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Abstract—In the modern world, where health concerns ne-
cessitate continual diet monitoring, the challenge of food image
identification is crucial. Many machine learning models are
available to automate the identification procedure. This is done
predominantly with Convolutional Neural Networks (CNN) that
help extract features for food images with different textures.
But this comes with certain limitations such as diversity in
food items, variation in the appearance of images, overfitting,
and the inability to capture long-distance connections, which
can result in inadequate feature representations. This paper
attempts to explore Vision Transformers (ViTs) in an effort to
overcome these limitations. ViTs are known for their attention
mechanism, increased interpretability, better generalization,
and robustness to adversarial cases. In this study, VOLO
(Vision Outlooker for Visual Recognition), a contemporary
vision transformer, improves learning by encoding fine-level
information into the token representations. Also, a traditional
flat classifier ceases to perform well because there are so many
different cuisines and unique food items. Prediction systems
with hierarchical classifiers were also developed to address this.
Thus, the proposed method uses VOLO to accomplish hierar-
chical food classification. The experimental results support the
proposed method’s performance and contribution to an overall
improvement in prediction accuracy.

Index Terms—Vision outlooker, Food images, Convolutional
Neural Network, Classification

I. INTRODUCTION

Food Classification is a significant task with several ap-
plications in the fields of nutrition, healthcare, and the food
industry. Creating individualized nutrition programs, keeping
track of dietary intake, and detecting allergens all depend
on being able to correctly recognize food items in images.
Due to the variety in the appearance, shape, texture, and
color of food products as well as the existence of occlusions,
lighting, and camera angles, it can be difficult to identify
food items from images. This can be seen from Fig 1
which shows food samples from the public food dataset
MAFood121 [1]. Moreover, food Identification systems need
to be highly accurate and efficient while handling complex
and huge datasets. As a result, creating reliable and accurate
food identification systems is a difficult problem that calls
for innovative solutions [2].

In order to handle image input and perform classification
tasks, convolutional neural networks (CNNs) have become a
powerful technique. Convolutional filters are used in these
networks to extract features from images by identifying
patterns and edges in the image data. CNNs can learn

Fig. 1. Few sample images from MAFood121 dataset

increasingly more complicated representations of image fea-
tures by stacking multiple convolutional layers and pooling
layers. The spatial relationships between pixels in the image
data may also be handled by CNNs, which is useful for
identifying objects and patterns in images. However, they
have disadvantages when working with huge datasets or
complex foods with considerable intra-class variability and
visual complexity [3]. CNNs have demonstrated promising
results in the context of food classification when obtaining
high accuracy in classification tests.

While CNNs have been successful in extracting features
from images for food classification, they have certain limita-
tions, such as the inability to capture long-distance connec-
tions and inadequate feature representations. The proposed
work aims to overcome the drawbacks of current methods
for food image classification using machine learning mod-
els, focusing specifically on the constraints associated with
CNNs. The interpretability of the learned representations
in CNNs is still an active area of research and remains
a limitation in understanding the decision-making process
of these models. In contrast, ViTs are known for their
attention mechanism, which allows them to better capture
long-distance connections and encode fine-level information
into token representations. This makes them well-suited for
the task. The novelty of the presented work lies in the use
of ViTs for hierarchical food classification. This allows the
system to first classify the cuisine and then the specific dish
within that cuisine, resulting in improved accuracy.

The rest of the paper consists of the following sections.
Section 2 presents the work related to the proposed approach,
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Fig. 2. Overview of Vision Transformer (ViT) model Architecture: An image is segmented into patches (here 9 by 9), after which position embedding is
applied to the flattened patches, and then the patches are passed to a transformer encoder to make the final class.

Section 3 discusses the work with Methodology, and Section
4 and 5 presents the Experimental Details and the Results
obtained respectively followed by the Conclusions in Section
6.

II. RELATED WORKS

Several research has already been conducted in diverse
sectors such as healthcare, pattern recognition, classification,
clustering, IoT technologies, etc based on the different neural
models. This section examines the advances in food process-
ing using neural networks, with a particular emphasis on the
move from shallow to deep learning techniques. Collecting
data and monitoring food processing processes has gotten
easier because of industrial automation and the Internet of
Things. ANNs have been critical in improving technology
and attaining success in food grading, safety inspections, and
quality assessment [4]. Accurate dietary assessment is critical
for evaluating weight loss therapy. However, most current
nutritional evaluation methodologies rely on recall, which
has drawbacks. To address this issue, a modern computer-
based food recognition system was created, allowing for
reliable food evaluation on a variety of mobile devices
and via Cloud services. The system tries to address the
problem of detecting and distinguishing different types of
food images. The great variety of food products, with both
minor differences across categories and considerable varia-
tions within categories, complicates this work. The suggested
technique involves the use of several fusion-trained classifiers
which use features collected from various deep models
and improves the system’s ability to identify and recognize
objects [5]. Deep learning is a powerful technique that is
frequently used in image processing, speech recognition,

and object detection. Author claims this study to be the
first of its kind and investigates its recent application in
the field of food science and engineering. The paper defines
deep learning, covers prominent architectures and training
approaches, and compiles a list of articles that use deep
learning in food-related difficulties. Food recognition, calorie
estimation, quality detection, food supply chain management,
and contamination detection are among them. The publica-
tion delves into the specifics of each study, such as datasets,
preprocessing methods, networks employed, performance,
and comparisons to other methodologies [6].

There has been a surge in interest in using previously
created ANNs to solve complicated real-world challenges in
food processing. Deep learning techniques, on the other hand,
have emerged as a substantial contributor to intelligent food
processing. The study emphasizes the widespread application
of deep learning, machine learning, and image processing
in expanding the possibilities and growth potential in the
field of food processing. Food recognition using Deep CNN
integrated with the hand-crafted features is implemented in
various tasks where they evaluated that network depth is an
important aspect [7]. During training, CNN extracts feature
and learns patterns in images which are important for classi-
fication and pattern recognition tasks. On successful training,
the network can be used to classify new images using the
learned parameters. The common architecture of CNN for
this task is to use a series of pooling and convolutional
layers to extract features from input images, then followed
by fully connected layers to make the final classification.
Convolutional layers are used to extract features from the
input image filters, creating feature maps emphasizing dif-
ferent aspects of images and different levels of abstraction.
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Pooling layers are used to reduce spatial dimensions of data
allowing the network to focus more on abstract features. In
a fully connected layer, it attempts to generate class scores
from the activations. Extracted features from the previous
layer are taken as input and further used for prediction. The
output layer consists of a probability distribution over the
classes [8], [9].
Despite their effectiveness, the limited ability of CNNs to
capture long-range connections between image parts can lead
to inadequate feature representations, which is one of their
key problems. To solve this problem, ViTs, a new kind of
deep learning architecture, has recently been proposed by
Alexey Dosovitskiy et al. in 2020 [10]. ViTs employ a self-
attention method that dispenses with explicit modeling of
the spatial structure of the image and enables the network
to capture long-range relationships between image patches.
This makes it possible for ViTs to represent the connections
more accurately between various aspects of the image, which
is crucial for identifying complex food items with substantial
intra-class variability. Moreover, ViTs is a possible substitute
for CNNs for large-scale image recognition applications
since they are extremely scalable and have a high compu-
tational efficiency while training on big datasets. ViTs has
recently been modified for image classification tasks, and
the results are encouraging. The basis of ViTs is the idea of
self-attention, which enables the model to pay attention to
various input sequence parts when generating its output. ViTs
use a patch-based strategy to represent the input image as a
series of fixed-size image patches when it comes to image
categorization. The final prediction is created by running the
patches through a sequence of self-attention and completely
linked layers. In order to recognize complex patterns and
objects in images, ViTs must be able to record long-range
dependencies between image patches [11], [12]. A detailed
Overview of Vision Transformer Architecture is provided
in Fig. 2. Despite their impressive representational capacity,
current ViT models experience inconsistency and inaccurate
dense predictions at local regions. But it is observed that the
effectiveness of their self-attention mechanism is constrained
to shallower and thinner networks. Hence, a recently ad-
vanced ViT named VOLO is explored in the proposed study
[13].

Nowadays, where health concerns demand continuous diet
monitoring, accurate food classification becomes crucial. The
task is compounded by the variety of food products with low-
inter and large intra-class differences, as well as the restricted
information in a single image [14], [15]

• Inadequate accuracy of existing food classification
methods: Current food classification methods are not
able to achieve the desired level of accuracy, especially
when dealing with diverse food items and variations in
appearance. This limitation hinders the effectiveness of
the task.

• Demands of modern health-conscious society: In to-
day’s world, where people are increasingly concerned
about their health and dietary choices, accurate food
classification is of paramount importance. However,
existing methods fall short of meeting the expectations
and requirements of continuous diet monitoring.

The conventional models’ effectiveness declines as the num-

Fig. 3. Outlook Attention Mechanism illustrated with a window size of
KxK using the center token, a linear layer followed by a reshape operation
can easily construct the outlook attention Matrix

ber of classes and the number of images inside each class
increases. It suggests that models that perform effectively
across a small number of classes cannot be expanded by
simply scaling them for more complex applications. There-
fore, this paper proposes a hierarchical classification ap-
proach for food classification along with VOLO. The primary
objective of this study is to enhance the accuracy of food
classification, particularly when dealing with diverse food
items and variations in appearance, which pose significant
limitations for existing models. To address this problem,
the proposed study presents the utilization of ViTs and a
hierarchical classification approach for food classification
along with VOLO.

III. METHODOLOGY

In this section, the working of the proposed method using
VOLO and its implementation details are discussed. Though
ViTs have shown great potential, they have some limitations
like low efficacy in encoding fine-level features. To solve
this problem, a new architecture with outlook attention was
introduced which was termed as VOLO. Different architec-
tures of this model such as VOLO D1, VOLO D2, VOLO
D3, VOLO D4, and VOLO D5 are presented with varying
specifications as shown in Table I. VOLO-D5 is found to
be the first model that exceeds 87% top-1 accuracy on
ImageNet. The suggested outlooker creates a new focus for
token aggregation and makes it possible for the model to
effectively encode fine-level data. Outlook Attention, a layer
that helps in focusing on a specific part of the input and
represents the spatial relationship of the object in the image
for further processing of information and generates attention
weights while encoding fine-level information. A Multi-
Layer Perceptron (MLP), is a feed-forward neural network
used to model complex non-linear relationships of input and
output. Let, Let X ∈ RHXWXC ,

X̃ = OutlookAtt(LN(X)) +X (1)

Z = MLP (LN(X̃)) + X̃ (2)

where LN is a Layer Norm, this is usually used in ViTs.
Before the self-attention mechanism, in feed-forward layers,
the LN is applied to activations. This improves the stability of
the overall network during training and controls the scaling
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Fig. 4. Outlook attention flow with tensor shapes

of activations. Thus, resulting in improved performance and
faster convergence on tasks.

Outlook attention calculates the resemblance of each spa-
tial location (i, j) to all of its neighbors in a local window of
size K × K centered at (i, j). Unlike self-attention, which
must be calculated via a Query-Key matrix multiplication
(i.e., Soft-max(QT K/

√
d) outlook attention streamlines this

process, by simply performing a reshaping operation as
shown in Fig. 3. The weights from Outlook used for value
aggregation like the attention weight by reshaping it to
Âi,j ∈ RK2×K2

, then a softmax function where the output
of a preceding layer is converted into a vector of probabilities
as shown in Fig. 4. With the given input vector and weight
vector,

Softmax(xi) =
exp(xi)∑
j exp(xj)

(3)

Y△i,j = MatMul(Softmax(Âi,j), V△i,j) (4)

After getting the projected values and adding up the
weighted values from the different local windows at the
same location yields the result. Fold and Unfold operations
are performed followed by linear layer as in self-attention.
Then multi-head outlook attention is implemented where N
number of heads is taken into consideration, adjusting the
weight shape. The value embeddings and outlook weight
are uniformly split into N segments, which yield (An, Vn)
for each such pair outlook attention is computed separately.
Summation of which results in multi-head outlook attention.
They have maintained an outlooker to transformer ratio of
roughly 1:3, which has experimentally shown to be the most
effective. To update the class embedding, also add two class
attention layers. Outlookers have a hidden dimension that
is set to half of the transformers. Fig. 5 depicts the precise
workflow of the proposed method for flat dish classification,
which is also applicable to cuisine classification. The outlook

TABLE I
MODEL SPECIFICATION DETAILS

Model Dimension Parameter count
VOLOD1 384 27
VOLOD2 512 59
VOLOD3 512 86
VOLOD4 768 193
VOLOD5 768 296

Fig. 5. Overview of proposed method

attention is simple, efficient, and easy to implement, and its
main advantages are,

• The features present at each spatial location are repre-
sentative enough to generate the attention weights for
locally aggregating the neighboring features.

• Using dense and local spatial aggregation, it can encode
fine-level information efficiently.

Hierarchical classification is employed while comparing
it to a flat classification technique using pre-trained VOLO
models with re-defined head and aux-head layers. The
MAFood121 Dataset which we are working with consists
of 11 cuisines and 11 dishes per cuisine. Fig. 6 and Fig.
7 show how hierarchical and flat classification will differ
in the proposed scenario when dealing with cuisine and the
corresponding dishes.

IV. EXPERIMENTAL DETAILS

A Multi-Attribute Food Dataset (MAFood121) with 11
most popular cuisines each containing 11 traditional dishes
is used to train the classifiers. This dataset includes three
different tasks: Dish, Cuisine, and Categories (food groups).
There are a total of 21,175 images, of which 72.5% are used
for training, 12.5% for validation, and 15% for testing. Dish
and Cuisine support a single image-based value, whereas
Categories support multiple label annotations. We performed
data pre-processing which includes data augmentation and
data normalization, details of which are provided in Table
II. Then dataset is split into the train, test, and validation
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Fig. 6. Flat classifier

TABLE II
DATA AUGMENTATION DETAILS

Augmentation Technique Value
Rotation 30

Horizontal Shear 0.2
Vertical Shear 0.2

Zoom 0.2
Horizontal flip Yes

sets. We re-defined the model head and aux-head layers of
VOLO’s pre-trained models before using them for training.
Then, we add the Adam optimizer to accelerate the gradient
descent algorithm and Cross-Entropy-Loss is used to measure
the performance of the classification model. The performance
for VOLO D1 with the least (26.6M) parameters among all
models and VOLO D5 with the highest (296M) of them are
evaluated. Table I shows the parameters of VOLO models.

The relevance of layer activations at various 2-D spatial
locations with respect to the objective task is represented
by attention maps as a scalar matrix. Attention maps for
VOLO D1 model can be seen in Fig.8. Then, its results
were compared with pre-trained CNN models like Efficient-
NetV2, Inception-ResnetV2, and InceptionV3 on the same
MAFood121 dataset. The hierarchical classification structure
was trained on eleven cuisines - American, Japanese, Italian,
Greek, Turkish, Chinese, Mexican, Indian, Thai, Vietnamese,
and French with 11 dishes each in the respective cuisines,
that is a total of 121 unique dishes. There are 13 classifiers
in total 1 for flat classification, 1 for cuisine classification,
and 11 for cuisine-specific dish classification. A learning rate
of 1e-4 was used with a step decay of 0.5 applied after every
10 epochs. The model architecture used for the classifiers is
the same as that used in the flat classification approach. The
hyperparameters used are listed in Table III.

V. RESULTS AND DISCUSSIONS

The quantitative results obtained for the proposed method
are presented in Table IV and Table V. Table V above sum-
marizes the results obtained from evaluating the performance
of various deep learning models on the MAFood-121 dataset.
The models evaluated include EfficientNetV2, InceptionV3,
Inception-ResNetV2, ViT-B-16, and VOLO D1 to D5. The
overall accuracy of each model is reported in percentage, and
the number of parameters for each model is also provided.

The results show that the VOLO D5 model achieved the
highest overall accuracy of 84.71%, followed by VOLO
D4 with an accuracy of 83.60%. Both VOLO D5 and
D4 have significantly higher accuracy than the other mod-

Fig. 7. Hierarchical classifier

TABLE III
HYPERPARAMETERS FOR EXPERIMENT

Parameters Value
Batch size 16

Input Size Centre-crop 224x224
Initial Learning Rate 1e1

Dropout 0.24
Optimizer Adam

els evaluated. The VOLO D3 model also performed well
with an overall accuracy of 82.84%. Among the traditional
CNN models, Inception-ResNetV2 achieved the highest ac-
curacy of 80.16%, while EfficientNetV2 and InceptionV3
achieved 78.52% and 79.91% accuracy, respectively. More-
over, the performance of the proposed hierarchical classi-
fication method is also evaluated and the results are pre-
sented in Table IV. From the results mentioned in Table IV,
it is observed that the proposed approach with a cuisine
classifier achieved an accuracy of 84.63%, outperforming
the flat classifier that achieved an accuracy of 82.95% for
VOLO D5 backbone. Furthermore, it is also observed that
the proposed approach with a dish classifier achieved the
highest accuracy of 89.96%, highlighting the importance of
hierarchical classification for food classification tasks.

The capacity of ViTs to efficiently capture long-range de-
pendencies between picture components is one of the factors
contributing to their high performance. ViTs, in contrast to
traditional CNNs, process the entire image using the self-
attention method, enabling them to gather global context
data and dependencies between various parts of the image.
Overall, the findings show that the suggested approach
using VOLO models for hierarchical food categorization
outperforms conventional CNN models, attaining excellent

TABLE IV
MODELS TRAINED FOR HIERARCHICAL APPROACH DETAILS

Classifier Backbone Accuracy (%)
Flat classifier VOLOD1 80.16

Cuisine classifier VOLOD1 82.59
Dish classifier VOLOD1 87.80
Flat classifier VOLOD5 82.95

Cuisine classifier VOLOD5 84.63
Dish classifier VOLOD5 89.96
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Fig. 8. Attention maps for food images (few samples) in MAFood121

TABLE V
PERFORMANCE COMPARISON OF VARIOUS MODELS ON MAFOOD121

DATASET

Model Architecture Parameters count Overall Accuracy (%)
EfficientNetV2 24 78.52

InceptionV3 22 79.91
Inception-ResNetV2 54 80.16

ViT – B -16 86 78.9
VOLO D1 27 81.16
VOLO D2 59 82.03
VOLO D3 86 82.84
VOLO D4 193 83.60
VOLO D5 296 84.71

accuracy even on a difficult dataset with a variety of food
items. The potential of ViT in food image classification is
shown by these results, which are encouraging.

VI. CONCLUSION

In contrast to convolutional neural networks (CNNs) hav-
ing limitations when it comes to a variety of food items,
variation in image appearance, overfitting, and capturing
long-distance connections, this paper has explored the use
of vision transformers (ViTs) for hierarchical food classifi-
cation. VOLO, a modern vision transformer that enhances
learning by embedding fine-level information into token
representations, was used in the proposed study. The new
outlook attention mechanism, which dynamically combines
fine-level features in a dense manner, is what gives VOLO
its performance advantage. The proposed method of using

hierarchical classifiers successfully addressed the limitations
of traditional flat classifiers, resulting in a general improve-
ment in prediction accuracy. The proposed study does have
some limitations, though. The hierarchical approach has
issues with error propagation that needs to be addressed with
uncertainty estimation techniques. Future studies could build
on this by integrating a broader, more varied dataset because
the dataset utilized was restricted to a specific number of
foods and cuisines.
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