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Abstract—The current advancements in machine learning
research pertaining to speech and health are highly interest-
ing. One aspect of speech-processing research that is gaining
popularity is the use of computational paralinguistic analysis
to evaluate a variety of health conditions. In this study, we
have used the Hilbert-Huang transform (HHT) for the time-
frequency analysis of speech signals for the identification of the
common cold. The HHT is a time-frequency transform that is
adaptive and ideal for non-linear and non-stationary signals.
The HHT is a combination of empirical mode decomposition
(EMD) and the Hilbert transform (HT). The HHT gives the
time-frequency representation (TFR) matrix of the speech
signal. Then, the entropy of each frequency component in TFR
is computed and used as a distinguishing feature between cold
and healthy speech. The efficacy of the proposed methodology
is evaluated on the URTIC dataset using a deep neural network.
The proposed features achieve UARs of 65.66% and 65.26%,
respectively, on the develop and test partitions. The results of
the study demonstrate that the time-frequency entropy features
extracted using the HHT are effective in distinguishing between
cold and healthy speech.

Index Terms: Common cold, Empirical mode decompo-
sition, Hilbert-Huang transform, Deep neural network.

I. INTRODUCTION

A speech signal is known to encompass a diverse range
of data pertaining to the speaker. The data presented com-
prises the linguistic elements associated with the speaker’s
intended message and paralinguistic characteristics such as
their present health and emotional state, age, and gender [1],
[2]. The contemporary developments in machine learning re-
search concerning speech and health are exceedingly interest-
ing. The utilization of computational paralinguistic analysis
to assess different health conditions is an increasingly popu-
lar area of interest in speech-processing research. The utiliza-
tion of speech signals for the purpose of detecting pathology
is becoming more prevalent due to their non-invasive nature
and the ease with which they can be transmitted remotely. A
common cold is characterized by nasal congestion, a runny
nose, and a sore throat [3]. The common cold affects the

nasal passages and the throat, affecting the person’s ability
to articulate words clearly. These speech alterations can be
quantified and used as appropriate characteristics to identify
a common cold.

The analysis and classification of cold speech may aid
in the diagnosis of the common cold and its associated
maladies. It could potentially provide valuable insights for
the remote health monitoring of patients. Normal or healthy
speech is commonly utilized for training speech recognition
and speaker recognition systems. When these systems are
tested using cold speech, their performance may suffer.
Hence, cold speech analysis might be used to improve the
efficacy of these man-machine interface systems [4], [5].

Researchers explored the common cold’s impact on
speaker recognition systems as well as the classification of
healthy and cold speech. Tull et al. [6] noticed that there are
distinguishable variations in the MFCC between cold and
healthy speech. The INTERSPEECH 2017 Cold Challenge
had the objective of identifying individuals suffering from
upper respiratory tract illnesses such as the common cold
using speech [7]. Cai et al. [8] recognized the common cold
using the perception-aware spectrum. Gosztolya et al. [9]
used the output of frame-level classification achieved using
DNN to get utterance-level features for cold and healthy
speech categorization. Suresh et al. [10] used a phoneme state
posteriorgram (PSP) feature with a Gaussian mixture model
(GMM) to classify common cold from speech. Huckvale
and Beke [11] analyzed the performance of various voice
quality features (VOI) features for discrimination between
cold and healthy speech. Deb et al. [12] divided voice signal
into a number of modes, from which various statistics were
obtained and employed as a feature for the categorization
of the common cold. Vicente et al. [13] used SVM to
classify cold speech using the MFCC Fisher vector (FV).
Warule et al. [14] utilized vowel-like regions (VLR) MFCC
features for categorizing cold and healthy speech. Deb et
al. [15] combined MFCC, LPC features, and DNN for
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Fig. 1: Proposed HHT-based framework for categorizing healthy and cold speech.

categorizing healthy and cold speech. Warule et al. [16]
investigated the role of voiced and unvoiced speech segments
for categorizing healthy and cold speech. Warule et al. [17]
used sinusoidal model-based features for categorizing healthy
and cold speech.

This study explored a novel feature extraction methodol-
ogy utilizing the Hilbert-Huang transform (HHT) for dis-
tinguishing healthy and cold speech. The HHT has been
shown to be effective in a variety of speech processing and
categorization applications. The HHT is a new and strong
time-frequency analysis theory that is effective in describing
the local properties of non-linear and non-stationary signals
[18], [19]. Karan et al. [20] utilized the HHT in order to
automate the detection and assessment of speech associated
with Parkinson’s disease. Turan et al. [21] used the HHT to
classify ingesting sounds captured by the throat microphone.
Liu et al. [22] utilized HHT-based time-frequency analysis
for depression identification in speech.

In this study, we have used a time-frequency representation
(TFR) matrix of speech signals achieved using the HHT.
The entropy of each frequency component in TFR is then
computed and utilized as a distinguishing feature between
cold and healthy speech. We have given some thought to the
possibility that the information provided by the entropy of the
frequency components in the TFR matrix of the speech signal
can be used to distinguish between cold and healthy speech.
The efficacy of the proposed methodology is evaluated on
the URTIC dataset utilizing a deep neural network.

We used the upper respiratory tract infection corpus (UR-
TIC) database in this investigation. The URTIC database
has been used for the cold sub-challenge of the 2017 IN-
TERSPEECH computational paralinguistics challenge [7].
Speech recordings from 630 people (382 men and 248
women) are available in the URTIC database. The database
comprises a total of 28,652 speech samples, which have been
categorized into cold and healthy classes. Only 10% of the
samples belong to cold classes, indicating that the database is
significantly unbalanced. The database has been partitioned
into three subsets, namely train, develop, and test, comprising
9505, 9596, and 9551 speech samples, respectively.

This paper follows the format outlined below: In Section
II, the proposed methodology for categorizing healthy and
cold speech is described. Section III includes the results
and an analysis of the findings. The study’s conclusion is
presented in Section IV.

II. METHODOLOGY

It includes the decomposition of the speech signal into
several IMFs using EMD, Hilbert transform (HT), extraction
of the entropy features from TFR achieved using HHT, and
a DNN classifier for categorizing healthy and cold speech.

A. Hilbert-Huang transform

This section describes the evaluation procedure for the
Hilbert-Huang transform. The HHT is a modern signal
analysis tool that employs an empirical approach to signal
processing. The technique encompasses two significant pro-
cesses: empirical mode decomposition (EMD) and Hilbert
transform (HT) [23]. The initial step in conducting the HHT
involves executing the EMD technique to decompose the
signal into intrinsic mode functions (IMFs). Subsequently,
the Hilbert Spectrum of the IMFs is computed in order to
derive the instantaneous frequency.

1) Empirical Mode Decomposition: The EMD algorithm
was proposed by Huang et al. [24]. The EMD decomposes
the signal into several modes known as IMFs. These IMF
signals meet the following requirements:

• It is expected that the total number of zero crossings
and extrema will either be equal or exhibit a difference
of no more than one.

• The mean values of the envelope formed by local
minima and maxima are zero at every given position.

The goal of EMD is to describe any signal using a set of
IMFs mi(t) and the residual signal r(t). The speech signal
s(t) is decomposed using EMD as

s(t) = r(t) +

M∑
i=1

mi(t) (1)

where r(t) denotes the residual signal and mi(t) denotes
the imf of the ith mode. The signal is decomposed into
IMFs by finding the extrema points of the speech signal and
then forming the lower and upper envelopes by interpolating
the extrema points. The mean of the lower and higher
envelopes is subtracted from the original signal to get the
initial IMF. The residual component obtained by subtracting
the calculated IMF from the original signal is utilized as new
data, and the method is repeated to compute the next IMF.
The process is continued until the residual signal becomes a
monotonic function.

2) Hilbert Transform (HT): It reflects the instantaneous
energy distribution of IMFs in TFR [25]. The Hilbert trans-
form of the signal s(t) is given by

H(t) =
Q

π

∫ ∞

−∞

s(τ)

t− τ
dτ (2)

where Q is the Cauchy principal integral value. The convo-
lution of the signal s(t) with 1/t gives the HT, as shown in
Eq. (2). As a result, the HT can identify the local features
of s(t) [26].

The analytic signal z(t) is represented by

z(t) = s(t) + jH(t) = α(t)ejϕ(t) (3)
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Fig. 2: Mean values of first 20 ENT features for healthy and cold speech classes.

where α(t) is the instantaneous amplitude, and ϕ(t) is the
instantaneous phase can be given as

α(t) =
√

s2(t) +H2(t) (4)

ϕ(t) = arctan

(
H(t)

s(t)

)
(5)

The instantaneous frequency ω(t) is given by

ω(t) =
dϕ(t)

dt
(6)

Finally, speech signal s(t) can be expressed in terms of
instantaneous amplitude and frequency as

s(t) =

M∑
i=1

αi(t)e
j
∫
ωi(t)dt (7)

The amplitude distribution of the signal at various frequen-
cies over time gives the time-frequency representation (TFR)
of speech signals. This TFR, achieved using HHT, is used to
extract the features for categorizing healthy and cold speech.

B. Feature Extraction

In this study, we have calculated the entropy of every
frequency component in the HHT-based TFR of the speech
signals and used them as discriminating features for cold
and healthy speech classes. The histogram of frequency
components is used to calculate the entropy of frequency
components in the TFR. The probability value of the rth

frequency component is computed as [27], [28]

Pb(r) =
hb(r)∑B
b=1 hb(r)

(8)

where hb(r) represents the histogram of the rth frequency
component and B is the total number of bins. The entropy
of rth frequency component is given by [29]

Er = −
B∑

b=1

Pb(r)log2
[
Pb(r)

]
(9)

In this work, we have extracted entropy (ENT) fea-
tures for the first 100 frequency components to form a
100-dimensional feature vector [ENT1, ENT2, ENT3, . . . ,
ENT100] for each speech recording.

C. Deep Neural Network (DNN)

The DNN has been found effective in speech related appli-
cations like natural language processing, speech recognition,
and speech pathology detection [30], [31], [32], [33]. In this
study, we have employed three hidden layers of DNN with
256, 128, and 64 neurons. At the hidden layers of a DNN, the
rectified linear unit (ReLU) activation is employed, whereas
the sigmoid activation is used at the output layer.

With the highly imbalanced nature of the URTIC database,
accurate identification of both the cold and healthy classes
is of vital importance, the performance of DNN is measured
using unweighted average recall (UAR). The UAR is com-
puted by determining the mean of the recall values for the
cold and healthy classes.

TABLE I: Performance of HHT-based entropy features using
DNN classifier on the URTIC database.

Develop partition Test partition

Healthy class recall (%) 52.30 55.67
Cold class recall (%) 79.03 74.86
UAR (%) 65.66 65.26

III. RESULTS & DISCUSSION

This section examines the efficacy of proposed HHT-
based entropy features for categorizing healthy and cold
speech classes. The efficacy of the proposed features is
evaluated on the URTIC database using the DNN classifier.
While evaluating the develop partition, the training partition
is utilized for training, and both the training and develop
partitions are utilized for training while evaluating the test
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Fig. 3: Confusion matrix (%) of the DNN on (a) Develop
partition, and (b) Test partition of the URTIC database.

partition. The obtained results are contrasted with the state-
of-the-art (SOTA) method’s results.

The mean values of the first 20 ENT features extracted
from the train partition of the URTIC database are presented
in Fig. 2 to examine the importance of the proposed fea-
tures for categorizing healthy and cold speech classes. It is
observed that there is a significant difference in the mean
values of the proposed features between the cold and healthy
speech classes. Therefore, these features can be employed to
categorize these classes.

The results obtained utilizing the proposed features for
categorizing healthy and cold speech are shown in Table I.
The confusion matrices in % for the classification results
obtained using the proposed HHT-based entropy features

are depicted in Figs. 3a and 3b, respectively. The proposed
features achieve an UAR of 65.66% with recalls for healthy
and cold classes are 52.30% and 79.03%, respectively, on the
develop partition. Similarly, it achieve the UAR of 65.26%
with recalls for healthy and cold classes are 55.67% and
74.86%, respectively, on the test partition.

The performance comparison of the proposed method and
SOTA methodologies is presented in Table II. Cai et al.
[8] achieved 64.80% and 65.40% UAR, respectively, using
constant Q cepstral coefficients (CQCC) and MFCC features
on the develop partition. Gosztolya et al. [9] achieved 65%
UAR using DNN-based frame-level features. Using PSP
features and GMM, Suresh et al. [10] achieved a UAR of
64%. Huckvale and Beke [11] achieved UARs of 65.58%
and 62.10%, respectively, on develop and test partitions using
VOI features. Deb et al. [12] employed VMD-based features
and achieved a UAR of 66.84%. Warule et al. achieved
a UAR of 61.93% using VLR MFCC features on develop
partition. Warule et al. [16] achieved UARs of 66.12% and
64.92% using statistics of MFCC features. In this study,
we got comparable outcomes with the SOTA methods. The
proposed features achieve UARs of 65.66% and 65.26%,
respectively, on the develop and test partitions.

In this investigation, we have used the TFR of speech
signals achieved using HHT for categorizing healthy and cold
speech. In SOTA methods, first a voiced speech region is
detected, then voiced speech is segmented into frames, and
features are extracted for classification. But, in this study, we
have directly calculated the TFR of speech, and the entropy
of each frequency component over time is calculated to get
discriminating features for classification. This significantly
reduces the complexity of the speech pathology detection
system.

IV. CONCLUSION

The Hilbert-Huang Transform (HHT) is an efficient ap-
proach for analyzing nonlinear and nonstationary signals.
In this investigation, we have used the HHT-based time-
frequency representation of speech signals for categorizing
healthy and cold speech. The results reveal that the proposed
HHT-based time-frequency analysis method effectively clas-
sifies healthy and cold speech. This method reduces system

TABLE II: The performance evaluation of the proposed framework with the SOTA methods.

Research work
%UAR

Develop partition Test Partition

MFCC features + GMM [8] 64.80 -
CQCC features + GMM [8] 65.40 -
MFCC features + DNN [9] 65.00 -
PSP features + SVM [10] 64.00 61.09
VOI features + DNN [11] 65.58 62.10
VMD features + SVM [12] 66.84 -
MFCC Fisher Vectors + SVM [13] 63.98 66.12
VLR MFCC features + DNN [14] 61.93 -
MFCC statistics+ SVM [16] 66.12 64.92
Proposed HHT-based entropy features + DNN 65.66 65.26
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complexity because, unlike traditional speech processing
algorithms, it doesn’t include any pre-processing steps like
silence removal, framing, or windowing prior to feature
extraction. In future work, we will apply the proposed HHT-
based method to classify other pathological conditions and
speech emotion recognition.
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