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Abstract— In graph theory, the dense subgraph problem
aims at finding the densest subgraph for a given graph. The
subgraph is defined as a subset of a large graph and the
density is calculated as the number of edges as per the number
of vertices. Real-life graph networks are complicated and large
in size; finding the dense subgraph is difficult as the number
of subgraphs is numerous. It is an NP-hard problem and in
most cases, it is infeasible to find an exact solution. Here we
propose a genetic algorithm approach to solve it. The problem
is a combinatorial optimization problem with a constraint that
all solutions must be a subgraph of the given graph. Here,
the crossover and mutation are designed to produce only
feasible solutions. The proposed algorithm is able to give close
approximation within a reasonable time.

Keywords- Dense subgraph, Genetic algorithm, Graph
crossover, Graph mutation, Fiedler vector, Adjacency matrix

I. INTRODUCTION
The density of a graph is given by the ratio of edges to

vertices. The aim of a dense graph problem involves finding
which subgraph of a given graph has the highest possible
density. Dense subgraphs are useful in various domains to
analyse complex networks. The dense components of a graph
are easily traversed in networks because they are highly
connected. It has also been observed that if a node in a dense
network transmits a message to all of its neighbours, it is
highly probable that the message will reach all of the diam-
eters of the graph. In social media, these dense components
can be used to identify communities [1]. It is also applied in
market data analysis [2] and in biology, DNA motif finding
methods [3] and finding molecular complexes in protein net-
works [4]. Other real-world datasets like Karate Club, Intel
Lab, LastFM, HomoSapiens, Biomine, and Friendster graph
datasets are from social networks, computational chemistry,
and biology. The dense graph problem is an NP-hard problem
because a graph can generate an exponential number of
sub-graphs [5]. Earlier attempts for solutions to dense sub-
graph problems include the max flow method [6] and the LP
approach [7].

A number of variation to this problem has been considered
by specifying the size of the sub-graph. It is referred to as
a k-subgraph problem when the subgraph size is fixed as k.
Another variation is the least k-subgraph problem, where the
minimum size of the subgraph is limited to k. As real-life
graphs are large, finding a dense subgraph is a difficult task
[8]. In uncertain real-world graphs, the most probable densest
subgraph approach is more effective than the deterministic
densest subgraph approach. Genetic algorithm (GA) is found
to be effective in such cases [9].
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GA stores the solution as a chromosome and operates
directly on these chromosomes will improve the solution. A
suitable design of chromosome design is required to fit the
problem statement. For the graph coloring problem presented
in [10], an array is used as a chromosome; the indices
number represents the vertices and the number stored in the
corresponding index denotes the color. In a graph partitioning
problem, a string of binary bits represents a chromosome
[11]. Bit 0 or 1 shows the different section of the graph
and equal numbers of 0 and 1 represents graph bisection.
The number of genes on each chromosome represents the
number of vertices in the graph. The cut sizes are used to
calculate the fitness values. In large-scale graph partitioning
problems, heterogeneous clusters can be handled using the
genetic graph partitioning algorithms in [12]. Each solution
represents a possible cut, so the chromosome is represented
as a set of vertices denoting the endpoint of a cut. These
algorithms can speed up graph operation. In [13], Y. Lu pro-
posed a GA for solving network graph clustering problems.
Newman’s modularity index in the graph partition is used as
the fitness criterion. The edge list of the graph network is
taken as the chromosome, with the number of nodes n in the
network as the length of the chromosome. A chromosome is
clustered into communities. They used a crossover scheme
called the crossover pool, where the cardinalities depend on
crossover probabilities. Their mutation probability is low, and
they randomly replaced genes in the chromosomes with valid
node numbers in the adjacency matrix for mutation.

In this paper, a GA algorithm is proposed for finding the
densest sub-graph of a graph. The Chromosome structure,
operators, adjacency matrices, and other functions are de-
signed using linear algebra. A suitable graph crossover and
mutation are proposed for such chromosomes. Fiedler vector
is used here for determining the algebraic connectivity in
a graph. The experiments are tuned for different values to
obtain the suitable value of population size, mutation rate,
and generation numbers for optimal solutions.

II. RELATED WORKS

A. Steenbeek et al. [14] proposed a hybrid genetic graph
partitioning algorithm for solving graph bi-partition prob-
lems. It is a heuristic algorithm to find dense subgraphs with
relatively high edge density. They suggested two procedures
for the proposed GA. The first procedure is used for pre-
processing to find dense clusters and the second procedure
is an operator for the local improvement of chromosomes.
The experimental results were compared against the existing
heuristic algorithms and the empirical evidence showed that
the hybrid GA outperforms the other heuristic algorithms. A
detailed analysis of an incremental hybrid GA’s effectiveness
at resolving subgraph isomorphism problems is presented
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in [15]. This algorithm breaks down the entire subgraph
isomorphism problem into a series of subproblems with the
best possible structures. Then, by implementing a hybrid GA,
each of these subproblems is solved one after the other,
with the solution obtained from solving one subproblem
being fed to the next subproblem as its initial solution.
Experiments are conducted using both sizable real-world
graph datasets and synthetic random graph datasets. In [16],
H. Choi et al. implemented the hybrid incremental GA to
solve subgraph isomorphism problems. They experimented
with existing graph datasets and made a comparison with
the existing approach.

In [17], K. Semertzidis et al. introduced Best Friend
Forever and On-Off Best Friend Forever Problems for defin-
ing dense subgraphs in graph histories. They studied the
complexities of the multiple variants of the Best Friend For-
ever and On-Off Best Friend Forever Problems. Appropriate
algorithms were proposed. They proved the significance of
these problems by conducting experiments with real and
synthetic datasets. An algorithm for finding the k densest
subgraphs in graph theory is presented in [18]. The k densest
subgraph problem has a variant defined. A graph instance is
used as the input, and the output is a collection of unique
pairwise subgraphs. The goal is to maximize the sum of
the densities for each of these subgraphs. For the k-densest
subgraphs, the effectiveness of their polynomial time approx-
imation scheme is discussed. A k-clique densest subgraph
problem is introduced in [19]. This is a generalization of
the problem of the densest subgraph. The triangle densest
subgraph problem is a type of problem formulation. The
finding is that large near-cliques in graphs are possible to
discover using the computational problem known as the
triangle counting problem. There is a method introduced for
solving these issues in graph mining applications.

Approximation algorithms are presented in [20] for solv-
ing the densest k-subgraph and sparsest k-subgraph prob-
lems. When associated with structural parameters like block
deletion number, neighbourhood density deletion number,
distance-hereditary, and cograph deletion number, it turns
out that these problems are fixed-parameter polynomial time.
An algorithm for resolving problems with locally densest
subgraphs is discussed in [21]. This algorithm is based on
the Frank-Wolfe algorithm used in convex programming. The
implementation includes nine distinct graph datasets from so-
cial networks, e-commerce sites, and video platforms. When
compared to existing algorithms, their algorithm performs
effectively. A scalable spectral and combinatorial algorithm
for resolving the densest k-subgraph problems in real-world
graphs is described in [22]. To put their algorithm into
practise, a framework called Spannogram is presented. Graph
datasets like com-LiveJournal, com-DBLP, Notre Dame, and
Facebook network graph datasets are utilised in experiments
for various ranked versions of their algorithms. Their algo-
rithm demonstrates scalability and efficiency in the search
for dense subgraphs. The densest k-subgraph problems are
solved in [23] by using a polynomial time approximation
scheme on stars of cliques. Algorithms are suggested for
finding optimal solutions to the same problem on the trees of
cliques and the paths of cliques. Their complexity analysis

gives an O(nkm+1) optimal algorithm for the densest k-
subgraph problems on the trees of cliques where n is the sum
of all vertices in the cliques and m is the maximum degree of
this tree. This problem on the paths of cliques has a O(nk3)
algorithm. Algorithms for solving s-PLEX, Non-Induced and
Induced (k1, k2) biclique, and s-Defective Clique problems
are introduced in [24]. Problems with dominating sets, such
as those with Independent Dominating Sets and Dominating
Cliques, are solved. Theorems and corollaries that are rel-
evant are thoroughly discussed. It proves that graphs with
small weak closure numbers are useful for finding dense or
sparse subgraphs or dense or sparse dominating sets in graph
problems.

K-vertex dense subgraph maximation problems are in-
vestigated in [25]. These are NP-hard problems. A dense
subgraph of k vertices is generated from an input of a
graph instance G with n vertices. The aim is to find the
densest subgraph. Procedures for approximating the graph’s
densest k-vertices subgraph are introduced. In [26], dense
k-subgraph and Max-Haf problems are solved using the
Gaussian boson sampling(GBS). In order to create GBS
samples, the weighted adjacency matrix of the graph is
encoded into a GBS device. The GBS sampling distribution
is used to calculate the populations of Toronto and Hafnian.
The combinatorial search space for stochastic algorithms
is constrained by the density of a graph in binary data,
which has a positive correlation to Hafnians. A time-bin
encoded GBS device is used in [27] to produce GBS graph
samples in order to enhance the dense subgraph search
classical algorithm. In their random search method, n GBS
samples are generated with k nodes. The density of each
sample is then determined. Finally, the dense subgraph is
provided by the sample with the highest density. Multiple
iterations of the sampling procedure are used to account for
statistical fluctuations. A GA is proposed in [28] for solving
the subgraph isomorphism problem. The chromosome is
represented by the permutation of the vertices in the larger
graph G for the subgraph isomorphism relation. In order, the
number of vertices n in the smaller subgraph H corresponds
to the number of vertices n in the chromosome. When dealing
with fitness functions, a multi-objective approach is used.
The final fitness function is calculated as the product of the
relative weight and fitness value of each fitness function.
Initial chromosomes are chosen at random for the population.
For chromosome selection, a roulette-wheel approach is used.
A 20% chance of cycle crossover and mutation is used.
With each iteration, new offsprings are produced to replace
the worst chromosomes. The experimental results show an
improvement in results over the existing methods. A GA-
based iterative local search method is used to solve subgraph
isomorphism problems in [29]. Iterative local search and
GA performance can complement each other. Their proposed
hybrid approach and the existing GA are compared in terms
of performance. In solving subgraph isomorphism problems,
their approach outperforms the existing GA.

III. PROBLEM STATEMENT AND THE PROPOSED
ALGORITHM

A dense subgraph problem is known for finding the
maximum density where the ratio between the number of
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Fig. 1: A small example of graph

1

2

3

4

5

6

Chromosome

1

1

0

1

0

6

1

2

3

4

5

0

Sub-graph

Fig. 2: Chromosome structure

edges to the number of vertices is maximum. The same is
stated below.

For a given G(V,E) and G′, the objective is to find,

max Z =
No of edges(G′)

No of nodes(G′)

s.t. G′ ⊆ G

(1)

A. Representation of graph

Graphs contain a set of nodes/vertices that are connected
by edges. Graphs are generally represented by an adjacency
matrix, incidence matrix, or adjacency list. Here, the adja-
cency matrix is used to represent the graph. For a graph with
n number of nodes, the adjacency matrix (A) is an n × n
matrix, which is defined as below,

A(i, j) =

{
1, if edge between node i & j exists
0, otherwise.

An example is given for the Fig. 1 as below,

A =


0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


B. Chromosome

The chromosome represents a solution to a problem state-
ment. The solution of a dense subgraph is a subgraph for a
graph. Here it is represented by a column vector of length
m. Each value, known as a gene in the chromosome denotes
the presence of the corresponding nodes in the subgraph, as
below.

g(i) =

{
1, if node i is included
0, if node i is not included.

Fig. 2 shows an example of a chromosome structure for
the subgraph {1,2,4}.

C. Objective and fitness function

The objective is to find the dense subgraph i.e., a subgraph
of the maximum value E/V . Here the same function is
used for both the objective function and fitness function to
calculate the strength of the chromosome.

≈ ⟨1|⊗n
A⊙ (g · gT ) |1⟩⊗n

gT .g

Symbol ⊙ denotes element-wise multiplication, gT de-
notes transpose of the graph, ⟨1|⊗n denotes [1, 1, 1, 1, 1, ..1],

and |1⟩⊗n denotes

1...
1

 respectively.

D. Population

The initial population is a process of random generation of
chromosomes. To generate a chromosome, initially, a node is
taken and then a random neighbour node is selected which
will be merged with that node. This process continues by
selecting another random neighbor of the subgraph and then
it will be again merged with the subgraph. The random
selection of neighbour will continue until a random exit
happens for that chromosome. The generation of popula-
tions continues until the desired number of chromosomes
is obtained. The initial nodes are selected evenly among all
the nodes to construct a diverse population. The working
principle of the finding of neighbours of a subgraph is
explained below.

N =A⊙ ((Jm,1 − g) · gT )

=A⊙






1
1
1
1
1
1

−


1
1
0
1
0
0



 ·
[
1 1 0 1 0 0

]


=A⊙


0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
0 0 0 0 0 0
1 0 1 1 0 0
1 0 1 1 0 0

 =


0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0



Neighbours n = N ·


1
1
1
1
1
1

 =


0
0
1
0
1
1


Since adjacency matrix A is a logical/ binary matrix, thus

any obtained result after any operation will be bound to 0
and 1 only. Here for the example, the neighbors for g{1, 2, 4}
is n{3, 5, 6}. One of the random neighbors from n will be
merged to v.

E. Crossover

A random chromosome is chosen and then a random node
is either added or removed from the graph. In the case of
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an addition, a random node is added from all determined
neighbors. In case of removal of a node, make sure that the
resultant is required to be a connected graph. Fiedler value is
used here for the algebraic connectivity of a graph[30]. The
Fiedler value is determined by the Laplacian matrix. For the
adjacency matrix A, the degree of each node is represented
by a matrix D as below.

D(i, j) =

{
degree of node i, if i = j

0, otherwise.

The Laplacian matrix (L) is then calculated as, L = D−A.
After calculating the eigenvalues of L, the smallest eigen-
value is the Fiedler value and the corresponding eigenvector
is known as the Fiedler vector. Each element of the Fiedler
vector corresponds to each node of the graph. It basically
divides the graph into two parts: negative and positive values.
Values with higher negative and positive values are far from
the point of disconnect; therefore they can be deleted. We
will choose a random node that is either the maximum or
minimum in the Fielder vector.

F. Mutation

A random node is chosen which is absent in the offspring
to be mutated. Here the aim of the mutation is to make
a small graph where the missing nodes are included in
the population. The same function for the generation of
individual chromosomes is used here. In GA, the rate of
mutation is generally low value to stop over diversified in the
population and for this, 0.10 is considered the ideal value to
be used.

G. Exit criteria

Usually, the exit criteria are the number of generations, rate
of convergence, almost the fitness value for the population,
etc. Here, the proposed method is tuned for both the number
of generations and small changes in fitness.

Algorithm 1 Dense_subgraph
Global Data:
size: Number of solutions/chromosomes in the population.
m: Total number of nodes in the original graph.
g: A random selection of a chromosome for performing crossover and
mutation.
polpulation[size]: Collection of all sub-graph in one generation.
A: Adjacency matrix of the original graph.
procedure GA

POPULATION()
while exit()==true do

CROSSOVER()
MUTATION()
SURVIVOR()

end while
end procedure

procedure CHROMOSOME
while random(true, false) ==true do

n← NEIGHBOURS(g)
g[random_index(n)]← 1 ▷ Neighbour merged to the

sub-graph
end while
return g

end procedure
procedure POPULATION

for i = 1 : size do
index = i

size
×m ▷ Creates diverse population

population[i]← CHROMOSOME(index)

end for
end procedure

procedure NEIGHBOURS(g)
N = A⊙ ((Jm,1 − g) · gT )
n = N · Jm,1 ▷ J is an all-ones matrix
return n

end procedure

procedure CROSSOVER
switch random(ADD,REM ) do

case ADD
n← NEIGHBOURS(g)
g[random_index(n)]← 1

case REM
F ← fiedler_vector(g)
do

i← random_index(g)
while g[i] ̸= max(F ) or g[i] ̸= min(F )
g[i]← 0

return v
end procedure

procedure MUTATION
index← random_index(J − n)
temp[index]← 1
g ← CHROMOSOME(temp)
return g

end procedure

procedure SURVIVOR
index← find_weak_fitness()
if fitness(g)>fitness(population[index]) then

population[index]← g
end if

end procedure

Definition:
• random(A): generates a random number from the set A.

when (a,b) parameters are used then a random number
from the range a-b is generated.

• random_index(g): returns a random index of a node
from the chromosome g.

• find_weak_fitness(): returns the index of the weak chro-
mosome from the population.

• fiedler_vector(g): returns the Fiedler vector for the sub-
graph g.

IV. RESULT AND ANALYSIS

The proposed algorithm was tested on a graph with 100
nodes. The graph was randomly generated and by exhaustive
search, it was determined that the densest sub-graph has a
density of 4.735394. Our proposed algorithm was able to
find a dense sub-graph which is a close approximation of the
optimal solution. The algorithm was executed with different
configurations to find suitable values of different parameters
for the dense graph problem.

Fig. 3 shows the increase in fitness vs. generations for
different population sizes, keeping the rate of mutation 0.1.
Lower population sizes are less diverse, thus they are slower
in finding the optimal solution and carry a risk of getting
stuck at local minima. The population size 20 converges
prematurely and while a population size 40 finds a good
solution closer to 300 generations; it has a slower increase
than the larger size of populations. Population size beyond
60 gives good results but does not significantly improve over
60. Therefore, 60 size is chosen as the optimal number of
generations.

Fig. 4 shows the variation of fitness vs. generation for
different mutation rates, keeping the population size 60.
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Initially, zero-mutation performs well, but after more gen-
erations, with-mutation gives better results. Because zero-
mutation got stuck in local minima for longer generations and
almost all the graphs were larger in size. The introduction
of mutation helps to get some small graphs to diversify the
optimal result. When the rate of mutation is lower value,
GA generally gets stuck in local minima, thus it does not
converge to an optimal solution. A larger mutation rate
avoids this problem, but further increases in value will not
necessarily increase the final quality of the results. The
mutation rate is required to be maintained at a level for
avoiding local minima. The value 0.1 is therefore decided
as large enough to avoid premature convergence.

Fig. 3: Best Fitness value with each generation for different
population size

Fig. 4: Best Fitness value with each generation for different
mutation rate

V. CONCLUSION

A GA-based optimization is proposed for finding the dense
subgraph, a commonly known NP problem statement. A
simple structure of the chromosome is used for implement-
ing crossover and mutation. Linear algebraic operations are
explained for finding neighbors, fitness, and connectivity
of graphs. Generally, crossover and mutation are hard to

propose for a graph. Here the crossover and mutation gener-
ate new chromosomes maintaining the connectivity of the
graph. Fiedler value helped in maintaining the connectiv-
ity in the offspring. The proposed algorithm finds a close
approximation to the dense subgraph for 100 nodes. An
exhaustive search of the graph in the worst-case scenario
requires

∑100
i=1

100Ci evaluations of each individuals, while
the GA with population size 60 and 300 generations requires
60 × 300 = 18, 000 evaluations of each individuals. The
algorithm was experimented with the variation of mutation
rate, population size, and number for generation for obtaining
the fine-tuned parameter value.
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