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Abstract—Inertial Measurement Unit (IMU) has been 

widely recognized to be the practical alternative to capture and 

analyze human gait. However, due to its inherent 

characteristics, it can only measure the basic kinematics of the 

body segment it attached to.  With the help of the machine 

learning, IMU can be used to determine the dynamic behavior 

of the major lower extremity muscle. This paper explores the 

use of feature-extracted IMU data and a neural network to 

estimate muscle activity during walking. IMU and 

Electromyogram (EMG) data were collected from fifty-eight 

healthy participants. Principal Component Analysis (PCA) and 

Tsfresh (Time Series FeatuRe Extraction on basis of Scalable 

Hypothesis tests) were applied to extract the relevant features 

from the data. These features were then used to train the 

Feedforward Neural Network (FNN). A combination of Tsfresh 

and FNN yielded the best results with correlation coefficient (r) 

of 95.73% and Root Mean Square Error (RMSE) of 11.20%. 

This research can potentially help reduce the number of 

sensors needed in gait analysis, allow for portable motion 

capture, and improve the accuracy and efficiency of the FNN 

model in estimating muscle activity.  

Keywords—Inertial Measurement Unit (IMU), 

Electromyogram (EMG), Feedforward Neural Network (FNN), 

Principal Component Analysis (PCA), Time Series FeatuRe 

Extraction on basis of Scalable Hypothesis tests (Tsfresh).  

I. INTRODUCTION  

The application of wearable sensors, such as Inertial 
Measurement Unit (IMU) has gained significant traction in 
the human movement analysis. This sensor provides critical 
information about the body motion in various activities, 
including walking. Typical walking gait analysis involves the 
use of optical motion capture system, force plate and 
Electromyogram (EMG). However, these systems are bulky 
and require elaborate setup. Thus, performing gait analysis 
outside of the clinical or laboratory setting is difficult.  

The capacity to perform gait analysis beyond the confine 
of a controlled environment presents an opportunity to gather 
real-world data. This advantage holds great significance, 
particularly in monitoring patients with mobility impairment 
in their activities of daily living and in the comfort and 

familiarity of their own homes. The main characteristics of 
the IMU, which are light and inexpensive, and can be easily 
attached to various part of human body, offer a practical 
alternative to the conventional measurement techniques. It 
can help make gait analysis more accessible and open up 
novel applications and research, some of which can be seen 
in [1, 2]. 

With the right signal processing technique and machine 
learning, IMU has been reported to be able to extract various 
gait parameters and joint kinetics and kinematics [3, 4]. 
However, there is a lack of literature on predicting muscle 
activity using IMU and neural network. In the previous study 
[5], we attempted to estimate the EMG signal using a 
Feedforward Neural Network (FNN) and Long-Short Term 
Memory (LSTM) along with IMU data from an online open-
access dataset. Other studies proposed the use of 
musculoskeletal modelling [6] and Feedforward nonlinear 
autoregressive model with exogenous (NARX) [7] to 
determine muscle behavior using joint kinetics and 
kinematics data obtained from motion capture system. 

Principal Component Analysis (PCA) is commonly used 
in gait analysis to eliminate redundant information and to 
help understand multiple gait signals [8, 9]. PCA is a 
dimensionality reduction technique that projects data into a 
lower-dimensional linear subspace [10, 11]. It does this by 
finding the linear basis that captures the maximum variance 
in the data. Due to it being lightweight and an unsupervised 
algorithm (not needing a target to extract features), it is an 
ideal tool for real-time analysis and interpretation of gait 
data. It allows for quick and efficient assessment of gait 
performance in clinical settings. One of the clinical 
applications of this method includes using six dimensions 
IMU data and PCA to give cyclograms that clinicians can 
use to assess gait performance [12]. The study reported in 
[13] used trunk IMU and PCA to identify the limb affected 
by stroke.  

The other feature extraction method worth exploring is 
the supervised feature extraction method called Tsfresh 
(Time Series FeatuRe Extraction on basis of Scalable 
Hypothesis tests) [14]. This method calculates a large 
number of time series features and helps evaluate the 
explaining power and importance of the features for 
regression or classification tasks. Tsfresh on IMU and EMG 
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data along with Random Forest (RF) regressor were used to 
estimate joint kinetics and kinematics and muscle force [15]. 
Studies reported in [16, 17] demonstrated the combination of 
mobile phone accelerometer, Tsfresh and neural network to 
classify different activities such as walking, running, sitting, 
jumping and more. Another study applied Tsfresh to extract 
features from pelvis IMU data and identified abnormal gait 
using decision-tree-based learning algorithms [18]. 

 This paper aims to investigate the effects of different 
feature extraction techniques i.e. PCA and Tsfresh on FNN 
in estimating lower extremity muscle activity in gait. PCA is 
selected because it is a lightweight and unsupervised 
algorithm that can extract features quickly without the 
intended target. On the contrary, Tsfresh is a comprehensive 
supervised feature extraction method. It is believed a 
combination of feature extraction and FNN can yield good 
estimation results, which can potentially improve the 
accuracy and efficiency of gait analysis and provide valuable 
insights into the relationship between gait IMU data and 
EMG data. In addition, this method can reduce the number of 
devices attached to lower extremity, making it more 
convenient for gait analysis. By using only IMU, gait 
analysis can be performed anywhere outside of the traditional 
laboratory, providing flexibility and opportunity to study gait 
in real-world settings. 

II. METHODS 

A. Data Collection 

The gait data used in this study is collected from fifty-
eight healthy adults (26 males, 19-73 years old, 64.34 ± 
19.51 kg, 160.29 ± 17.7 cm). The participant selection 
criteria were adults over 18 years old, without any lower 
limb injury to the lower limb in the past six months and able 
to walk comfortably and without altered gait. The process 
was carefully explained to the participants, and each 
participant was asked to sign an informed consent. The study 
was approved by the Monash University Human Research 
Ethics Committee (Project number: 32328). 

First, eight sensors (six Delsys Trigno and two Delsys 
Duo, Massachusetts, USA), which provided eight channels 
of both IMU and EMG data, were attached to the 
participants. The EMG from Delsys Trigno and DUO were 
sampled at 1,259 Hz and 1,778 Hz, respectively. As for the 
IMU, they were sampled at 148 Hz by Delsys Trigno sensor 
and 963 Hz by the accelerometer and 741 Hz by the 
gyroscope in the Delsys Duo sensor. The sampling 
frequencies are predetermined and fixed with no means of 
altering or adjusting these frequencies. The EMG electrodes 
were used to record the muscle activity of Tibialis Anterior, 
Gastrocnemius Medialis, Gastrocnemius Lateralis, Rectus 
Femoris, Vastus Lateralis, Vastus Medialis, Semitendinosus 
and Bicep Femoris. The selection of these particular muscles 
is based on their prevalence in existing literature, suitability 
for surface EMG, and they cover major segments of the 
lower extremity used in gait. The sensors were attached 
according to SENIAM standards [19]. Of the eight available 
sensors of IMU, only four sensors that were attached to foot, 
Tibialis Anterior, Rectus Femoris and trunk, were used in 
this work. Each IMU has six channels: three axes 
acceleration and three axes angular velocity. This results in a 
total of 24 channels. The sensor placement and its sensing 
axes are shown in Fig. 1.  

The participants were asked to walk for five trials at three 
different speeds (slow, normal, and fast) on the platform with 
three force plates (Bertec, Ohio, USA) sampled at 1,000 Hz 
as shown in Fig. 2. In each trial, the participants would start 
walking from one end to the other end, then turn around and 
walk back to the other end while stepping on one force plate 
at a time. A total 1,740 gaits were collected. 

 

 

Fig. 1. Sensor positions 

 

Fig. 2. The walkway for participants to walk on 

B. Data processing 

The vertical ground reaction force exerted by the foot 
during walking was used to identify the heel-strike and to 
segment the gait. Each gait cycle was visually inspected, and 
only those with dominant leg heel strikes on the first force 
plate were selected. This resulted in a total of 848 gaits. The 
force plate data were then filtered using a Butterworth 
lowpass filter with cut-off frequency of 10 Hz. The time of 
heel strike was determined by selecting a threshold of 10 N, 
as suggested in [20].  

The EMG and IMU data from Delsys Duo were down 
sampled to 1259 Hz and 148 Hz, respectively. The data were 
then segmented per gait cycle using the timing of heel strike 
recorded by Force Plate 1 and Force Plate 3. Next, the 
segmented EMG data were filtered using a Butterworth band 
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pass filter (4th order, 20 Hz, 400 Hz) to reduce noise. The 
filtered data were then rectified and passed through a 
Butterworth lowpass filter (4th order, 4 Hz) to get the 
enveloped EMG data. The data were time-normalized to 101 
data points, representing the percentage of the gait cycle. 
They were then filtered using a median filter to reduce the 
impulse noise, and min-max normalized to values ranging 
between 0 and 1. Similar to the EMG, the IMU data were 
time-normalized to 101 data points. A median filter was 
applied, followed by min-max normalization. 

Three subjects from different age groups (19-29, 30-49, 
50-73 years old) were randomly selected to be used as 
unseen test data. These data have 44 gait cycles. Afterwards, 
the remaining data were divided into 3 datasets (training, 
validation, and testing) with a ratio of 80:15:5. This means 
that the dataset was made up of 642 gaits training data, 120 
gaits validation data, 41 gaits testing data and 44 gaits unseen 
test data. 

C. Feature Extraction 

PCA is a technique that simplifies a dataset by reducing 
the number of variables while retaining as much statistical 
information as possible. This is achieved by finding new 
variables called Principal Components (PCs) through solving 
an eigenvalue or eigenvector problem [21]. First, the mean of 

input along variable j (Xj̅) was calculated, where j is the IMU 

channel. Then the difference between the input (Xij) and the 

mean was calculated to obtain the centered variable (Xij
*) as 

shown in (1), where i is along the time. Next, covariance 
matrix (S) was calculated using (2) where X* was the center 
variable and X*’ was the transpose of the centered variable 
(X*). The covariance matrix (S) obtained can be used to find 
a set of eigenvalues (λ) and eigenvectors (a) by solving (3). 
This leads to a set of eigenvectors and eigenvalues of the 
covariance matrix, with the largest eigenvalue representing 
the linear combination with the highest variance. The 
eigenvectors were sorted based on their corresponding 
eigenvalues in descending order and PC loading (ak) was 
obtained by selecting the k number of sorted eigenvectors. 
Finally, principal components (Y) can be calculated using (4) 
to obtain a new dataset with k number of components. The 
representation or cumulative variance was calculated by 
summating all the explained variance ratios. This ratio 
represents how much variation in the data was captured by 
each component [22].  

Xij
*=Xij − Xj̅ (1) 

(n-1)S=X*'X* (2) 

Sa=λa (3) 

Y=X*ak (4) 

PCA was applied to each gait dataset that has a shape of 
101 datapoints × 24 channels. It was found that the first 13 
out of 24 components can represent 99% of the data. This 
results in data with an output shape of 101 data points × 13 
features.  

Tsfresh was applied to the same dataset to extract 
statistically significant features from the measurements 
collected by IMU. Tsfresh combines 63 time series 
characterization methods (such  as median, maximum, 
minimum, absolute energy and Fast Fourier Transform 
(FFT)) to compute 783 features from each IMU channel in 

its default setting [14]. This means that 24 channels produced 
18,792 features. Tsfresh also contains a feature selection 
method based on automatically configured hypothesis tests 
that allow for identifying statistically significant time series 
characteristics. By providing this feature selection method 
with extracted features and the required target (EMG), it 
identified 244 relevant features that are statistically 
significant. Afterwards, these features were ranked according 
to their importance to each target using Random Forest (RF) 
regressor. Random forest combines multiple decision trees 
and trains each tree with different features. It computes the 
feature importance of each feature by accumulating the error 
reduction contributed by each variable during the fitting 
process [23]. The top 20 most important features for each 
target were selected, and repeating features were removed to 
avoid redundancy. This resulted in 74 features, which were 
used to train and test the neural network. 

D. Neural Network 

Feedforward Neural Network (FNN) model was 
constructed in this study. The model consists of one input 
layer, one output layer and four hidden (dense fully 
connected) layers. Each hidden layer has 256 neurons and a 
dropout layer between each hidden layer. The desired output 
is a 1D array of normalized EMG data for each individual 
muscle. Three models are trained for each type of input: (1) 
Raw cascaded normalized 3D IMU data; (2) PCA features 
and (3) Tsfresh features. This is summarized in Fig. 3. 

 

Fig. 3. Neural network architecture with 3 input shapes 

III. RESULTS 

The average of Root Mean Squared Error (RMSE) and 
correlation coefficient (r) of each muscle are presented in 
Table 1. Tsfresh produced the best results when using the test 
datasets. Tsfresh has RMSE less than 15% and r greater than 
90%. Although PCA performed worse than Tsfresh, the 
results are still encouraging. It has RMSE lower than 20% 
and r higher than 80%. In the case of Gastrocnemius 
Medialis and Lateralis, RMSE is less than 15% and r greater 
than 90%. Using raw data as input gives better results than 
PCA. The RMSE was found to be lower than 15% and r was 
greater than 90% for all the investigated muscles. The only 
exception is the tibialis anterior, which has RMSE greater 
than 14% and r less than 90%. Fig. 4 shows a sample of the 
EMG waveform of two best (Gastrocnemius Medialis and 
Lateralis) and two worst estimations (Semitendinosus and 
Biceps Femoris).  
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Next, the unseen subjects' data were used to estimate 
muscle activities and the results are shown in Table 2. 
Tsfresh and raw data have similar results, with three of the 
muscles (Gastrocnemius Medialis, Lateralis, and Vastus 
Lateralis) having RMSE less than 15% and r greater than 
90%. They performed poorly in estimating the muscle 
behavior of Vastus Medialis, Semitendinosus and Bicep 
Femoris. The RMSE are greater than 20% and r are lower 
than 75%. Similar to test dataset results, PCA performed the 
worst as most results have RMSE above 20% and r below 
75%. Only 2 muscles (Gastrocnemius Medialis and 
Gastrocnemius Lateralis) have RMSE below 20% and r over 
75%. A sample of the estimated muscle activities of 
Gastrocnemius Medialis, Gastrocnemius Lateralis, 
Semitendinosus and Biceps Femoris are presented in Fig. 5.  

TABLE I.  ACTUAL AND PREDICTED MUSCLE ACTIVITIES COMPARISON 

FOR TEST DATA 

 Tsfresh+FNN PCA+FNN Raw+FNN 

 RMSE 

(%) 

r 

(%) 

RMSE 

(%) 

r 

(%) 

RMSE 

(%) 

r 

(%) 

Tibialis 
Anterior 

13.56 89.11 16.80 82.50 14.94 86.47 

Gastrocnemius 
Medialis 

7.36 97.54 12.02 93.26 9.81 95.75 

Gastrocnemius 

Lateralis 
7.41 97.39 13.15 91.25 9.36 95.73 

Rectus Femoris 9.12 96.11 14.74 87.75 9.70 94.89 

Vastus 

Lateralis 
8.01 96.90 15.23 87.54 9.84 95.01 

Vastus 

Medialis 
9.52 95.38 15.79 86.21 10.97 93.56 

Semitendinosus 11.00 92.72 17.16 81.32 12.82 89.96 

Bicep Femoris 11.65 91.74 17.23 81.42 12.27 90.71 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. A sample of actual and predicted muscle activities for (a) 

Gastrocnemius Medialis (b) Gastrocnemius Lateralis (c) Semitendinosus 

(d) Bicep Femoris from testing dataset. 

TABLE II.  ACTUAL AND PREDICTED MUSCLE ACTIVITIES COMPARISON 

FOR UNSEEN DATA 

 Tsfresh+FNN PCA+FNN Raw+FNN 

 RMSE 
(%) 

r 
(%) 

RMSE 
(%) 

r 
(%) 

RMSE 
(%) 

r 
(%) 

Tibialis 

Anterior 
18.45 79.50 21.05 72.23 18.23 80.07 

Gastrocnemius 
Medialis 

11.20 95.73 17.48 89.11 13.65 92.98 

Gastrocnemius 

Lateralis 
12.11 93.76 18.22 86.77 13.11 93.10 

Rectus Femoris 14.35 89.40 23.18 68.59 14.98 88.65 

Vastus 

Lateralis 
12.26 92.26 21.35 74.08 12.26 92.23 

Vastus 
Medialis 

21.66 73.90 23.83 66.91 21.30 75.02 

Semitendinosus 25.68 63.64 25.98 61.34 26.11 62.94 

Bicep Femoris 24.20 63.62 25.37 56.04 24.49 62.13 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. A sample of actual and predicted muscle activities for (a) 
Gastrocnemius Medialis (b) Gastrocnemius Lateralis (c) Semitendinosus 

(d) Bicep Femoris from unseen subject (age: 68 years old) data. 

IV. DISCUSSION 

Based on the results obtained from the unseen data, it is 
evident that most of the results from Tsfresh and raw data 
models have r above 80% and RMSE below 20%. A r value 
greater than 80% signifies a strong positive relationship 
between the actual and predicted values, indicating the 
model’s ability to capture the overall trend in the data and 
provide a reasonable estimation of the target variable based 
on the input features. RMSE value below 20% denotes that, 
on average, the predicted values deviate from the actual 
values by less than 20% of the range of the target variable. 
This suggests that the model’s prediction is relatively close 
to the true values and have low errors on unseen data. These 
results indicate that the model could be applicable in real-
world scenarios, where accurate predictions are essential. All 
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three methods performed well when the test data were used. 
However, PCA results were significantly affected when 
unseen data were used. PCA is an unsupervised feature 
extraction method, meaning it does not need any target data. 
This implies that the features extracted using this method 
might not be optimal. Another limitation of the PCA is that 
the underlying structure of the data must be linear, so it may 
not adequately capture the nonlinear patterns present in time 
series data. As time series data is sequential in nature and 
PCA treats all datapoints as independent [24], it may not 
capture the important temporal patterns. In addition, if there 
are multiple patterns in the data that are closely related to 
each other, PCA may not be able to distinguish them [22]. 

Using Tsfresh data with FNN is better than just using raw 
input. Although the features improved the estimation results, 
the process is computationally costly. A good processing unit 
is preferred to perform multiple statistical calculation. In this 
study, the process took about seven seconds for each gait 
when it was run on a machine with one Intel Xeon Gold 
6338 core and 32 GB of RAM. Even though the time could 
be reduced by only calculating the required parameters, it 
would not be suitable for real time processing.  

Several methods can be considered to overcome these 
limitations. One of them is to use an LSTM model in place of 
the FNN. As previously shown [5], LSTM performs much 
better than FNN for this task due to its ability to retain 
information for a long period of time. Another model that 
could be explored is CNN-LSTM [25]. In this model, CNN 
layers can act as feature extraction layer, and LSTM can be 
used to predict the muscle activity. In addition to using 
different machine learning architectures, the frequency-
domain of the IMU data could be considered because the 
majority of features that Tsfresh provided have Fast-Fourier 
transformed data. Although Tsfresh is not suitable for real-
time use, it has provided important attributes, such as FFT, 
that can be calculated without relying on this algorithm. 

In a normal gait, some muscles such as Vastus Medialis, 
Vastus Lateralis, Biceps Femoris and Semitendinosus 
activate between terminal swing and opposite toe-off phase 
of the gait cycle [26]. Since the data were segmented using 
heel-strikes, these muscle activities occurred between two 
consecutive gait cycles – at the beginning and at the end of 
the gait cycle. This creates a rather odd and segmented 
waveform in every gait cycle as can be seen in Fig 4(c) and 
Fig. 4(d). Hence, the segmentation method might not be 
appropriate for these muscles, thus led to lower estimation 
results. Training the machine learning models using data 
segmented with both heel-strike and toe-off could potentially 
enhance their performance. 

The experimental results (Fig. 5c and Fig. 5d) indicate 
that some elderlies activated their hamstring muscles i.e. 
Semitendinosus and Biceps Femoris twice during the stance 
phase. This behavior generated an additional peak muscle 
activity. This peak is typically absent in young adults, and it 
is not considered to be a part of the normal gait [26]. 
Nevertheless, similar observations were found and reported 
in [27]. It was speculated that these activities might be 
attributed to the stiffening of the knee joint, serving as a 
mechanism to enhance stability in the elderly. 

 

V. CONCLUSION 

This paper investigates the impacts of two distinct feature 
extraction methods i.e. PCA and Tsfresh on the prediction of 
muscle activity using FNN and IMU data. In overall, Tsfresh 
performed better than PCA. This is reasonable considering 
that PCA is an unsupervised method. On the other hand, 
Tsfresh, while not leading to a significant improvement in 
the model accuracy, proved to be valuable in identifying 
essential features that could be utilized in future research. 
The findings further indicate that the performance of the two 
hamstring muscles was comparatively suboptimal, 
potentially influenced by the variations in muscle activities 
between elderly and younger adults, which may also 
contribute to differences in stability. Future potential 
investigations could delve into alternative neural network 
architectures, such as LSTM, or explore alternative feature 
extraction methods. These endeavors could offer valuable 
insights and contribute to the advancement of the research 
domain. 

REFERENCES 

[1] L. C. Benson, A. M. Räisänen, C. A. Clermont, and R. Ferber, "Is 

This the Real Life, or Is This Just Laboratory? A Scoping Review of 
IMU-Based Running Gait Analysis," Sensors, vol. 22, no. 5, p. 1722, 

2022. [Online]. Available: https://www.mdpi.com/1424-

8220/22/5/1722. 
[2] C. Monoli, J. F. Fuentez-Pérez, N. Cau, P. Capodaglio, M. Galli, and 

J. A. Tuhtan, "Land and Underwater Gait Analysis Using Wearable 

IMU," IEEE Sensors Journal, vol. 21, no. 9, pp. 11192-11202, 2021, 
doi: 10.1109/JSEN.2021.3061623. 

[3] M. Sharifi Renani, A. M. Eustace, C. A. Myers, and C. W. Clary, 

"The Use of Synthetic IMU Signals in the Training of Deep Learning 
Models Significantly Improves the Accuracy of Joint Kinematic 

Predictions," Sensors, vol. 21, no. 17, p. 5876, 2021. [Online]. 

Available: https://www.mdpi.com/1424-8220/21/17/5876. 
[4] M. Błażkiewicz and A. Wit, "Artificial neural network simulation of 

lower limb joint angles in normal and impaired human gait," Acta of 
bioengineering and biomechanics, vol. 20, no. 3, pp. 43-49, 2018. 

[5] M. Khant, D. Gouwanda, A. A. Gopalai, K. H. Lim, and C. C. Foong, 

"Estimation of Lower Extremity Muscle Activity in Gait Using the 
Wearable Inertial Measurement Units and Neural Network," Sensors, 

vol. 23, no. 1, p. 556, 2023. [Online]. Available: 

https://www.mdpi.com/1424-8220/23/1/556. 
[6] U. Trinler, F. Leboeuf, K. Hollands, R. Jones, and R. Baker, 

"Estimation of muscle activation during different walking speeds with 

two mathematical approaches compared to surface EMG," Gait & 
posture, vol. 64, pp. 266-273, 2018. 

[7] E. V. Zabre-Gonzalez, D. Amieva-Alvarado, and S. A. Beardsley, 

"Prediction of EMG activation profiles from gait kinematics and 
kinetics during multiple terrains," in 2021 43rd Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC), 2021: IEEE, pp. 6326-6329.  
[8] N. F. Troje, "Decomposing biological motion: A framework for 

analysis and synthesis of human gait patterns," Journal of Vision, vol. 

2, no. 5, pp. 2-2, 2002, doi: 10.1167/2.5.2. 
[9] A. Daffertshofer, C. J. C. Lamoth, O. G. Meijer, and P. J. Beek, "PCA 

in studying coordination and variability: a tutorial," Clinical 

Biomechanics, vol. 19, no. 4, pp. 415-428, 2004/05/01/ 2004, doi: 
https://doi.org/10.1016/j.clinbiomech.2004.01.005. 

[10] L. Van Der Maaten, E. Postma, and J. Van den Herik, 

"Dimensionality reduction: a comparative," J Mach Learn Res, vol. 

10, no. 66-71, p. 13, 2009. 

[11] J. Khodr and R. Younes, "Dimensionality reduction on hyperspectral 

images: A comparative review based on artificial datas," in 2011 4th 
International Congress on Image and Signal Processing, 15-17 Oct. 

2011 2011, vol. 4, pp. 1875-1883, doi: 10.1109/CISP.2011.6100531.  

[12] M. Gavrilović and D. B. Popović, "A principal component analysis 
(PCA) based assessment of the gait performance," Biomedical 

Engineering / Biomedizinische Technik, vol. 66, no. 5, pp. 449-457, 

2021, doi: doi:10.1515/bmt-2020-0307. 
[13] J. W. Seo et al., "Principal Characteristics of Affected and Unaffected 

Side Trunk Movement and Gait Event Parameters during Hemiplegic 

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 978



Stroke Gait with IMU Sensor," (in eng), Sensors (Basel), vol. 20, no. 

24, Dec 21 2020, doi: 10.3390/s20247338. 
[14] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, "Time 

Series FeatuRe Extraction on basis of Scalable Hypothesis tests 

(tsfresh – A Python package)," Neurocomputing, vol. 307, pp. 72-77, 
2018/09/13/ 2018, doi: https://doi.org/10.1016/j.neucom.2018.03.067. 

[15] S. M. Moghadam, T. Yeung, and J. Choisne, "A comparison of 

machine learning models’ accuracy in predicting lower-limb joints’ 
kinematics, kinetics, and muscle forces from wearable sensors," 

Scientific Reports, vol. 13, no. 1, p. 5046, 2023/03/28 2023, doi: 

10.1038/s41598-023-31906-z. 
[16] S. Luqian and Z. Yuyuan, "Human Activity Recognition Using Time 

Series Pattern Recognition Model-Based on Tsfresh Features," in 
2021 International Wireless Communications and Mobile Computing 

(IWCMC), 28 June-2 July 2021 2021, pp. 1035-1040, doi: 

10.1109/IWCMC51323.2021.9498859.  
[17] N. Kala, T. Bhatia, and N. Aggarwal, "Person Identification and 

Characterization from Gait Using Smartphone," in 2019 11th 

International Conference on Communication Systems & Networks 
(COMSNETS), 7-11 Jan. 2019 2019, pp. 492-495, doi: 

10.1109/COMSNETS.2019.8711131.  

[18] S. Arita, D. Nishiyama, T. Taniguchi, D. Fukui, M. Yamanaka, and 
H. Yamada, "Feature selection to classify lameness using a 

smartphone-based inertial measurement unit," PLOS ONE, vol. 16, 

no. 9, p. e0258067, 2021, doi: 10.1371/journal.pone.0258067. 

[19] SENIAM. "SENIAM recommendations for determination of sensor 

location." http://seniam.org/ (accessed. 

[20] J. J. Banks, W.-R. Chang, X. Xu, and C.-C. Chang, "Using horizontal 
heel displacement to identify heel strike instants in normal gait," Gait 

& Posture, vol. 42, no. 1, pp. 101-103, 2015/06/01/ 2015, doi: 

https://doi.org/10.1016/j.gaitpost.2015.03.015. 
[21] I. T. J. Cadima and Jorge, "Principal component analysis: a review 

and recent developments," (in En), review-article 2016-4-13 2016, 

doi: doi:10.1098/rsta.2015.0202. 
[22] J. Lever, M. Krzywinski, and N. Altman, "Principal component 

analysis," Nature Methods, vol. 14, no. 7, pp. 641-642, 2017/07/01 

2017, doi: 10.1038/nmeth.4346. 
[23] J. Korstanje, "The Random Forest," in Advanced Forecasting with 

Python: With State-of-the-Art-Models Including LSTMs, Facebook’s 

Prophet, and Amazon’s DeepAR. Berkeley, CA: Apress, 2021, pp. 
179-191. 

[24] "Principle component analysis of multivariate time series," in 
Multivariate Time Series Analysis and Applications, 2019, pp. 139-

161. 

[25] Y.-W. Kim, K.-L. Joa, H.-Y. Jeong, and S. Lee, "Wearable IMU-
Based Human Activity Recognition Algorithm for Clinical Balance 

Assessment Using 1D-CNN and GRU Ensemble Model," Sensors 

(Basel, Switzerland), vol. 21, no. 22, p. 7628, 2021, doi: 
10.3390/s21227628. 

[26] J. M. Adams and K. Cerny, Observational Gait Analysis: A Visual 

Guide. Thorofare: Thorofare: SLACK, Incorporated, 2018. 
[27] A. Schmitz, A. Silder, B. Heiderscheit, J. Mahoney, and D. G. Thelen, 

"Differences in lower-extremity muscular activation during walking 

between healthy older and young adults," Journal of 

Electromyography and Kinesiology, vol. 19, no. 6, pp. 1085-1091, 

2009/12/01/ 2009, doi: https://doi.org/10.1016/j.jelekin.2008.10.008. 

 

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 979


