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Abstract—Real time power quality monitoring is important to
ensure stable functioning of the electrical appliances especially
for the manufacturing sector. Deep-WT-ConvT is proposed to
to better characterise and differentiate the minor differences
between different types of power quality disturbances. However,
the use of deep networks requires longer training time, and
poses the risk of getting internal covariant shift issues due to
distribution change in layer’s input during training phase. This
issue can be prevented by proper parameter initialisation and
with lower learning rate, which slows down the training process.
Batch normalisation (BN) layers are proposed to improve the
classification performance of the PQD classifier network WT-
ConvT. Results shows significant improvement on Deep-WT-
ConvT model with accuracy improvement from 92.95% without
BN layers to 94.44% with BN layers on 20dB SNR AWGN noise
test.

Index Terms—Power Quality Disturbances, Classification,
Transformer network

I. INTRODUCTION

Advanced in power generation technologies and increas-
ingly sophisticated electrical appliances demands for sta-
ble quality of power supplies. Continuous power quality
monitoring is required to alert on the abnormalities or
power quality disturbances (PQD) occurred. Immediate and
accurate mitigation actions must be carried out to protect
the electrical appliances and minimize the downtime losses.
Real-time classification of PQDs has thus became a critical
challenge in this field of study [1]. The ability to identify and
classify PQDs occurred allows locating the faults in terms of
time, location, and narrowing the possible causes of the faults
occurred.

Detection and classification of PQDs are performed manu-
ally by studying the historical power data. The advancement
and evolution of the computing technologies improve the
efficiency of the detecting mechanism with knowledge based
methods. Statistical parameters such as RMS, minimum,
maximum, average, and deviation are used as the statistical
features for classification process. However, in order to
extract useful statistical parameters, complex signal trans-
formations are required. Extensive studies have been made
on knowledge based methods in order to improve its per-
formance in terms on classification accuracy and improving
effectiveness of computing resources [2]–[10].

The introduction of artificial intelligence, especially in the
field of machine learning and deep learning algorithms play
a significant role in today’s power system applications [11].

Model-based methods are proposed for automatic feature
extraction and classification of PQD [12]–[14]. Different
from knowledge-based method, feature extraction and clas-
sification process are performed in a closed-loop feedback
system, which removes the need of manually selecting
prominent statistical features to improve the classification
performance [15]. Model-based methods with its automatic
feature selections are further innovated with hybrid methods
which combines signal transformation and neural networks
[16]–[18].

The use of multiple layers of neural networks (or deep
learning) allows automatic representations learning which
produces discriminant features for the classification process
[19]. However, the training of the network becomes a chal-
lenge as the designed network increases its depth. This is
caused by the changes in distribution of the input of each
layer during training. A lower learning rate and careful
initialization of parameters is thus required. Batch normal-
ization (BN) solves the saturating non-linearities or internal
covariance shift issue by fixing the mean and variances of
layer inputs [20].

In this paper, a deep wavelet-based convolutional trans-
former network (Deep-WT-ConvT) is proposed as depicted
in Fig. 1. This model is an enhanced version of the wavelet
based convolutional transformer network (WT-ConvT) [16].
The effects of adding BN layer are analysed on different
depth of the network. The main evaluation technique used in
this research are classification performance of the network
tested with 20-50dB signal-to-noise (SNR) ratio of additive
white Gaussian noise (AWGN).

II. DEEP WAVELET-BASED CONVOLUTIONAL
TRANSFORMER NETWORK ENCHANCED WITH BATCH

NORMALISATION LAYERS

A deeper network architecture is proposed to analyse the
needs of multiple layers of abstraction for the classification
of PQD. In this study, a deeper temporal-aligned layer with 2
layers of perceptrons is used. The classification performance
of the Deep-WT-ConvT and WT-ConvT [16] are compared
in terms of classification performance. This study also covers
the effect of using BN layers in both models. The compo-
nents of the proposed model are described in the following
subsections.
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Fig. 1. Proposed deep wavelet-based convolutional transformer network with batch normalization layer (Deep-WT-ConvT).

Fig. 2. Deep Temporal aligned layer.

A. Deep Wavelet-based Convolutional Transformer Network

A multi-layered temporal aligned layered is proposed in
Deep-WT-ConvT to increase the depth of the WT-ConvT
model as shown in Fig. 2. A multi-layered dense kernel is
used, i.e. higher abstract level of representation, which allows
learning of increased complexity functions [19].

B. Batch Normalization Layer

Deeper networks however can face issues such as over-
fitting and internal covariance shift. BN layers are thus
introduced to reduce the unwanted internal covariance shift,
reduce vanishing or exploding gradients, and regularize the
network for better generalization [20]. Two BN layers are
proposed as shown in Fig. 1. BN with d-dimensional input,
x = (x(1), x(2), ..., x(d)) can be described as

x̂
(k)
i =

x
(k)
i − µ

(k)
B√

(σ
(k)
B )2 + ϵ

, (1)

where m is the total size of the training set, B represent the
mini batch size. k ∈ [1, d], i ∈ [1,m], µ

(k)
B and σ

(k)
B are

mean and standard deviation respectively. A small constant,
ϵ is added mainly for numerical stability. The output of BN
layer is depicted as

y
(k)
i = γ(k)x̂

(k)
i + β(k), (2)

where γ(k) and β(k) are trainable scaling and shifting pa-
rameters respectively.

III. EXPERIMENT SETUP

In this research, all the models are trained using AMD
Ryzen 7 3800X 8-Core Processor with Nvidia P6000 graphic
processing unit. Pytorch framework has been used for the

experiments. This experiment is carried out by comparing
the proposed Deep-WT-ConvT network with WT-ConvT net-
work [16]. The classification performance of the network is
validated with 20-50dB SNR AWGN. Classification accuracy
is used as the main evaluation matrix. The classification
accuracy of individual class Accn is the true positive, TPn

over the total test samples for m classes of PQD, Sj as,

Accn =
TPn∑m
j=0 Sj

. (3)

This experiment has been carried out on the dataset with
16 classes of 10-periods 3200Hz sampled PQDs as listed
in Table I. A total of 76.8k samples have been generated
using mathematical model [7]. The PQD samples generated
include 16 classes of 10-periods PQD. The model used in
this experiment is shown in Fig. 1. The experiment started
with classification performance analysis on proposed Deep-
WT-ConvT, and followed by analysis on BN layers.

IV. CLASSIFICATION PERFORMANCE ANALYSIS ON
DEEP-WT-CONVT

Deep temporal aligned layer is introduced to increase
the depth of abstraction to the feature representations. The
process is done by having multiple layers of dense kernel
during the feature conversion stage. A total of two layers of
dense kernels are introduced in Deep-WT-ConvT model, and
the results are recorded in Table II. It can be noticed that the
classification performance of Deep-WT-ConvT is however
degraded especially on high noise 20dB SNR AWGN test
which drops from 94.03% on WT-ConvT [16] to 92.95%.
The decrease in classification performance can be explained
with increased parameters require more training steps for
generalization.

The introduction of BN layers help regularize the net-
work with normalised parameters which promotes feature
learning for better generalization. The results of Deep-WT-
ConvT model trained with added BN layers are tabulated in
Table III. Result shows that both models improved across

TABLE I
CLASS OF POWER QUALITY DISTURBANCES.

Label Class Description Label Class Description
P0 Normal P8 Notch
P1 Sag P9 Flicker
P2 Swell P10 Sag+Harmonics
P3 Interrupt P11 Swell+Harmonics
P4 Impulse Transient P12 Interrupt+Harmonics
P5 Spike P13 Flicker+Harmonics
P6 Harmonics P14 Flicker+Sag
P7 Oscillatory Transient P15 Flicker+Swell
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Fig. 3. Confusion matrix for Deep-WT-ConvT at 20dB SNR AWGN test (a) without BN layer and (b) with BN layer.

all noise levels when BN layers are used. The improvement
is especially significant on 20dB SNR AWGN test with
improvement from 92.95% to 94.42%. This result shows BN
layers are important especially on multi-layered networks.

In Fig. 3, it is noticed that the decrease in classifica-
tion performance in Deep-WT-ConvT model without BN

layers is mainly caused by class P8-Notch, P9-Flicker, and
P10-Sag+Harmonics. P8 is having 7.4% wrongly classified
samples as P14-Flicker+Sag, and 6.3% classified as P15-
Swell+Flicker. This involves confusion across different fre-
quency domain, where class P8, a fast transient disturbance
is having confusion with slow disturbance classes, class P14-
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TABLE II
DEEP-WT-CONVT.

Class
SNR 20dB 30dB 40dB 50dB noiseless

P0 76.00 91.50 98.10 98.80 97.56
P1 91.40 95.40 95.90 95.00 95.70
P2 97.70 99.20 99.70 99.50 99.70
P3 98.10 98.30 98.30 98.80 99.30
P4 99.80 100.0 100.0 100.0 100.0
P5 97.70 98.80 98.50 97.70 98.50
P6 100.0 100.0 100.0 100.0 100.0
P7 95.60 96.60 97.30 96.90 96.10
P8 85.20 100.0 100.0 100.0 100.0
P9 87.30 97.30 99.90 99.70 99.80

P10 79.10 88.60 90.40 91.30 93.69
P11 94.60 97.60 98.20 97.20 100.0
P12 94.20 97.00 96.80 97.40 100.0
P13 97.40 100.0 100.0 100.0 100.0
P14 95.10 98.70 99.00 98.50 98.60
P15 98.00 99.50 99.30 99.90 99.80
Acc 92.95 97.41 98.21 98.17 98.67

TABLE III
DEEP-WT-CONVT WITH BN LAYERS.

Class
SNR 20dB 30dB 40dB 50dB noiseless

P0 74.40 89.90 98.00 98.20 98.59
P1 96.80 98.70 98.20 97.20 98.80
P2 96.10 98.50 99.00 98.80 99.30
P3 99.10 99.50 99.70 99.30 99.80
P4 100.0 100.0 100.0 100.0 100.0
P5 97.60 99.10 98.10 97.90 98.80
P6 99.70 99.90 100.00 99.90 99.90
P7 99.20 99.50 99.80 99.60 99.70
P8 96.20 100.0 100.0 100.0 100.0
P9 82.80 97.20 99.80 100.0 99.90
P10 84.00 90.70 90.50 88.90 91.14
P11 94.00 97.50 98.20 97.20 100.0
P12 95.30 97.00 96.80 97.40 100.0
P13 100.0 100.0 100.0 100.0 100.0
P14 98.00 98.60 98.60 98.70 98.00
P15 97.80 98.30 97.40 97.90 97.70
Acc 94.44 97.78 98.38 98.19 98.86

Sag+Flicker and P15-Swell+Flicker. On the other hand, it is
noticed that Class P9 is having 7.2% confusion as P10, and
P10 having 15% mutual confusion as class P0-Normal. These
confusion are all based on slow disturbance domain. This can
be caused by low magnitude disturbance which gives slight
magnitude changes between disturbance classes. Added BN
layers shows major improvement, where confusion on fast
disturbance domain are removed. The main cause of the
confusion are from class P9 and P10, were P9 is having 12%
confusion as P10, and P10 having 7% confusion as P0, and
P0 having 17% confusion as P10. These can be explained
with low magnitude difference between these classes.

TABLE IV
MODEL ACCURACY AND COMPLEXITY COMPARISONS.

Model 20dB 30dB 40dB 50dB Noiseless Accave
Deep LSTM [21] 88.48 96.64 97.83 98.16 98.54 95.93
Deep CNN [15] 90.56 97.69 98.97 99.01 99.57 97.16
WT-ConvT [16] 94.03 97.14 97.98 98.31 98.67 97.226
Deep-WT-ConvT 94.44 97.78 98.38 98.19 98.86 97.53

A comparison to literature studies is performed as shown
in Table IV. Result shows our proposed Deep-WT-ConvT

model achieved highest average classification accuracy of
97.53%. The proposed model also shows highest noise
immunity with 94.44% accuracy on high noise 20dB SNR
test condition.

V. CONCLUSION

Deeper network architectures are having advantages in
extracting non-linear characteristics and thus allowing ex-
traction of distinct features from the input signals. In this
paper, Deep-WT-ConvT is proposed by using multiple layers
of perceptron in the temporal-aligned layer. Deep temporal
aligned layer is proposed as deeper network allows better
feature discrimination and suppress less relevant features.
However, the classification performance of Deep-WT-ConvT
shows slight reduction compared to WT-ConvT, which is
from 94.03% to 92.95% when tested under high noise 20dB
SNR AWGN condition. This drop in classification perfor-
mance may indicate the need of longer training period with
the increased size of network. This issue has been resolved
with the introduction of batch normalisation layers within
the network. This modification results in the best model
with highest average classification accuracy of 97.53%.
The classification accuracy on 20dB SNR AWGN test also
shows drastic improvement from 92.95% to 94.44%. The
introduction of BN normalised the inputs and stabilised the
distribution of activation values throughout training process.
Besides from requiring longer training time, deeper networks
also poses increased number of parameters. In the future
work, a deeper network architecture , and a more efficient
network connection can be studied.
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