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Abstract—Weightlifting is a demanding sport requiring
power, flexibility, and the correct technique. The snatch and the
clean and jerk involve the fast lifting of weight to an overhead
position. Incorrect technique or posture may lead to inefficient
lifts or even injury. This paper presents a new framework
for biomechanics analysis and barbell trajectory tracking in
weightlifting by leveraging the capabilities of Keypoint-RCNN
and YOLOvV7 deep learning models. The proposed framework
extracts skeletal information from weightlifting video sequences
using a pre-trained Keypoint-RCNN model for human pose esti-
mation and a custom YOLOv7 model to detect and track barbell
trajectories. The Keypoint-RCNN model estimates human pose
without manual annotation or specialised apparatus, while the
YOLOVvV7 model provides real-time, non-intrusive barbell track-
ing. The efficacy of barbell trajectory tracking with YOLOv7
on a public weightlifting dataset of 973 images (70-30 train-test
ratio) was evaluated, obtaining high precision (0.9214), recall
(0.9678), and mAP@0.5 of 0.9792 and mAP@0.5:0.95 of 0.7765,
indicating the applicability of this model to weight training
applications. The proposed framework presents a cost-effective,
user-friendly, and easily accessible alternative to conventional
motion capture and analysis systems, making it accessible for
lifters of all skill levels and training environments.

Index Terms—Weightlifting, Biomechanics, Barbell trajec-
tory, Keypoint-RCNN, YOLOv7, Human pose estimation

I. INTRODUCTION

The snatch, clean and jerk are the two primary competitive
lifts in weightlifting, which is a physically demanding and
generally difficult sport to master. The snatch is a single,
continuous motion in which a barbell is lifted from the
ground to the overhead position in a single motion. It
requires the coordination of multiple muscle groups, precise
synchronisation, and exceptional skill. Mastering the snatch
technique is crucial for maximising performance and min-
imising injury risk due to its complexity.

Analysis methods such as marker-based motion capture
systems [1], force platforms [2], and inertial motion capture
analysis [3] are utilised in the conventional biomechanical
analysis. Although these techniques provide valuable insights
into the mechanics of weightlifting, they are time-consuming,
invasive, and require specialised apparatus, which limits
their practical application in training environments. In recent
years, there has been a significant transition in research
towards markerless motion capture systems [1]. This shift
can be attributed to the numerous advantages of markerless
systems over traditional marker-based methods, such as re-
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duced setup time, enhanced usability, and the non-invasive
nature of the system [4].

Rapid innovations in deep learning have led to the de-
velopment of new methods for analysing human motion that
have the potential to overcome the limitations of conventional
approaches. Keypoint-RCNN [5] is a deep learning model
based on Region-based Convolutional Neural Networks (RC-
NNs) that has demonstrated promising performance in di-
verse human pose estimation tasks. Without manual annota-
tion or specialised apparatus, the model could potentially be
used to capture the biomechanics of a weightlifter performing
the snatch. In addition to analysing human motion, it is
essential to monitor the path of the barbell during the snatch
in order to comprehend lift efficiency and identify potential
improvement areas. The use of YOLOV7 [6] to monitor the
position and movement of the barbell during the lift can
provide athletes and trainers with valuable information.

This paper presents the preliminary study of utilising
Keypoint-RCNN and YOLOvV7 to capture the biomechan-
ics of weightlifters and monitor the path of the barbell
during the snatch lift. By providing objective quantitative
data, the combination of Keypoint-RCNN and YOLOv7 for
weightlifting analysis can provide improved aid in coaching,
injury prevention, and increase athlete performance. These
techniques have the potential to vastly improve the accessi-
bility and utility of biomechanical analysis in weightlifting
and other sports by providing non-invasive, inexpensive, and
user-friendly solutions.

II. BACKGROUND

Weightlifting is a popular sport and exercise that targets
specific muscle groups through the raising of weights in
specific methods. It is a common component of strength
training and numerous fitness routines. Weightlifting requires
proper form and technique to prevent injury and maximise
performance. Traditional motion capture systems are inac-
cessible to many athletes and fitness devotees because they
are costly, require specialised apparatus, and are operated by
highly trained technicians. Therefore, more accessible and
affordable methods are required to capture the biomechanics
and trajectory of the bar in weightlifting. For this purpose,
the use of deep learning models such as Keypoint-RCNN and
YOLOV7 presents a promising alternative. Keypoint-RCNN
and YOLOV7 have tremendous potential for biomechanical
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analysis, tracking of barbell trajectories, and identification of
technical flaws in the snatch and clean and jerk in the context
of weightlifting. Provided with objective and quantitative
data on an athlete’s movement patterns, instructors and
athletes effectively create individualised training programme
which targets specific weaknesses, optimise technique, and
reduce the risk of injury.

A. Keypoint-RCNN and Human Pose Estimation

Human pose estimation is a crucial computer vision task
in detecting and localising the positions of key body joints
in images and videos, outputing beneficial insights into
the human motion and biomechanics [7], [8]. In sports
such as weightlifting, it is essential to accurately estimate
body posture to comprehend an athlete’s technique, optimise
performance, and prevent injury [9].

Traditional approaches to human pose estimation rely on
marker-based motion capture systems requiring reflective
markers be placed on body joints and specialised cam-
eras to track their movement [1]. Although these systems
can provide accurate and detailed information about body
movement, they are invasive, time-consuming, and costly
to setup, which limits their practical application in training
environments.

Human pose estimation models such as Keypoint-RCNN
[5] have emerged as non-invasive, efficient, and accurate
alternatives to conventional motion capture systems with
the advent of deep learning techniques. Keypoint-RCNN is
a deep learning model for human pose estimation based
on Regional Convolutional Neural Network (RCNN) archi-
tecture. The model is capable of locating and localising
human joints in images and videos, enabling the extraction
of biomechanical variables such as joint angles, velocities,
and accelerations without the need for manual annotation or
specialised apparatus.

The application of Keypoint-RCNN and other deep learn-
ing models to the estimation of human pose in sports as
weightlifting has the potential to enable accurate, real-time
analysis of athlete movements without the need for manual
annotation or specialised apparatus [10]. This allows coaches
and athletes to acquire valuable biomechanical information

Fig. 1. Joints output from Keypoint RCNN.
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Fig. 2. (a) Original image, (b) Skeletal output from Keypoint RCNN.

during training, allowing for more effective training, and
decreased injury risk.

B. YOLOv7 on Barbell Tracking

The lifting style of the barbell during weightlifting is
essential for comprehending weightlifting efficiency, identi-
fying potential improvement areas, and averting injury [11].
The path and trajectories of the barbell during weightlifting
can provide athletes and instructors with insightful informa-
tion regarding the technique and biomechanics of the athlete
[12].

Object detection and tracking models such as YOLOvV7
have emerged as promising alternatives for tracking barbell
trajectories in weightlifting, thanks to advancements in deep
learning and computer vision. These models offer a real-
time, non-invasive solution that requires neither specialised
apparatus nor manual annotation. In addition, the models
can be readily integrated into a video analysis software or a
mobile application [13], making them accessible to all levels
of athletes and coaches.

In the context of weightlifting, YOLOvV7 can be optimised
for the detection and monitoring of barbells. The model
may then be used to analyse weightlifting footage, locate
the barbell in each frame, and visualise its course. This
information is crucial for maximising the effectiveness of
the lifting technique, pinpointing areas in which further
development is necessary, and lowering the risk of injury.

TABLE 1
JOINTS SELECTED TO VISUALISE THE JOINT ANGLES IN THIS STUDY.

Joint Set Starting Joint Reference Joint Ending Joint
I 1 - Left Shoulder 3 - Left Elbow 5 - Left Wrist
J2 2 - Right Shoulder 4 - Right Elbow 6 - Right Wrist
13 0 - Head 13 - Mid Shoulder 1 - Left Shoulder
J4 0 - Head 13 - Mid Shoulder 2 - Right Shoulder
J5 13 - Mid Shoulder 14 - Mid Hip 7 - Left Hip
J6 13 - Mid Shoulder 14 - Mid Hip 8 - Right Hip
17 2 - Right Shoulder 13 - Mid Shoulder 1 - Left Shoulder
I8 8 - Right Hip 14 - Mid Hip 7 - Left Hip
19 8 - Right Hip 10 - Right Knee 12 - Right Ankle
J10 7 - Left Hip 9 - Left Knee 11 - Left Ankle
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III. METHODOLOGY

This research examines two prominent deep learning mod-
els, Keypoint-RCNN and YOLOvV7, and their application to
capturing weightlifting biomechanics and barbell trajectories.
The following provide an overview of the methodology in
utilising the two models.

A. Data Collection and Preprocessing

An Intel Realsense D435 camera that captures 1080 x 1920
RGB video at 30 frames per second was used to capture
the lifting sessions. Image normalisation is applied, and the
video is then processed to extract frames to pipe into the deep
learning models. The data is processed using Intel NUC X15
Laptop Kit with Intel Core i7 and RTX3070.

B. Human Pose Estimation

The Keypoint-RCNN model is a pretrained model trained
on COCO (Common Objects in Context) dataset [14], con-
taining over 330,000 images and over 2.5 million object
instances with 80 different object categories. The pretrained
model is then applied to the frames extracted from recorded
weightlifting sessions to generate 2D keypoints for each
lifter’s body joints. This yields 17 skeletal keypoints per
frame, of which 13 are utilised (excluding the eyes and
hearing) for the analysis shown in Fig. 1. The biomechan-
ical variables involves selecting three joints; starting joint,
measured joint, and ending joint and is referred as joint set
(J) in this study. A total of ten joint sets were considered
in this study are listed in Table I. The skeletal output of a
weightlifter is shown in Fig. 2.
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C. Barbell Trajectory Tracking

YOLOv7 [6] is a state-of-the-art object detection and
localisation model using a single-stage model architecture.
YOLOV7 is an upgraded version to the YOLO series with
improved accuracy and speed. In addition to analysing human
motion and human posture, tracking of the barbell during a
weightlifting movement is essential for understanding lifting
efficiency and identifying training development opportuni-
ties. The YOLOvV7 model was trained on the weightlifting
images from Roboflow Universe [15] to detect and monitor
the position of the barbell throughout the entire lift. The
training and testing dataset for the YOLOV7 barbell tracking
model consists of 973 images. The data set is divided 70%
for training (681 images) and 30% for testing (292 images)
to ensure adequate data distribution for model training and
performance evaluation. The hyperparameters used for train-
ing the model is summarised in Table II.

The model is configured to output a green bounding box
encompassing the detected barbell and to calculate the box’s
centre point. The centre point is marked with a red dot during
the lift and a blue dot during the descent, producing a dot
track representing the barbell’s trajectory. This can provide
objective feedback to athletes and instructors regarding the
path, velocity, and acceleration of the barbell which is crucial
in performing a clean lift while preventing potential injuries
due to incorrect method.

IV. RESULTS AND DISCUSSION

Joint angles were computed for pairs of keypoints as listed
in Table I. The joint angles results can be seen in Figure 3.
The joints profile were subsequently employed to assess the

(d) (e
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Fig. 3. Results of the pose estimation based on the specified joint profile.
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Fig. 4. Test predictions of barbell using YOLOV7 in (a) simple background and (b) complex background.

() (b) (©)

Fig. 5. Side view of the barbell lift at different stages: (a) beginning of
lift, (b) full extension, and (c) end of lift, illustrating the barbell’s trajectory
throughout the lift.

TABLE 11
HYPERPARAMETERS USED FOR YOLOV7 TRAINING ON BARBELL
TRACKING.
Hyperparameter Value
Learning rate 0.01
Momentum 0.937
Weight decay 0.0005
Warmup epochs 3.0
Object confidence 0.7
IoU threshold 0.2
Translation 0.2
Scaling 0.5
Horizontal flipping 0.5
Mosaic augmentation 1.0

posture of the weightlifter over the lift session. The captured
image of a weightlifting session shown in Fig. 2a, with the
corresponding skeletal output from Keypoint RCNN model
as shown in Fig. 2b. The pose estimation model successfully
estimated joint keypoints on the human body as observed,
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Fig. 6. Color coded barbell tracking from YOLOv7. (a) Barbell bounding
box, (b) Red dots represent lift trajectory, (c) Blue dots represent fall
trajectory.

demonstrating the benefit of the Keypoint-RCNN model in
markerless human joint keypoints extraction in weightlifting.
Based on the selected joint sets in Table I, each of
the respective joint angles from the pose estimation result
are presented in Fig. 3. With ten joints set, their resultant
angles, and angle overlay of joint keypoints on the human
body is illustrated. Such information can be valuable for
coaches and athletes to identify and correct lifting technique
and posture issues. The side view of a recorded barbell
lift is shown in Fig. 5 with a green bounding box which
tracks the barbell. The color-coded barbell tracking results
obtained from YOLOv7 model are illustrated in Fig. 6. This
figure demonstrates the model’s ability to track the barbell’s
trajectory throughout the lift. The lift trajectory is represented
by red dots as shown in Fig. 6b, whereas the fall trajectory is
represented by the blue dots in Fig. 6¢. These visualisations
gives visual aids to coaches and athletes in assessing the
efficiency of their lift and making adjustments as needed.
The barbell tracking results of the YOLOv7 model as
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TABLE III
YOLOV7 TEST RESULT ON 292 IMAGES.

Recall
0.9678

mAP@0.5
0.9792

Precision

0.9214

mAP@{0.5:0.95}
0.7765

shown in Table III demonstrate high performance with a
precision of 0.9214, recall of 0.9678, mAP@(.5 of 0.9792,
and mAP@1{0.5:0.95} of 0.7765. These values indicate that
the model is capable of identifying and tracking the barbell
during weightlifting with precision. Overall, the potential of
the proposed framework for barbell trajectory tracking in
both simple and complex backgrounds are emphasised by
Fig. 4a and Fig. 4b respectively.

V. CONCLUSION

This paper provides the potential use of Keypoint-RCNN
and YOLOV7 for biomechanic analysis and barbell trajectory
tracking in weightlifting respectively. This preliminary study
presents a new method for visualising biomechanics and
barbell trajectories in weightlifting. The results from barbell
trajectory tracking with a precision of 0.9214 and a recall of
0.9678, demonstrate the model’s potential for real-time anal-
ysis and feedback in weight training and injury prevention. In
addition, high mAP@0.5 values of 0.9792 and mAP@0.5:95
values of 0.7765 indicate the effectiveness of the barbell
tracking system. The combination of Keypoint-RCNN and
YOLOV7 models in this framework offers a user-friendly and
economical alternative solution to the conventional motion
capture systems for real-time analysis and feedback in weight
lifting sessions and injury prevention. These technologies are
particularly attractive for real-world training environments
due to their non-intrusive characteristics, which can be easily
integrated into coaching and performance analytic work-
flows. The ability to provide immediate, objective feedback
on an athlete’s movement patterns can significantly enhance
the effectiveness of training interventions. As for future work,
an efficient algorithm such as Faster R-CNN, SSD, and
EfficientDet is to applied to explore a real-time application
in sport analysis.
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