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Abstract—This study explores the application of Attentive
Cross-Domain Few-Shot Learning (ACDFSL) in Hyperspectral
Image (HSI) Classification, specifically addressing challenges as-
sociated with environments possessing limited labeled data. Our
approach applies the Squeeze-and-Excitation (SE) attention and
Residual elements within a deep learning architecture of four
convolution blocks. This innovative strategy of integrating at-
tention mechanisms into few-shot learning models represents a
significant departure from traditional practices. After rigorous
assessment, the ACDFSL model showcased outstanding results,
revealing performance rates of 92.14%, 96.23%, and 91.27%
in OA, AA, and Kappa, respectively, on the Salinas dataset.
Additionally, the model attained rates of 85.67%, 89.66%,
and 85.4% on the University of Pavia (PU) dataset. These
results indicate an edge over existing state-of-the-art techniques
such as SVM, 3D-CNN, SSRN, and other DFSL variants. This
considerable progress emphasizes the potential and applicability
of the ACDFSL approach in real-world HSI Classification
scenarios, especially where labeled data is sparse, and paves
the way for future research in this sphere.

Index Terms—ACDFSL, HSI Classification, SE Attention,
FSL, Domain Adaptation

I. INTRODUCTION

Hyperspectral Imaging (HSI), well-known for its precision
in capturing data across numerous spectral bands, has found
extensive applications in a variety of fields, including but
not limited to agriculture, environmental monitoring, and
geology [12]. In the face of mounting demand for precise HSI
in areas such as environmental conservation and crop yield
prediction, the need to bolster HSI classification accuracy is
more pressing than ever.

Over time, a multitude of machine learning and deep
learning techniques have been employed to improve HSI
classification, each presenting its unique challenges. Initial
traditional methods paved the way for more advanced tech-
niques, such as the Stacked Autoencoder (SAE) [1], Deep
Belief Network (DBN) [8], Convolutional Neural Network
(CNN) [2], and 3-D CNNs [19]. While these advancements
brought considerable progress, they also introduced issues
like heightened computational load, gradient disappearance,
and increased demand for extensive labeled data. To counter
these problems, ResNet [5] employed Residual Blocks, al-
though this approach necessitated vast amounts of labeled
data for optimal model performance.

Data augmentation techniques were subsequently devel-
oped to enhance training sample sizes without the need for
additionally labeled samples [22]. However, these methods

often fell short of boosting the feature representation capabil-
ities of deep models. This drawback led to the development
of attention mechanisms [15], [16], [18] aimed at enhancing
relevant features while downplaying irrelevant ones. Yet, the
requirement for domain adaptation [14] surfaced, aiming to
reconcile the disparities between different data distributions
in cross-domain learning.

Various strategies like fine-tuning [20] were devised to
confront this issue, but they stumbled when encountering
substantial data shifts between domains. Semi-supervised and
active learning [4] methods were then proposed to decrease
the dependence on manual labeling, but these too faced
challenges in generalizing for new tasks. This led to the
emergence of meta-learning, with FSL [3], [9], [11] surfacing
as a promising concept. The technology is indispensable;
however, the task of accurately classifying HSI data, often
described as the ’small sample size problem, remains a
significant challenge. Few-Shot Learning (FSL) presents a
promising solution to this conundrum, capitalizing on a
limited number of labeled samples [9]. However, traditional
FSL methods often presume that source and target class data
share identical distributions, which may not always be the
case.

This understanding prompted the development of more so-
phisticated FSL techniques, including FSL with fine-tuning,
RN-FSC, DFSL, and DCFSL [3], [7], [9]. These innovative
techniques leverage past learning experiences for new tasks
and address the lack of genuine HSI samples. Among these,
the DCFSL [7] method has emerged as a key tool for
HSI classification, skillfully tackling the dual challenges of
drastic domain shifts and the scarcity of labeled data. De-
spite its potential, opportunities for further enhancement and
improvement in performance and accuracy persist, making
the future of HSI classification an exciting endeavor.

In this paper, we introduce an improved approach to FSL
for HSI classification, utilizing a deep residual attention-
based method that aims to optimize existing methodologies.
Our paper strives to bridge this gap by integrating the
Squeeze-and-Excitation (SE) attention mechanism into the
DCFSL framework. Our research objectives are two-fold:
Firstly, to set a new benchmark for HSI classification ac-
curacy by incorporating the SE attention mechanism into the
DCFSL framework; and secondly, to improve the handling
of domain shifts and reconcile discrepancies between source
and target domains in few-shot learning scenarios. The con-
tributions of this paper are three-fold. Firstly, we introduce a
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novel SE attention-based framework for domain adaptation
in few-shot learning scenarios. Secondly, we demonstrate
superior performance in HSI classification, surpassing mul-
tiple state-of-the-art algorithms. Finally, we provide a robust
method to extract rich domain-invariant representations, even
under data scarcity conditions.

The rest of this paper is organized as follows: Section II
details the methodology, which includes the integration of the
SE attention mechanism into the DCFSL framework. Section
III presents our experimental results and compares them with
prior studies. Section IV discusses these results and their
implications for HSI classification and meta-learning. Finally,
Section V concludes the paper.

II. METHODOLOGY

A. Attentive-Cross-Domain Few-shot Learning (ACDFSL)
Framework

The ACDFSL framework addresses the challenging prob-
lem of few-shot learning in scenarios where labeled data is
scarce and originates from diverse domains. Unlike in prior
studies [7] where the feature embedded extractor struggled
to encapsulate inter-dependencies between channels, conse-
quently failing to highlight salient features, our methodology
makes a significant breakthrough in this domain. We propose
a Squeeze and Excitation (SE) attention mechanism in the
residual network with increased depth, a novelty depicted in-
side the red dotted box in Figure 1. The proposed framework
has four major steps mapping, feature extraction, conditional
adversarial learning and testing:

Mapping layers: The mapping layers Ms and Mt serve
to normalize input dimensions across domains. The primary
function of these mapping layers is to process and transform
input data to feed in feature extractor network. The equation
for the mapping layers is

Ms,Mt = fms(Xs), fmt(Xt). (1)

Deep residual Attentive 3-D CNN: This network consists
of four residual blocks equipped with squeeze and excita-
tion based attention mechanism enabling rich spatial-spectral
embedded features extraction [15]. These extracted domain
invariant features serve both source and target Few-Shot
Learning (FSL) tasks. The equation for the deep residual
3-D CNN is

Fs, Ft = fcnn(Ms), fcnn(Mt). (2)

Furthermore, the Euclidean distances between labeled
and unlabeled samples are calculated to promote intra-class
compactness and inter-class separability, which are crucial
for effective classification. The equation for the Euclidean
distances squared is

Dij = kFi � Fjk2 . (3)

Conditional domain discriminator: A conditional domain
discriminator is introduced to instill and learn domain invari-
ant latent space extracted by previous network, mitigating the
impact of the domain shift. The discriminator, which uses the
predicted class labels as conditions, is trained to distinguish
between the source and target domains. The equation for the
conditional domain discriminator is

Ds, Dt = fdis(Fs, Ys), fdis(Ft, Yt). (4)

The discriminator loss, denoted as Ld, is calculated to
measure the alignment of the global data distributions. The
equation for the discriminator loss is

Ld =
1

2

0
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A . (5)

In addition, the overall loss function for the ACDFSL
framework combines the few-shot losses for the source
(Lsfsl ) and target (Ltfsl ) domains with the discriminator
loss (Ld). The network utilizes the total loss to train in an
adversarial way improving both the discriminator network
and feature extractor network simultaneously [10]. Therefore,
the total loss becomes

Ltotal = Lsfsl + Ltfsl + Ld. (6)

Testing Phase: In this phase, the target mapping layer
reduces the input dimensions. The equation for the target
mapping layer is

Mt = fmt(Xt). (7)

After that, the attention based deep residual 3-D CNN
trained before extracts distinct domain invariant representa-
tions of the target data. The equation for the distinct features
is

Ft = fcnn(Mt). (8)

Then, a nearest neighbor classifier is employed to perform
accurate classification. The equation for the nearest neighbor
classifier is

y = arg min
yi2Ys

kFt � Fik2 . (9)

In summary, the ACDFSL framework effectively leverages
conditional adversarial learning to transfer knowledge from
the source domain to the target domain, thereby significantly
improving the classification performance and reducing the
domain shift in the target domain, despite the scarcity of
labeled data.

B. Proposed Feature Embedded Network

We propose a 3D Residual Attention Network that
combines two fundamental structures: the Squeeze-and-
Excitation (SE) block [6] and the Residual Block [13], [15].

1) Squeeze-and-Excitation (SE) Block: This block enables
an attention mechanism that captures inter-dependencies be-
tween the channels of the convolutional layers accurately.
The SE block recalibrates the channel-wise feature responses
adaptively, enabling dynamic learning and adjustment of
inter-channel relationships according to the input [6]. This
helps the network to amplify the relevance of critical fea-
tures while suppressing less useful ones. The mathematical
equations for the SE block are as follows

An input tensor X 2 RC⇥D⇥H⇥W is processed through a
’squeeze’ operation in the SE block. Using Global Average
Pooling (GAP), it aggregates global spatial information to
reduce the input dimensions, generating an output Xavg 2 RC

where

Xavg =
1

D ⇥H ⇥W

DX

i=1

HX

j=1

WX

k=1

Xi,j,k. (10)
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Fig. 1: Illustration of ACDFSL

Following the ’squeeze’ operation, an ’excitation’ oper-
ation is executed via two fully connected (FC) layers. This
operation captures channel-wise dependencies effectively and
serves as a gating mechanism, hence enhancing the dis-
cernibility of channel-wise features. The output S 2 RC is
computed as

S = �(W2�(W1Xavg)). (11)

where � and � represent the sigmoid function and the ReLU
function, respectively. W1 2 RC/r⇥C and W2 2 RC⇥C/r

are the parameters of the two FC layers.
Finally, the SE block concludes by re-scaling the input

tensor with the output of the ’excitation’ operation to produce
the SE output Y 2 RC⇥D⇥H⇥W as

Y = S ·X. (12)

2) Residual Block: The Residual Block is incorporated
with the SE block to enhance the learning abilities of our
network. It achieves this by introducing shortcuts or skip
connections that enable the training process to bypass one
or more layers, resulting in a residual learning framework.
This feature eases the training of networks and aids in
addressing the problem of vanishing gradient [13], [15]. The
mathematical equations for the Residual Block are as follows

An input tensor X 2 RC⇥D⇥H⇥W is passed through a
series of transformations F with parameters {Wi} within
the residual block, and the output Y 2 RC⇥D⇥H⇥W is
computed as

Y = F (X, {Wi}) +Ws ·X. (13)

Here, F denotes the series of stacked non-linear trans-
formations that include convolutions and the SE attention
operation, whereas Ws denotes the transformation in the

shortcut connection, utilized when there is a dimension
mismatch between the input and output.

Subsequently, the output tensor is passed through a ReLU
activation function, imparting non-linearity to the model

Y = max(0, F (X, {Wi}) +Ws ·X). (14)

The integration of the SE block and the Residual Block
facilitates efficient extraction and manipulation of meaning-
ful features, boosting network training efficiency through
the proposed bottom-up top-down attention structure and
the residual connection. This enhances performance in HSI
classification tasks by enabling dynamic inter-channel re-
lationship adjustments, fostering efficient feature extraction
and manipulation, and improving overall network training
efficiency. We have four blocks in our network as the
increased depth is closely associated with it’s ability to learn
complex hierarchical features. While this must be carefully
managed to avoid issues such as vanishing gradients, residual
blocks mitigates this concern by allowing direct paths from
the earlier layers to the later layers.

III. RESULT

The experimental procedures were executed on an
NVIDIA GeForce RTX 3090 GPU, with a memory capacity
of 24GB. The programming was implemented using Python
3.6, backed by the PyTorch framework.

A. Datasets:
The research conducted leveraged three distinct hyper-

spectral imaging datasets, specifically those pertaining to
Chikusei, the University of Pavia (UP), and Salinas, the
details of which have been collated in Table I. These datasets
encompass a range of classifications and present disparate
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distribution alignments due to their individual collection
contexts in terms of time, location, and environmental con-
ditions. Given this inherent diversity, they provide an ideal
composite for assessing the versatility of domain adaptability.
For the purpose of this study, the Chikusei dataset was
designated as the source, whilst the University of Pavia and
Salinas datasets were utilized as target domains.

TABLE I: Summary of HSI Datasets

Dataset Location Resolution Spectral
Band
Range
(Number
of Bands)

Number
of
Classes

Chikusei
[21]

Japan 2.5m,
2517x2335

363-
1018nm
(128)

19

UP Italy 1.3m,
610x340

430-860nm
(103)

9

Salinas USA 3.7m,
512x217

400-
2500nm
(204)

16

The Table II provides an overview of the Chikusei dataset.

TABLE II: Overview of Chikusei Dataset

No. Class Samples
1 Water 2845
2 Bare soil (school) 2859
3 Bare soil (park) 286
4 Bare soil (farmland) 4852
5 Natural plants 4297
6 Weeds in farmland 1108
7 Forest 20516
8 Grass 6515
9 Rice field (grown) 13369

10 Rice field (first stage) 1268
11 Row crops 5961
12 Plastic house 2193
13 Manmade (non-dark) 1220
14 Manmade (dark) 7664
15 Manmade (blue) 431
16 Manmade (red) 222
17 Manmade grass 1040
18 Asphalt 801
19 Paved ground 145

B. Experimental Design and Comparative Study

The Table III provides the parameter settings for our
experimentation.

TABLE III: Training and Evaluation Details

Parameter Value
Training Method ACDFSL
Training Samples/Class 5
Optimizer Adam
Iterations 20,000
Learning Rate 0.001
Spatial Size 9 ⇥ 9
Evaluation Metrics Overall Accuracy (OA), AA, Kappa

1) Performance Analysis: Salinas Dataset: The Salinas
dataset is analyzed in terms of algorithmic performances
and detailed metrics, as presented in Table IV [11], [17].
This table provides a comprehensive comparison of various
algorithms on the Salinas dataset, showcasing their classi-
fication results for different classes. In accordance to the

result, the SVM performs well on classes 1 and 16 but
struggles with complex classes like class 8. The 3D-CNN
shows impressive results in some instances, but falls short for
others. The ACDFSL algorithm, however, shows consistently
superior performance across most classes, with a slight dip
in class 15. Figure 2 visually represents the ground truth
and predicted images for the Salinas Data. Furthermore, the

(a) Ground Truth (b) Predicted image

Fig. 2: Salinas Data

ACDFSL algorithm achieves the highest overall accuracy
(OA) at 92.14%, closely followed by the DT-FSL at 91.03%.
The ACDFSL also excels in average accuracy (AA) with a
score of 96.23%, and in the kappa statistic, which measures
classification agreement, scoring 91.27

This evidence shows that the ACDFSL algorithm outper-
forms the others in terms of classification accuracy on the
Salinas dataset.

2) Performance Analysis: UP Dataset: Similarly, we con-
ducted a performance analysis on the UP dataset. Figure 3
shows the ground truth and predicted images for the UP
Data. The classification results, reported in percentages, are
presented in Table V [11], [17] for various approaches in
HSI classification.

The algorithms’ performance on the UP dataset shows
some variation across different classes. For instance, the
SVM and 3D-CNN algorithms show a high degree of vari-
ability, excelling in some classes but underperforming in
others. However, the ACDFSL algorithm consistently deliv-
ers high performance across most classes. Figure 3 visually
represents the ground truth and predicted images for the
Salinas Data. The ACDFSL also outshines other algorithms
in terms of overall accuracy (OA), average accuracy (AA),
and Kappa statistics, scoring 92.14%, 96.23%, and 91.27%
respectively.

IV. DISCUSSION

This study implemented the Attentive Cross-Domain Few-
Shot Learning (ACDFSL) method for hyperspectral image
(HSI) classification across three datasets: Chikusei, Univer-
sity of Pavia (UP), and Salinas. Evidenced by evaluation
metrics including Overall Accuracy (OA), Average Accuracy
(AA), and the Kappa coefficient, ACDFSL consistently sur-
passed traditional machine learning algorithms such as SVM,
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TABLE IV: Classification results (%) on the Salinas dataset with various algorithms
Class SVM 3D-

CNN
SSRN DFSL+

NN
DFSL+
SVM

RN-
FSC

DCFSL DT-
FSL

ACDFSL

Brocoli green weeds 1 93.33 87.01 78.68 97.31 93.46 76.58 99.43 98.32 100
Brocoli green weeds 2 74.59 92.40 99.89 99.06 94.16 79.19 99.51 99.52 100
Fallow 66.46 72.59 69.19 87.97 87.74 88.86 91.75 91.06 97.31
Fallow rough plow 72.31 96.87 97.90 98.98 86.99 98.23 99.09 98.10 99.71
Fallow smooth 91.23 92.25 93.57 89.04 81.77 88.15 92.65 94.38 94.5
Stubble 60.48 99.30 98.94 97.82 88.07 99.36 98.46 97.54 100
Celery 81.59 97.15 95.56 99.04 89.45 99.28 99.66 99.49 98.94
Grapes untrained 33.62 52.38 69.43 66.79 71.56 73.36 72.83 79.92 81.15
Soil vinyard develop 91.13 95.79 90.52 94.76 90.58 93.74 99.28 99.59 99.9
Corn senesced green weeds 60.31 73.16 81.44 74.89 88.55 62.17 85.87 85.47 94.65
Lettuce romaine 4wk 80.36 71.94 91.79 85.36 88.90 91.65 99.12 97.42 99.53
Lettuce romaine 5wk 91.11 83.48 96.15 98.49 98.65 95.44 99.74 99.22 99.74
Lettuce romaine 6wk 85.18 81.51 95.31 98.90 95.65 98.84 99.23 99.28 99.34
Lettuce romaine 7wk 73.05 93.14 97.46 98.08 94.96 97.78 99.44 99.64 98.97
Vinyard untrained 53.14 44.38 71.92 75.36 65.04 68.68 77.32 81.65 77.27
Vinyard vertical trellis 99.51 83.97 91.09 83.14 86.05 81.17 91.84 89.90 98.67
OA 66.47 75.61 84.25 85.29 82.80 82.78 89.15 91.03 92.14
AA 75.46 82.33 88.68 90.31 87.60 87.03 94.08 94.41 96.23
Kappa 63.54 73.14 82.53 83.69 80.95 80.88 87.96 90.03 91.27

TABLE V: Classification results (%) on the UP dataset with various algorithms
Class SVM 3D-

CNN
SSRN DFSL+

NN
DFSL+
SVM

RN-
FSC

DCFSL DT-
FSL

ACDFSL

Asphalt 91.85 76.29 75.87 69.19 73.43 73.98 82.20 92.68 86.34
Meadows 84.01 71.53 66.95 84.63 89.25 88.80 87.74 84.55 90.43
Gravel 29.72 58.41 61.30 57.47 48.09 52.07 67.46 71.60 74.79
Trees 51.51 56.73 80.65 89.99 84.72 90.64 93.16 91.28 97.97
Painted metal sheets 93.90 99.48 99.24 100.00 99.65 98.94 99.49 99.58 98.81
Bare Soil 36.54 38.32 61.57 71.90 66.49 78.65 75.51 80.44 78.83
Bitumen 58.49 89.71 86.62 97.08 92.61 93.79 98.42 96.25 99.11
Self-Blocking Bricks 43.06 32.63 59.13 65.97 61.94 70.73 79.05 79.86 80.73
Shadows 81.55 94.60 92.17 96.35 96.38 98.61 99.78 100 100
OA 66.88 68.61 73.22 77.18 76.19 78.47 82.33 85.47 87.67
AA 63.40 68.42 75.78 81.40 79.17 83.14 86.48 88.48 89.66
Kappa 61.81 63.66 69.42 74.03 72.76 75.23 79.51 83.11 85.49

(a) Ground Truth (b) Predicted image

Fig. 3: UP Data

3D-CNN, SSRN, and other DFSL variants. This outcome
demonstrates ACDFSL’s effective application to HSIs of
various complexities.

Our ACDFSL method employs an attention mechanism
that allows the model to concentrate on task-relevant features.
This leads to enhanced accuracy, especially when handling
high dimensional data, where the relevance of features can
significantly vary. This approach stands in contrast to how
a standard CNN operates, where each layer indiscriminately
learns to react to specific features present in the input data,
without considering their relevance to the specific task at
hand.

In terms of performance, ACDFSL exhibited outstanding
results for specific classes in the Salinas and UP datasets
as seen in Figure 4. For instance, in the Salinas dataset,

ACDFSL achieved perfect classification accuracy for classes
1, 2, and 6, and near-perfect results for class 9, 11, 12,
and 13 far exceeding the inconsistent outcomes of SVM and
3D-CNN. Similarly, in the UP dataset, ACDFSL maintained
high performance across most classes, particularly excelling
in classes 2, 3, 4, 7, 8 and 9. These findings suggest that
ACDFSL effectively captures the spectral and spatial features
of HSI, thereby ensuring superior classification accuracy.

Furthermore, our study highlighted ACDFSL’s proficiency
in classifying specific classes like Shadows, Brocolli, Let-
tuce and Meadows. This suggests that these classes might
possess unique spectral features or more uniformity, facil-
itating simpler classification. These findings reflect the po-
tency of ACDFSL’s feature learning approach and attention
mechanism in tackling complex classification tasks, even in
scenarios where classes have closely related or overlapping
spectral characteristics.

Despite the significant findings, this study has some lim-
itations. The focus primarily on Salinas and UP datasets
narrows its applicability to other potential target areas. A
comprehensive analysis considering computational cost and
model complexity—essential aspects for real-world ACDFSL
application—was not conducted. Additionally, our method
excels at detecting edges but struggles to perform well in
larger areas. This could be attributed to factors such as
limited receptive field of the network, SE attention bias, and
data distribution.

Given these findings and identified limitations, we propose
several directions for future research. First, the inclusion of
more diverse HSI datasets would validate the broad applica-
bility of ACDFSL. Techniques such as dilated convolutions
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(a) Comparative results in Salinas Data (b) Comparative results in UP Data

Fig. 4: OA(%), AA(%) and Kappa of nine HSI classification methods on two target datasets. (a) Salinas (b) UP.

and spatial-aware attention could be explored for making
the model gather more contextual information of larger
areas. Also, the exploration of enhancements to the ACDFSL
model, through robust data augmentation techniques, source
dataset variations, or a dynamic discriminator network, is
worth investigating.

V. CONCLUSION

In this research, we propose a novel model ACDFSL to
address the challenge of HSI classification under the con-
straints of cross-domain and few-shot learning. The model
is engineered to concurrently learn a classification algorithm
for target classes using a limited number of labeled samples
while minimizing domain shifts incorporating the Squeeze-
and-Excitation attention mechanism into the ACDFSL frame-
work, resulting in marked improvement in HSI classification
accuracy. Experiments conducted on three diverse datasets
Chikusei, UP, and Salinas demonstrate the superior perfor-
mance of the ACDFSL method. Not only does it outpace
other deep learning methodologies when limited labeled
samples are available, but it also surpasses existing HSI
FSL methods. These findings confirm the effectiveness of
the ACDFSL model, marking a significant step forward in
the field of HSI classification. Further developments and im-
provements of the ACDFSL model, as well as its application
to an expanded range of HSI datasets, will be the subject of
future work. For reference and reuse, the source code for
our work is publicly accessible on our GitHub repository at:
https://github.com/Rojan119/ACDFSL-Future-Wisdom.git.
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