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Abstract—The ability to differentiate sensor-induced physiolog-
ical signals between healthy and diseased subjects is useful for
developing an e-health system. Patients with neurodegenerative
disorders are among those who can benefit from the use of
e-health. Entropy methods have been utilized to quantify the
complexity of such physiological signals for pattern classification.
To date, these methods have been applied individually. In this
retrospective study, several entropy methods are examined and
used as feature extraction methods for machine learning to
classify gait patterns in neurodegenerative diseases. Experimental
results show that the combination of entropy methods and
standard statistical measures performed much better than the
individual measures for physiological pattern differentiation.
Several machine learning models were also evaluated for learning
on these features. This study also found that the one-dimensional
convolutional network model trained with the combined features
provided the most favorable results, where the best entropy mea-
sures depend on certain values for time delays and embedding
dimensions.

Index Terms—Physiological signals, entropy measures, ma-
chine learning, pattern classification.

I. INTRODUCTION

The advancements in wearable devices have made them
promising to improve global health. A wearable device is a
device equipped with sensors that can measure, process, or
analyze one or several health indicators [1]. Such devices
collect physiological data, and hence the user can monitor the
health condition. Physiological data, such as heart rate, can
be acquired using wearable devices. Physiological time series
classification is an important task to assess and treat patients.

Neuroscience research has gained a comprehensive under-
standing of the important role of brain signal irregularity in
its functions. This irregularity results from the interaction of
individual neurons and their neural system [2]. Entropy meth-
ods are mathematical approaches that are known to quantify
the irregularity in time series. Thus, entropy methods have
been applied in medical research to describe insights into
physiological conditions [3].

Neurodegenerative diseases (NDDs) are a group of condi-
tions that are clinically and pathologically diverse [4]. The
spread of NDDs is anticipated to rise with the increasing
life expectancy [5]. Amyotrophic Lateral Sclerosis (ALS),
Parkinson’s Disease (PD), and Huntington’s Disease (HD)
among other NDDs are characterized by the accumulation
of misfolded proteins into insoluble aggregates [4], [6]. Gait
analysis assesses and treats individuals with NDDs that affect

their walk. Gait analysis is based on temporal/spatial aspects
and pressure measures, such as stride, stance, or swing inter-
vals; Vertical Ground Reaction Force (VGRF) [7]. Gait signals
analysis is useful to assess and treat individuals with NDDs
that affect their walking [7].

There are few studies done on the VGRF signals. The goal
of this study is not to promote entropy methods to outperform
existing methods; however, the purpose is to study several
entropy methods on physiological time series (NDDs is a
case study) classification. Moreover, there are parameters that
affect entropy methods, such as embedded dimension and time
delay. In this study, entropy methods are the features of several
machine learning models. Based on the classification accuracy,
the results are discussed. As NDDs alter the shape, symmetry,
and flatness of the VGRF signals, the common linear features
are extracted from the time series. The classification results
obtained from linear information are compared with those
results obtained from complexity information. The result of
combining both information to classify different NDDs is
evaluated in this study.

The remaining sections of this paper are arranged as follows.
Several entropy methods are described in section II. Section III
describes the NDDs data set. Section IV presents the method
used in the study. Results and discussion are addressed in
section V. Finally, Section VI is the conclusion of the findings
reported in this paper.

II. ENTROPY METHODS

Over the years, many entropy methods have been developed.
Generally, entropy methods can be categorized into several
groups: base entropy, cross-entropy, multiscale entropy, and
bi-dimensional entropy [8]. In this study, several base entropy
and multiscale entropy methods are considered.

A. Approximate Entropy (ApEn)

ApEn is a well-known entropy method, and it is a log-
arithmic ratio of the probability that two patterns of the
same embedded dimension m are within the tolerance r. The
calculation of ApEn depends on setting two parameters the
embedded dimension and a tolerance level [9]. The equation
is defined as follows:

ApEn(m, r,N) = ln
C(m, r,N))

C(m+ 1, r,N)
(1)

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuA4P.1

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 947



where N is the length of the time series data. The number of
patterns of length m that are within the tolerance r in the time
series data is defined as C(m, r,N). While C(m + 1, r,N)
is the number of patterns of length m+ 1 that are within the
tolerance r in the time series. A lower ApEn value indicates
predictability in the data.

B. Sample Entropy (SampEn)

SampEn is similar to ApEn in that it measures the likelihood
that patterns of a certain length and tolerance will repeat in
the time series. It is similar to the ApEn measure, yet with
some modifications in the calculation [10]. The formula for
SampEn is defined as follows:

SampEn(m, r,N) = −log
C(m, r))

C(m+ 1, r)
(2)

where C(m, r) is the number of patterns of length m that are
within the tolerance r in the time series data, and C(m+1, r)
is the number of patterns of length m+ 1 that are within the
tolerance r in the time series data.

C. Fuzzy Entropy (FuzzEn)

FuzzEn measures the complexity of a time series and
considers the fuzziness in a time series. It is based on the
concept of fuzzy sets, which allow for partial membership of
an element in a set [11], [12]. A lower FuzzEn value indicates
greater regularity in the time series. The formula for FuzzEn
is defined as follows:

FuzzEn(m, r,N) = −log(
∑ P (i, j))

P (i)
) (3)

where i and j are 1, 2, . . . , N−m+1. P (i, j) is the similarity
measure between two fuzzy patterns i and j, which is defined
as exp(−d(i,j)2

r2 ), where d(i, j) is the distance between the
fuzzy patterns i and j. P (i) is the probability of a fuzzy pattern
j, which is calculated as the number of fuzzy patterns with a
membership degree greater than or equal to a certain threshold
divided by the total number of fuzzy patterns.

D. Multiscale Sample Entropy (MSE)

MSE was initially developed to calculate SampEn of time
series at multiple scales, then it got generalized to calculate
any base entropy method by dividing the original time series
into segments of different resolutions [13], [14]. This method
reveals patterns of regularity in the time series that are not
apparent at a single scale. The formula for calculating MSE
is as follows:

MSE(m, r,N, S) = −log
C(m, r,N, S))

C(m, r,N, S + 1)
(4)

where S is the scale at which the entropy is measured.
C(m, r,N, S) is the number of patterns of length m that are
within the tolerance r in the time series at the given scale.

E. Permutation Entropy (PE)

PE measures the complexity of a time series based on the
ordinal patterns of the time series [15]. The basic idea behind
PE is to convert the time series into a sequence of ordinal
patterns by ranking the values in each embedded dimension
of the time series. The resulting ordinal patterns are then
counted and used to calculate the entropy of the time series.
The formula for calculating PE is as follows:

PeEn(m) = −
∑

p(i)log(p(i)) (5)

where i = 1, 2, . . . ,m! and m! are the number of possible
ordinal patterns of length m. While p(i) is the probability of
the ith ordinal pattern appearing in the data.

F. Bubble Entropy (BubE)

BubEn is a measure of the complexity of a network or graph
based on the distribution of bubbles or topological motifs in
the network [16]. The advantage of this method is that it does
not depend on parameters unlike other entropy methods [17].
The basic idea behind bubble entropy is to count the number
of bubbles of different sizes or types in the network and use
this information to calculate the entropy of the network. The
resulting entropy value reflects the degree of randomness in
the distribution of bubbles in the network. The formula for
calculating bubble entropy is as follows:

BubEn =
Hm+1

swaps −Hm
swaps

log(m+1
m−1 )

(6)

where Hm
swaps is the second-order Renyi entropy of the

probability mass function.

G. Distribution Entropy (DisE)

DisEn is a measure of the randomness of a probability
distribution. The basic idea behind distribution entropy is to
calculate the entropy of a probability distribution by using
the probabilities of the individual outcomes in the distribution
[18]. The formula for calculating distribution entropy is as
follows:

DisEn(m,M) =
−
∑M

t=1 ptlog2(pt)

log2(M)
(7)

where M is the distribution bins pt is the probability of each
distribution bin.

H. Dispersion Entropy (DispE)

DispEn is an irregularity measure of a time series based on
the distribution of its values. DispEn relies on the dispersion of
the data points within a sliding window. The resulting entropy
value reflects the degree of irregularity in the distribution of
the data points [19]. The formula for calculating DispEn is as
follows:

DispEn(m, c, d) = −
cm∑
π=1

p(πvi).ln(p(πvi)) (8)

where c is the number of classes, and d is time delay. πvi is
dispersion pattern.
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I. Sample-Dependence Recurrent Sample Entropy (SDRSE)

SDRSE captures the sequential order of the time series. The
total number of matches with other points within a similarity
tolerance of the point represented by the row or column of the
recurrence plot (RP), where the diagonal element is removed
is the sum of each row. Then the BLCM can be obtained
from the binary image of RP, which quantifies the sample
similarity according to spatial orientations [20]. The formula
for calculating SDRSE is as follows:

SDRSE(m, ϵ, δ) = −log(
sm+1(ϵ, δ)

sm(ϵ, δ)
) (9)

where the spatial offset is denoted as δ, and the probability of
the total number of the recurrence pairs is denoted as S(ϵ, δ).

(a) male

(b) female

Fig. 1. Signals of 10 seconds recorded from different NDD subjects.

III. DATA SET

This study examined entropy methods on a publicly avail-
able gait data set, which consists of three NDDs. The NDDs’
gait data was contributed by Hausdorff et al. [21]. The data set
contains VGRF of gait recordings obtained from 15 patients
with PD, 20 patients with HD, 13 patients with ALS, and
16 healthy control subjects (HC). Table I displays the demo-
graphic parameters (age, height, weight, speed, and severity) of

TABLE I
NDD DEMOGRAPHY

Group PD HD ALS HC
Age 66.8 ± 10.9 46.7 ± 12.6 55.6 ± 12.8 39.3 ± 18.5

Height 1.9 ± 0.2 1.8 ± 0.1 1.74 ± 0.1 1.74 ± 0.10
Weight 75.1 ± 16.9 72.1 ± 17.1 77.1 ± 21.1 66.8 ± 11.1
Speed 1.0 ± 0.2 1.2 ± 0.4 1.1 ± 0.2 1.4 ± 0.2

Severity 2.8 ± 0.9 6.9 ± 3.8 18.3 ± 17.8 0 ± 0

the participants. The data were collected using force-sensitive
resistors while all subjects walked at their own pace along
a predetermined path (77-meter-long straight hallway). Each
recording contained 5 minutes obtained from the foot at a
sampling frequency of 300 Hz. Fig. 1 depicts ten seconds
of VGRF signals from male and female participants of HC
controls and patients with ALS, PD, and HD.

IV. EXPERIMENT

The used data set will go through several stages in the
study. Fig. 2 depicts the block diagram of the study. The stages
are (1) Signal acquisition (2) signal preprocessing (3) feature
extraction, and (4) classification. Each block of the study is
explained in this section.

A. Signal Preprocessing

The VGRF records the movement of the foot. Each record
contains several ”not number values”. To tackle this issue,
interpolation was used. In this study, non-overlap 1000 sample
points’segmentation was used. After the segmentation, the
number of learning samples has increased, thus the classifier
has more information to learn from. Originally the number
of samples was 64 with 90000 data points, while after the
segmentation the data increased to 5760 samples (90 segments
per record).

B. Feature Extraction

Entropy methods were used to extract the nonlinearity in
the sequence of movement and pattern of force fluctuations.
Entropy is a complexity metric that is useful for non-stationary
signals since it focuses on recurring patterns of variations in a
time series. In this study, the aforementioned entropy methods
were considered. In the study, two parameters, embedded
dimensions (m = 2,3,4), and time delay (t = 1,2,3), were con-
sidered. Since NDDs change the gait signals characteristics,
linear features like mean, variance, skewness, and kurtosis are
extracted to reveal important information about the dispersion,
symmetry, and flatness of VGRF signal distribution across
time [22].

C. Classifiers

In this study, supervised machine learning classifiers, such
as the support vector machine (SVM) model, the long
short-term memory (LSTM) network model, and the one-
dimensional convolutional neural network (1D-CNN) model
were used. The kernel considered in SVM is Radian Basis
Function (RBF).
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Fig. 2. Procedure for classification of physiological signals.

TABLE II
ACCURACY RESULTS OF USING ONLY ENTROPY MEASURES

t = 1
SVM LSTM 1DCNN

m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4
Approximate 21.68±5.33 21.16±3.66 21.68±5.33 31.05±11.87 37.05±9.32 35.05±10.67 25.58±10.04 43.05±31.93 36.63±15.18

Sample 21.68±5.33 21.68±5.33 21.68±5.33 37.05±9.32 35.05±10.67 33.05±11.48 32.11±21.44 32.11±21.44 33.16±18.86
Fuzzy 20.63±2 21.68±5.33 22.21±6.99 37.05±9.32 35.05±10.67 31.05±11.87 49.68±14.42 46.11±18.82 44.11±18.23

Multiscale 20.11±0.33 18±6.32 21.68±5.33 33.05±11.48 31.05±11.87 31.05±11.87 35.58±18.83 26.11±16.43 33.16±18.86
Permutation 21.16±3.66 20.11±0.33 18.11±11.38 37.05±13.26 37.05±9.32 29.05±11.88 35.58±16.3 37.05±13.26 34.21±13.62

Bubble 17.58±6.32 20.21±9.93 16.11±8.49 31.05±15.16 37.05±13.26 27.05±11.51 34.11±21.11 36.63±15.18 39.58±19.39
Distribution 25.68±9.19 21.68±14.36 21.16±16.74 35.05±10.67 35.05±10.67 31.05±11.87 31.05±11.87 33.05±14.85 33.05±14.85
Dispersion 28.74±11.48 25.16±20.73 19.16±7.65 31.05±11.87 33.05±14.85 31.05±11.87 29.05±11.88 33.58±14.04 27.05±14.88

SDR 19.05±3 19.05±3 21.68±5.33 29.05±11.88 35.05±10.67 33.05±11.48 22.11±6.3 33.16±21.09 32.11±16.79
t = 2

SVM LSTM 1DCNN
m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4

Approximate 21.68±5.33 21.16±3.66 22.21±6.99 33.05±14.85 35.05±10.67 33.05±11.48 49.58±20.19 41.68±14.84 37.26±19.1
Sample 20.11±0.33 20.63±2 21.68±5.33 35.05±10.67 33.05±11.48 35.05±10.67 26.63±18.86 33.58±21.54 41.58±15.5
Fuzzy 21.16±3.66 22.21±6.99 22.21±6.99 25.05±10.72 33.05±11.48 31.05±11.87 49.26±21.35 40.21±18.87 49.68±21.79

Multiscale 19.05±3 21.68±5.33 21.16±3.66 33.05±11.48 31.05±11.87 35.05±10.67 31.58±21.8 28.63±13.72 36.63±22.3
Permutation 19.05±3 21.68±5.33 19.05±3 31.05±11.87 33.05±11.48 35.05±10.67 33.58±14.04 38.11±14.62 29.16±9.97

Bubble 18.11±6.37 18.11±6.37 20.11±0.33 29.05±11.88 27.05±14.88 35.05±14.24 31.05±11.87 22.11±17.5 28.63±13.72
Distribution 29.68±13.93 19.68±15.93 17.16±16.51 35.05±10.67 35.05±10.67 33.05±11.48 27.05±14.88 31.05±11.87 32.53±12.68
Dispersion 26.21±13.76 25.68±13.17 25.16±12.77 35.05±10.67 33.05±11.48 29.05±11.88 23.05±13.32 25.05±17.11 29.05±11.88

SDR 21.68±5.33 19.05±3 21.68±5.33 35.05±10.67 37.05±9.32 33.05±11.48 29.68±19.28 32.63±18.99 37.16±19.97
t = 3

SVM LSTM 1DCNN
m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4

Approximate 22.11±6.3 15.68±12.01 17.68±10.7 33.05±11.48 31.05±11.87 31.05±11.87 36.11±24.51 37.05±13.26 34.63±15.98
Sample 21.16±3.66 21.68±5.33 21.68±5.33 37.05±9.32 29.05±11.88 35.05±10.67 35.58±16.3 30.11±14.06 24.11±12.62
Fuzzy 24.74±10.14 25.68±13.17 28.63±9.97 35.05±10.67 31.05±15.16 29.05±15.17 34.21±9.83 42.63±21.39 38.63±16.89

Multiscale 19.05±3 19.05±3 21.16±3.66 35.05±10.67 33.05±11.48 35.05±10.67 40.11±13.16 38.11±23.86 34.11±16.37
Permutation 21.68±5.33 19.05±3 21.68±5.33 35.05±10.67 31.05±11.87 35.05±10.67 31.05±15.16 33.05±17.59 39.05±24.17

Bubble 17.58±6.32 18.63±6.84 18.11±6.37 29.05±17.86 31.05±11.87 31.05±15.16 32.63±18.99 26.11±16.43 29.05±20.19
Distribution 18.63±17.7 17.16±16.51 16.63±13.02 37.05±9.32 35.05±10.67 29.05±11.88 31.05±15.16 27.05±11.51 31.05±15.16
Dispersion 23.26±16.86 25.68±13.17 25.16±8.62 33.05±11.48 33.05±11.48 37.05±9.32 33.05±11.48 29.05±17.86 33.58±10.4

SDR 19.68±8.71 20.63±2 20.11±0.33 37.05±9.32 31.05±11.87 33.05±11.48 39.16±23.25 36.63±22.3 35.26±21.95

TABLE III
ACCURACY RESULTS OF STATISTICAL MEASURES ALONE

SVM LSTM 1DCNN
Mean 38.63±19.35 27.05±14.88 39.68±24.96
STD 32.21±14.13 31.05±20.19 47.16±19.88
Skewness 24.11±12.62 37.58±15.38 35.16±20.65
Kurtosis 26.21±10.02 50.74±10.01 54.84±14.16

LSTM networks are a special case of Recurrent Neural
Networks (RNN) and are designed to find patterns in time. In
the study, the architecture is constructed with two bi-LSTM
layers, a 20% dropout layer, a fully connected layer, and a
softmax output layer. The build of 1D-CNN is the same as
the conventional CNN, yet the size is one dimension. This
study’s architecture comprises numerous layers, including two
convolutional layers, two dropout layers with a dropout rate
of 0.2, one max pooling layer, a fully connected Multilayer
Perceptron (MLP) layer, and a Softmax output layer. The
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TABLE IV
ACCURACY RESULTS OF COMBINING BOTH INFORMATION

t = 1
SVM LSTM 1D-CNN

m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4
Approximate 49.68±14.42 37.68±14.74 43.68±18.48 46.74±13.34 55.16±16.91 46.21±9.54 65.89±13.38 72.84±13.42 60.32±18.88

Sample 53.68±19.26 39.16±21.25 53.16±21.96 50.74±10.01 49.79±13.99 51.26±9.95 70.84±19.14 74.84±18.46 62.32±23.94
Fuzzy 43.79±22.55 56.21±22.55 46.21±13.41 54.74±8.71 56.32±12.8 54.74±15.93 74.84±15.87 66.32±18.89 64.42±23.07

Multiscale 45.26±12.83 46.32±19.26 39.26±12.27 50.74±13.75 50.74±16.67 44.74±15.74 71.37±21.33 74.32±26.58 65.37±18.56
Permutation 38.74±24.13 37.68±19.88 37.26±28.45 50.21±16.87 57.26±6.49 46.74±18.86 71.79±14.2 65.37±15.98 58.32±11.46

Bubble 37.68±22 28.63±21.33 49.26±10.01 61.26±17.76 55.26±12.6 52.74±13.47 66.32±16.37 74.84±24.65 60.32±16.36
Distribution 46.21±13.41 44.21±24.56 37.68±22 47.68±10.64 56.21±12.37 46.74±16.33 67.89±10.2 72.42±17.14 59.79±24.95
Dispersion 47.79±30.02 46.21±21.13 44.21±15.73 48.74±13.71 47.16±14.75 41.79±14.48 66.32±21.11 62.84±17.61 64.32±12.58

SDR 44.63±27.43 46.74±29.82 44.74±20.63 54.21±18.81 50.74±13.75 48.74±9.95 67.37±16.48 71.89±13.92 66.74±15.3
t = 2

SVM LSTM 1D-CNN
m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4

Approximate 42.21±23.93 41.26±13.92 46.63±26.14 58.21±11 44.74±15.74 48.74±9.95 70.32±13.93 70.32±19.28 68.84±9.94
Sample 41.68±22.06 38.74±11.73 35.16±15.76 47.26±13.47 56.74±17.8 44.74±12.6 69.89±14.06 63.89±24.51 67.37±13.52
Fuzzy 45.68±28.45 50.21±23.48 48.21±16.77 54.21±13.27 48.21±10.17 56.74±11.8 66.84±18.86 65.37±20.81 63.37±15.18

Multiscale 48.74±25.15 47.79±21.38 48.63±20.66 50.74±10.01 44.74±18.35 50.74±10.01 66.84±13.34 71.89±13.92 71.26±19.96
Permutation 45.16±14.16 50.74±21.35 36.21±24.63 53.26±13.34 50.74±10.01 46.74±16.33 69.37±16.7 78.84±13.83 63.37±22.3

Bubble 35.26±19.82 36.74±22.97 51.68±21.72 40.11±16.19 50.74±10.01 50.74±13.75 67.37±13.52 68.84±13.7 67.37±16.48
Distribution 40.74±21.21 40.21±21.09 45.26±20.77 44.74±12.6 52.32±10.64 48.21±16.77 66.32±23.12 65.26±19.37 76.32±20.41
Dispersion 37.16±22.09 37.26±9.91 49.16±11.7 48.74±16.64 46.74±13.34 42.11±14.59 58.84±17.82 69.79±19.57 75.37±12.58

SDR 41.68±19.95 39.68±18.88 46.74±29.82 46.74±9.43 52.32±10.64 48.74±16.64 68.95±15.16 75.37±12.58 63.79±8.57
t = 3

SVM LSTM 1D-CNN
m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4

Approximate 41.68±19.95 48.21±23.41 47.68±27.12 42.11±17.37 56.21±12.37 50.74±13.75 65.79±16.56 74.32±13.17 66.84±26.67
Sample 41.68±14.84 44.63±25.76 45.26±18.51 46.74±13.34 46.74±13.34 52.21±19.19 67.37±26.76 76.84±20.1 66.84±13.34
Fuzzy 41.16±20.16 37.79±23.74 46.74±23.1 49.26±16.67 44.74±18.35 44.74±18.35 66.32±9.49 76.84±11.71 81.37±11.65

Multiscale 48.21±23.41 37.68±19.88 44.11±22.58 51.26±13.71 47.26±16.44 49.79±13.99 71.79±19.48 71.89±13.92 67.89±16.79
Permutation 49.68±17.23 33.26±20.29 37.68±14.74 57.26±11.45 39.68±9.48 50.74±13.75 62.84±17.61 68.74±24.49 72.42±19.56

Bubble 39.26±15.47 42.21±23.93 47.68±19.49 42.74±14.83 55.26±15.74 49.26±10.01 71.89±23.44 69.37±21.37 58.74±19.27
Distribution 35.68±12.58 47.79±23.37 44.21±22.67 48.74±16.64 46.21±9.54 50.74±13.75 69.37±25.19 77.79±20.11 69.37±16.7
Dispersion 39.16±21.25 43.16±18.77 44.74±15.74 43.26±11.8 54.74±12.83 46.74±16.33 64.32±15.72 71.89±19.28 72.32±9.96

SDR 42.74±17.57 46.21±21.13 46.21±18.91 48.74±9.95 48.74±19.12 55.16±14.04 63.89±22.63 64.84±12.63 69.89±10.43

optimizer algorithm used in the study is Adam with a mini-
batch size of 32, and the learning rate is 0.01. For the
validation stage, the data set was partitioned into 10 folds one
fold is for testing, while the rest is for training.

V. RESULTS AND DISCUSSION

In this section, the accuracy results of different features are
discussed. Table II shows the accuracy results of the entropy
methods as input to different classifiers. The results of the
linear features are shown in Table III. The accuracy results
of combining linear and nonlinear information are shown in
Table IV.

Table II shows the results of different entropy methods with
tuning two parameters (time delay and embedded dimension).
Generally, entropy methods did not perform better across
different classifiers. FuzzEn provided the highest accuracy
when it is a feature to 1DCNN. There is no direct correlation
between accuracy and entropy parameters. For example, time
delay did not show a significant change in accuracy. When
changing the time delay value, the accuracy did not signif-
icantly improve. SampEn showed a consistent performance
across different sizes of embedded dimensions and the time
delay. When comparing different classifiers, SVM showed
the worst performance. This was not expected since SVM is

known to perform well in classification tasks. Both LSTM and
1DCNN are known to handle time series classification, but
the accuracy is low. It can be concluded that information of
irregularity, such as entropy methods, cannot provide enough
discriminatory information. Therefore, classifiers find diffi-
culty differentiating NDDs. We compared the results obtained
from entropy measures with statistical measures.

NDDs alter signal characteristics; therefore, studying linear
features is appreciated. Table III provides the accuracy results
of statistical measures. Moreover, using inexpensive features,
such as kurtosis, which measures the peakedness of the time
series, has shown better performance compared to entropy
methods. Kurtosis performed better than other statistical mea-
sures with LSTM and 1DCNN classifiers. Moreover, using
kurtosis as a feature with 1DCNN provided better performance
with an accuracy of 54.84%. Overall, 1DCNN performed well
with all statistical features. Statistical measures are computa-
tionally inexpensive; however, they did not provide enough in-
formation to classify different NDDs. Entropy methods depend
on several parameters (embedded dimension and time delay),
which makes it difficult to find the best criteria to quantify the
irregularity in the time series. In contrast, statistical measures
do not quantify the irregularity in the signals, instead, they
measure the signal’s characteristics. Based on the results from

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 951



Table II and Table III, NDDs affect the signal’s characteristics
and show a similar pattern across time. Table IV shows the
accuracy performance when both measurement groups are
combined.

Table IV shows the accuracy results of combining lin-
ear and nonlinear information. Generally, this combination
showed a boost in performance. Overall, 1DCNN outper-
formed other classifiers when combining both pieces of infor-
mation. 1DCNN showed accuracy above 60%. Again, there
is no direct correlation between accuracy and entropy pa-
rameters. DispEn with statistical measures showed consistent
performance when the time delay is 1. Again, changing the
value of time delay did not show a significant effect on the
performance. Tuning entropy parameters is crucial, yet the
study did not show a difference in the performance. This is
because the time series pattern among different NDDs is close
to each other.

Based on the obtained results, the NDDs data set is chal-
lenging. Both features (linear and nonlinear) did not capture
discriminate information to classify different NDDs. However,
kurtosis performed better than entropy methods. This tells us
that NDDs alter the shape of the VGRF signal, while the
non-linearity of the time series is immune to the changes.
The entropy methods rely on the embedded dimension, and
choosing its value is crucial to capture the irregularity in the
signal. However, some entropy methods like FuzzEn showed
a consistent performance across different values of embedded
dimension, yet the performance remains poor. Both ApEn and
SampEn share similar computations, and thus, they perform
similarly. This finding indicates that the information from both
of them is redundant. Segmentation could be another reason
for low performance. initially, the data set is limited and the
number of subjects per disease is almost the same. However,
the segmentation process increased the gap between classes,
and hence the data set was imbalanced.

VI. CONCLUSION

This study applied several entropy methods to quantify the
irregularity in the VGRF signals of NDD patients and HC sub-
jects. The irregularity information, alone, cannot differentiate
between NDD patients and HC participants. NDDs change
the signal’s structure; therefore, four common statistical mea-
sures were selected. The study showed that by combining
both structural and irregularity information, classifier accuracy
improved. For future studies, we will investigate the severity
classification of NDDs. It is believed that by having a larger
database, machine learning algorithms will learn more then the
performance will improve. Another limitation of the database
is the imbalance between classes. The gap between classes
increases after the segmentation stage.
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