Recently, these
have demonstrated significant success in image recognition
tasks [29]. VGG-16 and VGG-19 are two variants of VGG
network, which were originally introduced by Simonyan et
al. [28] with the goal of image recognition. These variants
contain 16 and 19 weight layers, respectively and use the
convolution filters of size 3 × 3. These models can be
easily implemented even in mobile devices. DenseNet121
(DNet121) architecture is amongst the smallest DenseNets,
and is composed of 242 layers with 8.1 million parame-
ters [30], while ResNet50 (RNet50) is known as a member
of deep residual learning framework class. The total number
of layers and parameters in it are 107 and 25.6 million,
respectively. The motivation of ResNet models is that these
are highly modular and help in preventing exploding and
vanishing gradients [31]. MobileNetV2 is amongst the light
weight neural network architecture.

In this work, for classification and comparison purposes,
Ada Boosting, Gradient Boosting, K-nearest neighbor, and
Random forest are employed. AdaBoost (AB) and Gradient
boosting (GB) are the ensemble approaches, which utilize
combinations of multiple poorly performing classifiers to
increase classification accuracy [32]. K-nearest neighbours
(kNN) is a lazy learner, which stores all the instances
corresponding to the training samples. Also, when a test
sample is encountered, the sample is analyzed with the help
of k-nearest saved instances [32]. This classifier demonstrates
robustness against noise. Random forest (RF) is formed of
multiple random decision trees. Each tree is introduced with
two types of randomness. First is implemented during the
construction of a tree on the sample data, while the second
is given at each node of the tree itself [32]. Hence, RF is
useful for the data dimensionality reduction.

V. EXPERIMENTS, RESULTS AND DISCUSSION

A. Performance evaluation metrics

The performance of a model can be assessed in terms of
different metrics provided in the literature [20]. This paper
considers the accuracy rate (AR), precision (P ), F1-score
(F1), cross entropy loss (CEL) and hamming loss (HL)
metrics based on the requirement of the proposed work. The
thorough details on these metrics can be accessed from [20].

B. Experimental discussion

In this work, all the experiments have been carried using
the MATLAB R2019a and Google Colab platform. Also, in
order to perform a thorough analysis, all the results have
been assessed in terms of several evaluation metrics such as
accuracy rate, precision, F1-score, Hamming loss and cross
entropy loss. Thus, the results are illustrated by the number
of experiments.

First experiment provides the optical flow estimation re-
sults for the given dataset as shown in Fig. 2. The first
and third rows of this represent the sample reference image
frames, whereas the second and fourth rows manifest their
respective optical flow color maps correspond to smoke and
non-smoke frames. However, in performing the optical flow
estimation, the values of parameters α, β and λ have been
taken as 0.7, 0.0001 and 1000, respectively. Thus, despite
of the presence of outliers such as illumination changes
in a scene, the smoke motion is clearly visible from their
corresponding color maps. Also, a sufficient discrimination
is found in between smoke and non-smoke objects.

The objective of the second experiment is to show the
significance of the motion features in fire-smoke detection
instead of using image datasets. For this purpose, different
convolutional neural networks and classifiers are employed
on color maps as well as image datasets. These results are
illustrated in tabular form in Tables I-X. Tables I-V describe
the classification results corresponding to the color maps,
while the Tables VI-X manifest the results for the image
datasets. It is observed that the CNN architecture imple-
mented with DenseNet121 and AB classifier exhibits the
best results with an accuracy of 99.009% and 92.187% for
color maps and raw images, respectively. Nevertheless, kNN
classifier with DenseNet121 gives the better classification
results corresponding to color maps and raw images with an
accuracy of 93.069% and 87.500%, respectively. Also, the
satisfactory results are illustrated by the GB classifier with
VGG16, which are of accuracy 98.019% and 79.687% for
color maps and raw images, respectively. Moreover, for RF
classifier, the top accuracies are 94.059% and 73.437% for
color maps and raw images, respectively, which correspond
to the ResNet50. Thus, it can be seen that the AB classifier
with DenseNet121 provides the overall best accuracy with
color maps. This validates the significance of color map in
fire-smoke detection.

The objective of third experiment is to perform the com-
parison of all the convolutional bases for color maps and
images. Thus, in order to do this, the mean of all classifiers
is taken corresponding to a particular convolutional base
such as VGG16 in terms of different evaluation metrics.
The estimated results are shown in Fig. 3. In this figure, the
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Fig. 2. Sample reference smoke and non-smoke images (first and third rows)
and their corresponding optical flow color maps (second and fourth rows).

first and second bar graphs are corresponding to the optical
flow color maps and raw images, respectively. These bar
graphs clearly describe that on using color maps instead of
images, the classification performance of a model increases
significantly.

VI. CONCLUSION AND FUTURE WORK

In this work, a novel approach for the early detection of
fire has introduced using the dynamical features of smoke
and deep learning models. The dynamical smoke features
detection has been carried out based on a non-local weighted
fractional order optical flow. The obtained optical flow color
maps are dense, robust, and preserve the moving edges of
smoke patterns. The smoke confirmation has been performed
with different combination of convolution bases and ML
classifiers. A detailed comparison has been provided to differ-
entiate in between the results of optical flow and images. It is
observed that the AB classifier with DenseNet121 illustrates
the overall best accuracy of 99.009% with color maps and
92.187% with images. Thus, the presented algorithm vali-
dates the proposed model. In future, the proposed algorithm
can be further extended for the fog detection and weather
forecasting.

TABLE I
RESULTS OF VGG19 MODEL WITH DIFFERENT CLASSIFIERS FOR COLOR MAP.

Classifiers AR P F1 HL CEL
RF 98.019 96.923 98.437 1.980 13.187

KNN 95.049 92.647 96.183 4.950 73.150
AB 98.019 96.923 98.437 1.980 37.760
GB 97.029 95.454 97.674 2.970 17.879

TABLE II
RESULTS OF VGG16 MODEL WITH DIFFERENT CLASSIFIERS FOR COLOR MAP.

Classifiers AR P F1 HL CEL
RF 97.029 95.454 97.674 2.970 13.230

KNN 94.059 91.304 95.454 5.940 41.960
AB 98.019 96.923 98.437 1.980 39.866
GB 98.019 96.923 98.437 1.980 19.629

TABLE III
RESULTS OF RESNET50 MODEL WITH DIFFERENT CLASSIFIERS FOR COLOR MAP.

Classifiers AR P F1 HL CEL
RF 94.059 92.537 95.384 5.940 24.503

KNN 91.089 87.500 93.333 8.910 78.634
AB 94.059 91.304 95.454 5.940 54.030
GB 96.039 96.825 96.825 3.960 18.985

TABLE IV
RESULTS OF DENSENET121 MODEL WITH DIFFERENT CLASSIFIERS FOR COLOR

MAP.

Classifiers AR P F1 HL CEL
RF 98.019 96.923 98.437 1.980 15.055

KNN 93.069 90.000 94.736 6.930 14.426
AB 99.009 98.437 99.212 0.990 36.989
GB 96.039 94.029 96.923 3.960 8.389

TABLE V
RESULTS OF MOBILENETV2 MODEL WITH DIFFERENT CLASSIFIERS FOR COLOR

MAP.

Classifiers AR P F1 HL CEL
RF 97.029 95.454 97.674 2.970 19.477

KNN 94.059 91.304 95.454 5.940 12.351
AB 96.039 95.384 96.875 3.960 47.127
GB 94.059 92.537 95.384 5.940 25.278

TABLE VI
RESULTS OF VGG19 MODEL WITH DIFFERENT CLASSIFIERS FOR IMAGES.

Classifiers AR P F1 HL CEL
RF 81.250 78.787 81.250 18.750 46.075

KNN 65.625 59.574 71.794 34.375 16.304
AB 81.250 77.142 81.818 18.750 62.637
GB 75.000 70.270 83.870 76.470 10.320

TABLE VII
RESULTS OF VGG16 MODEL WITH DIFFERENT CLASSIFIERS FOR IMAGES.

Classifiers AR P F1 HL CEL
RF 87.500 84.848 87.500 12.500 43.737

KNN 75.000 68.292 77.777 25.000 10.096
AB 84.375 78.378 85.294 15.625 61.589
GB 79.687 72.500 81.690 20.312 57.388

TABLE VIII
RESULTS OF RESNET50 MODEL WITH DIFFERENT CLASSIFIERS FOR IMAGES.

Classifiers AR P F1 HL CEL
RF 73.437 71.875 73.015 26.562 52.137

KNN 65.625 59.574 71.794 34.375 16.304
AB 81.250 75.675 82.352 18.750 66.047
GB 73.437 68.421 75.362 26.562 79.265

TABLE IX
RESULTS OF DENSENET121 MODEL WITH DIFFERENT CLASSIFIERS FOR IMAGES.

Classifiers AR P F1 HL CEL
RF 84.375 81.818 84.375 15.625 44.291

KNN 87.500 84.848 87.500 12.500 31.501
AB 92.187 93.333 91.803 7.812 57.752
GB 79.687 73.684 81.159 20.312 56.828

TABLE X
RESULTS OF MOBILENETV2 MODEL WITH DIFFERENT CLASSIFIERS FOR IMAGES.

Classifiers AR P F1 HL CEL
RF 87.500 82.857 87.878 12.500 42.165

KNN 84.375 75.609 86.111 15.625 13.849
AB 84.375 80.000 84.848 15.625 60.015
GB 85.937 82.352 86.153 14.062 47.098
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