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Abstract—This paper presents an automated measurement 

of retinal artery and vein blood vessels using the state-of-the-art 

deep learning architectures. The measurement of the artery-

vein ratio plays a vital role in predicting intracranial pressure 

(ICP) in traumatic patients. In the proposed method, the artery-

vein and optic cup-to-disc (OCD) information are extracted 

from the retinal fundus imaging using deep CNN (D-CNN). The 

process involves the preprocessing of the retinal fundus image 

to highlight the vessels information and OCD more clearly. 

Further, the feature extraction of the vessels and OCD is 

performed using the base architecture of D-CNN. The extracted 

vessels and OCD determined the artery-vein ratio. The 

performance of the segmented artery-vein and OCD is 

evaluated and analyzed. Validation of measured artery-vein and 

OCD has been done by comparing these values with the ground 

truth values. The accuracy of the segmented artery-vein is 

determined to be 95.21 for the HRF dataset and the segmented 

optic cup and disc were found to be 94.70 and 92.36, respectively 

for the Drishti dataset. The extracted feature of artery-vein and 

OCD determines the artery-vein ratio using the connected 

component analysis. The algorithm-generated measured value 

is compared with the manually generated value by the two 

observer for the artery-vein ratio. The average error for the 

INSPIRE-AV dataset on total 40 images is found to be 0.15. 

Keywords— deep CNN, trauma, artery vein, optic cup, optic 

disc 

I. INTRODUCTION 

The early detection and monitoring of trauma patients are 
needed to prevent brain damage and treatment can be provided 
for the caused injury. The injury caused required continuous 
brain screening for analysis and diagnosis using non-invasive 
techniques [1-4]. The retinal fundus imaging could lead to 
early detection and help the doctor better diagnose the brain 
injury. Currently, the retinal fundus imaging technique is used 
as a non-invasive method for the early diagnosis of glaucoma, 
diabetic retinopathy and hypertension cases [5-7]. In fundus 
imaging, diagnostic biomarkers such as blood vessels (artery-
vein), optic cup and optic disc can be observed [8][9]. The 
observed markers can act as an early indicator for trauma 
patients depending on the abnormality caused by the brain 
injury. Moreover, the artery-vein ratio (AVR) can be 

measured with the extracted feature of the segmented artery-
vein, optic cup and optic disc. Few literatures have explored 
the possibility of monitoring intracranial pressure (ICP) in 
hypertension cases with artery–veins, optic cup and optic disc 
measurement using fundus imaging [10-16].  

ICP monitoring is considered the key to optimizing the 
treatment of secondary brain injuries such as subarachnoid 
hemorrhage, cerebral edema, fatal myocardial infarction, 
intracranial hemorrhage and central nervous system infection 
to improve the treatment of traumatic brain injury. The 
measuring method of ICP can be invasive or non-invasive; the 
invasive procedures include an intraventricular catheter and 
lumbar puncture techniques, which are harmful to daily 
routines [17-19]. The non-invasive methods include the 
measurement of optic nerve sheath diameter using 
ultrasonography, computed tomography and magnetic 
resonance imaging scan. However, for daily clinical use, the 
promising optic nerve sheath diameter measure using 
ultrasonography can be effective [19][20]. Still, it has not been 
validated for routine clinical use and is prone to high 
interobserver variability levels. To date, much literature is 
available for ICP monitoring, but monitoring of ICP with 
artery–vein and OCD measurement using fundus imaging is 
needed. However, there is a huge gap in research to automate 
these biomarker’s measurement and correlate it with 
hypertension cases.  

Many reported literatures perform the segmentation of the 
diagnostic markers [21-23]. The automated measurement of 
arteries and vein is of interest due to the complex nature of the 
retina blood vessels. In addition, the segmentation of the optic 
cup and optic disc is needed for the AVR determination based 
on the width is necessary for correlating with the diseased 
retinal images considering the case of normal, diabetic 
retinopathy and hypertension [24][25]. In this novel proposed 
work, the preprocessing of the retinal fundus image is 
performed to extract the information by improving the 
contrast, followed by the segmentation algorithm based on a 
deep convolutional neural network. The segmentation of the 
artery-vein and optic cup and optic disc is performed using the 
pre-trained deep network.  
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Fig. 1. Overview of the proposed approach in AVR Measurement 

 

The segmented biomarkers are further used to determine the 

maximum width which is individually calculated for the 

artery and vein to obtain the AVR. Fig.1 depicts the overall 

view of the proposed approach used in AVR measurement. 

 

The main contribution in the proposed work is summarized 

as follows: 

1. The novel framework is designed to balance the feature 

map information and restructure the deep CNN model. 

2. The transfer learning approach is adopted to overcome the 

overfitting problem with the publicly available clinically 

validated smaller dataset for the segmentation. 

3. Validation of the segmented artery-vein and optic cup to 

disc using the retinal fundus is done which achieves an 

excellent accuracy. 

4. Automatically generated artery-vein ratio is compared 

with the manually generated values of the two observers 

for the INSPIRE-AV dataset. 

 

The rest of this paper is organized as follows: Section 2 

discusses the related work contributed by researchers, 

followed by preprocessing steps, segmentation network and 

calculation of the maximum width of artery and vein. Section 

3 describes the experimental work, which gives information 

on the dataset used for the comparison and analysis. Section 

4 concludes the paper with future work and research 

directions.  

II. PROPOSED METHOD 

 

In the present work, a deep learning approach is used to 

automate the detection of the biomarker in retinal fundus 

imaging. It starts by performing the preprocessing steps to 

improve the contrast, extract the image channel and its 

features to segment the biomarkers. The channel extraction 

for the retinal fundus image in Fig. 2 is highlighted along with 

the histogram. The proposed work can be accomplished into 

three steps is explained in detail as: 

 

Step 1: Input dataset and preprocessing: 

The proposed method, first preprocessed the retinal 

fundus image to generalize the retinal dataset and improves 

the performance of the CNN architecture. These preprocessed 

steps will help the model to be more robust during the feature 

extraction stage in the deep network model. The 

preprocessing steps performed in various steps are explained 

as: 

1. Rescaling : The dataset rescaling is performed to consider 

the image of the same size as it comes in different sizes 

during the image acquisition. Due to the different size 

there will be a change in the intensity of the image, 

therefore the image is resized to 224x224 dimensions. 

2. Normalization: The normalization operation is 

performed to normalize the intensity values of an image 

between -1 and 1. The advantage of performing the 

normalized operation is during training the deep network 

as it will be easy to optimize the network. 

  

Step 2: Extraction of Feature using Pretrained Network 

In the field of medical imaging, acquiring large datasets is 

often challenging. Due to the small sample size of the dataset, 

the deep learning model may not perform well and sometimes 

causes the overfitting due to improper distribution of the 

dataset. It is known that deep learning models perform well 

on the large number of datasets, to overcome with such 

problem the data augmentation technique is applied and the 

transfer learning approach using a pre-trained model. 

 

1. Data augmentation: In training the deep learning model, 

as the model get deeper it is difficult to train the model for 

the small size dataset. The problem of a small sample 

dataset is solved by considering the data augmentation 

technique. In data augmentation, during the training 

process, applied the random rotations within the range of 

-20 to +20 degrees and random magnification within the 

range of 90% to 110% to diversify the dataset. These 

transformations were applied to the images using 

appropriate built-in functions available in the framework, 

aiming to increase the diversity of the training data and 

improve the model’s generalization. 

 

2. Transfer Learning: In the proposed work, the transfer 

learning approach is used to fine-tune the model. The 

method uses the pre-trained base architecture in the 

encoder-decoder module, the encoder section uses 

EfficientNet [26] and the decoder section uses U-net [27] 

(pre-trained) model to extract the features in order to 

segment the artery-vein for the retinal fundus image. This 

combination allowed us to benefit from the feature 

extraction capabilities of EfficientNet while leveraging 

U-net skip connections to retain spatial information 

during the upsampling process. Fig. 3 depicts the 

schematic diagram of an encoder-decoder architecture for 

artery-vein segmentation.  
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Fig. 2 Illustrates (a) Original image [29], (b) Red channel extraction, (c) Green channel extraction (d) Blue Channel extraction, 

(e) Normalized Green channel (f) Histogram plot of green channel extraction, and (g) Smooth histogram of the green channel. 

 

The proposed method first inputs the preprocessed retinal 

fundus image which is encoded in a pre-trained model to 

extract the feature using the pre-trained deep neural network. 

The model extracts the each feature for a different layer and 

encodes these features as an vector.The extracted feature is 

then upsampled using the decoder section followed by the 

classification of artery and vein. 

Moreover,  the proposed method segments the optic cup 

and optic disc using the fundus imaging of the same aspect 

ratio considered for the artery vein. The dataset and the deep 

neural network work model is different. Here, the model uses 

the available model disc cup segmentation glaucoma network 

(DC – Gnet) to segment the optic cup and disc [28]. The 

network extracts the features for the resized image by 

downsampling and then upsampling the layers. The extracted 

features in the training phase outputs the segmented optic cup 

and optic disc. Further, in the training phase the filter size of 

3*3 is used for the convolutional in both the segmentation. 

To prevent the overfitting issue dropout layer and batch 

normalization are added and defined the loss as binary cross-

entropy. The dropout is varied for various cases and kept an 

0.2 in segmentation of optic cup and disc. Overall the layers 

in the network uses the ReLU activation function.   

 

Step 3: Measurement of Artery-Vein Width 

The segmented optic cup and disc uses as a regions of the 

interest (RoI). The ROI is a circular area around the optic disc 

that serves as the region for artery-vein analysis. The radius 

of the ROI can be chosen based on a specific diameter value, 

such as 0.5 mm or 1 mm, which represents the desired width 

for the analysis. The ROI should be entirely contained within 

the boundaries of the segmented optic disc to ensure accurate 

measurements. The segmented artery vein lies within the RoI 

for which the maximum width of the artery and vein is 

obtained. The obtained artery and vein are shown in red and 

blue in Fig 4 (b). Using the OpenCV library, the red and blue 

information is separated respectively for the artery and vein 

and converted into grayscale. The steps follow the 

morphological opening operation to remove small objects or 

noise. Further, the connected component analysis technique 

is used to identify and analyze distinct objects or regions in 

an image. The analysis identifies individual regions or objects 

in the image and calculates properties such as the area, pixel 

indices, and pixel coordinates for each region. The process 

continues repeatedly through each identified region or object 

in the image and examines its area. If the area is above a 

certain threshold (20 in this case), it further analyzes the 

pixels within that region to determine whether it belongs to 

an artery or a vein. The determination is made based on the 

x-coordinate of each pixel. If the x-coordinate is less than half 

the width of the image, it is considered part of an artery. 

Otherwise, it is considered part of a vein. In the process, it 

counts the number of arteries and veins found. The obtained 

retinal vessel width is determined with a computer-aided 

technique; the blood vessel is selected based on the 

segmented optic cup and optic disc information, which has a 

maximum diameter at a point and computing its diameter. 

The Euclidean distance method is used in computing its 

diameter in both artery and vein vessels. Moreover, the 

maximum width of the artery and vein is obtained and based 

on the clinical studies the artery vein ratio or width can be 

helpful, as it correlates with the ICP increases in the brain as 

any one of the component changes. 

III. EXPERIMENTS AND RESULTS 

3.1 Experiments 

In this section, the experimental results have been 
discussed for the extraction of the artery-vein, optic cup and 
disc using retinal fundus imaging in the proposed work. The 
RITE [29], HRF [30], and LES-AV [31] publicly available 
datasets have been considered for artery-vein segmentation. 
The Drishti-GS dataset is considered for the segmentation of 
the optic cup and optic disc using retinal fundus imaging. 
Experimental operation is performed on the Google 
Colaboratory using the configuration of Tesla P100 PCI-E, 
16GB GPU and 12.72GB RAM with the help of tensorflow 
and OpenCV library. The proposed work experimental setup 
is divided into two steps: Initially, the segmentation of the 
artery and vein accuracy is evaluated using the deep CNN 
(encoder-decoder) structure and segmentation of the optic cup 
and disc accuracy is evaluated using the DC-Gnet, followed 
by the width measurement of the artery and vein and finally 
correlation analysis is done. These publicly available retinal 
fundus images are randomly divided into a training (70%) and 
a validation (30%) set. Further data augmentation techniques 
are applied to increase the size of the dataset. For testing 
purposes, the publicly available database of the INSPIRE-AV 
[32] is considered to validate the finding of the automated 
AVR measurement. 
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Fig. 3 depicts the schematic diagram of an encoder-decoder architecture for the segmentation of artery-vein. 

 

3.2 Results 

In the study, the automated measurement of artery and vein 
ratio has been determined. The encoder-decoder architecture 
is used to correctly segment the blood vessels into the artery 
and vein and the softmax classifier classifies the artery vein. 
Moreover, the segmentation of the optic cup and optic disc has 
been done using the DC-Gnet architecture and classify into 
optic cup and disc. Fig. 4 and Fig. 5 depict the extracted artery-
vein and optic cup and disc, respectively. The performance of 
the segmented parameter has been evaluated and validated. 
The architecture segmented to locate the area of interest such 
as the artery vein and obtained the training and validation 
accuracy highlighted in Table 1. The performance was 
evaluated on three available dataset as the sensitivity and 
specificity of 0.91 and 0.85 respectively, for the HRF dataset 
were found to be satisfactory. The accuracy of the segmented 
artery-vein is determined to be 95.10 for the dataset. 

Further, the performance of the segmented optic cup to 
disc was evaluated based on the dice similarity, jaccard index 
and accuracy. The accuracy of the segmented optic cup and 
disc was found to be 94.70 and 92.36. Table 2 illustrates the 
parameter value obtained for the segmentation of the optic cup 
and optic disc. Moreover, the artery–vein ratio measurement 
value is computed using the segmented artery vein and optic 
cup to disc inference graph data. The validation of the artery 
vein measurement was performed on the INSPIRE dataset 
which is publicly available. The algorithm-generated 
measured value was compared with the manually generated 
value by the two obsever (Obs 1 and Obs2) for the artery-vein 
ratio. Table 3 illustrates the performance evaluation of the 
artery-vein ratio measurement. The average error for the tested 
dataset on total 40 images is found to be 0.15. The agreement 
between the measured value by the two observers and 
automated generated values is determined using the Bland-
Altmann plot. It is found that for observer 1 (Obs 1) and 
automated measured values, the limit lies between 0.11 to -
0.08, the mean difference is 0.015, and the standard deviation 
of differences is 0.050. Similarly, for observer 2 (Obs 2) and 

automated measured values, the limit exists for 0.10 to -0.09, 
the mean difference is 0.008, and the standard deviation of 
differences is 0.05. Fig. 6 depicts the Bland Altmann plot 
between the observer 1 and 2 with an automated measured 
value of AVR. Moreover, there are certain limitations in the 
measurement that need to be considered in detail. The artery 
vein region is not considered which crosses each other and 
thin vessels sometimes disappear during the segmentation 
process in the optic cup and disc region. Another limitation in 
the segmentation of the optic cup and disc needs to be 
highlighted. With the progress of the disease in the eye the 
cupping generally occurs. Sometimes, this cupping leads to 
misjudgement of the artery-vein diagnosis, that leads to error 
in measurement.  

TABLE 1  

PERFORMANCE EVALUATION OF ARTERY-VEIN 

Dataset Training 

Accuracy 

Validation 

Accuracy 

Sensiti-

vity 

Specifi-

city 

RITE 92.17 91.27 0.91 0.84 

HRF 95.21 93.23 0.93 0.89 

LES-

AV 

89.11 86.87 0.88 0.91 

 

     

(a) Original Image [32]               (b) Extracted Artery-Vein 

Fig. 4 depicts artery-vein extracted for the INSPIRE-AV 
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TABLE 2 

PERFORMANCE EVALUATION OF OPTIC CUP TO DISC 

 

Parameter Dice Similarity Jaccard 

Index 

Accuracy 

Optic Cup 0.90 0.89 94.70 

Optic Disc 0.86 0.91 92.36 

 

TABLE 3 

COMPARISON OF THE OBSERVED VALUE AND THE 

AUTOMATED GENERATED VALUE OF ARTERY-VEIN 

RATIO 

 

 

Subject 

Manual 

Measurement 

 

Automated 

Measurement 

Difference in 

Measurement 

Obs 1 Obs 2 Obs1 Obs 2 

1 0.70 0.71 0.72 0.02 0.01 

2 0.63 0.68 0.67 0.04 0.01 

3 0.70 0.65 0.65 0.05 0.00 

4 0.65 0.64 0.65 0.00 0.01 

5 0.78 0.75 0.71 0.07 0.04 

 

 

Fig. 5 Depicts (a) grayscale image of fundus, (b) optic cup and (c) 

disc extracted for the INSPIRE-AV 

 
 
 

            
(a)                                                                                                         (b) 

 
Fig. 6 Bland Altmann plot depicts (a) between the observer 1 and automated measured value of AVR, (b) between the observer 
2 and automated measured values of AVR. 
 

IV. CONCLUSION 

In the proposed work, an efficient method was presented 
for automated measurement of the artery-vein ratio using a 
deep learning model. The proposed work performed a 
segmentation of the artery-vein, optic cup and optic disc. The 
segmented biomarkers were used to measure the artery-vein 
ratio measurement. The automated measured value was 
validated with the help of a manually measured value on the 
INSPIRE dataset. In our future work, the automated measured 
value will be correlated with the trauma-related patients. Also,  
the data sample size will be expanded and at the same time 
more optimized model will be developed for the segmentation 
of biomarkers in retinal fundus imaging. Moreover, the 
developed algorithm will be used to develop a biomedical 
device which could benefit the clinician and diagnose the early 
symptoms of trauma injury. 
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