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Abstract—Federated optimization or federated learning (FL)
involves optimization of the global model or the server model by
minimizing the global loss function which is weighted average
of all the local loss functions. The optimization of the global
model requires faster convergence to reduce the number of
communication rounds or global iterations which is one of the
major challenge in federated optimization. This paper propose
FONN which handles this communication overhead in federated
optimization by utilizing Nys-Newton, while updating local
models. As compared to existing state-of-the-art FL algorithms,
SCAFFOLD, GIANT and DONE, utilization of Nys-Newton
leads to better convergence and reduction in communication
rounds or global iterations while achieving a desired perfor-
mance from the global model which may be observed from
the experimental results on various heterogeneously partitioned
datasets.

Index Terms—Federated Optimization, Communication over-
head, Faster convergence, Nys-Newton

I. INTRODUCTION

Federated learning (FL) or federated optimization [1] is
one kind of distributed learning algorithm, where multiple
clients or data sources collaboratively train a global model
or server model by sharing their locally trained model to the
server instead of raw data. The objective of FL is to optimize
the global model parameters by minimizing weighted average
of all the local loss functions. One communication round
of federated learning involves sharing server model to all
the participating (or available) clients and collecting locally
trained models from the clients to the server. These commu-
nications are the major issue with federated learning which
needs to be minimized. To mitigate this issue, several works
have been done which use either first-order optimization or
second-order Newton method of optimization.

FedAvg [1], the baseline of federated learning algorithms,
finds locally updated models with the help of first-order
stochastic gradient descent optimizer (SGD) [2] and aggre-
gates these models in the server to find the global model.
FedAvg performs well when data are homogeneously dis-
tributed. With heterogeneous data partitions, FedAvg suffers
from objective inconsistency [3], [4] which means that the
global loss function (weighted average of all the local loss
functions) is minimized at a stationary point which is away
from the true optima. FedProx [5], FedNova [6], SCAFFOLD
[7], FedDC [8], MOON [9] etc. are existing first-order
based FL algorithms which are invented for mitigating the
problem of FedAvg. FedProx adds a proximal term with the
local loss function to control the direction of the stochas-
tic gradient while updating local models. FedNova utilizes
normalized weights while aggregating all the local models
in the server. SCAFFOLD uses control variates to handle

data heterogeneity, FedDC uses auxiliary local drift variable
which helps to bridge the gap between the local and global
model parameters. MOON conducts contrastive learning in
model-level. Through these algorithms perform better than
FedAvg in heterogeneous system, their convergence rate is
still slow as these algorithms use only first-order gradient
while updating local models.

To further increase convergence of federated learning,
researchers focus on another direction of optimization which
is based on second-order Newton method [10] where Hessian
curvature information is incorporated along with gradient
while updating model parameters, which leads to faster
convergence or reduced communication rounds in federated
learning. The main challenges of using Newton method in
federated learning are the computation and storing of Hessian
matrix and its inverse which may be difficult for large scale
application as the space & time complexities of calculating
and storing Hessian are both O(d2) and the space & time
complexities of calculating and storing inverse of Hessian
are O(d2) and O(d3) respectively [11], [12]. These burdens of
storing and computation of Hessian and its inverse motivate
us to use approximated Hessian instead of true Hessian.
Existing Newton method based FL algorithms include DANE
[13], DiSCO [14], GIANT [15], FedSSO [16], DONE [17],
FedNL [18] etc.

DANE, DiSCO, GIANT and DONE use global gradient
(average of all local gradients) to approximate local newton
direction. GIANT uses conjugate gradient method [19] to
approximate the local newton direction and takes harmonic
mean of all local Newton updates to find global Newton
update. DANE finds a mirror descent update on the local
loss function. For a quadratic loss function, this descent
update is same as GIANT update. DONE uses Richardson
iteration for local update. DiSCO finds local Hessian vector
products and communicate these to server and performs pre-
conditioned conjugate gradient method to approximate global
Newton direction. FedSSO finds global update in server by
using Quasi-Newton method on average of local gradients.
Even, FedSSO is more communication efficient that DANE,
DiSCO, GIANT and DONE, the requirement of storing
full Hessian matrix in the server is the major drawback
of FedSSO for learge scale settings. FedNL stores previous
step’s Hessian matrix to approximate current step’s Hessian.
Storing, calculation and compression of local Hessian results
in additional computational load to the local clients.

Our proposed method, FONN, aims to further increase
convergence rate or to further reduce the communication
rounds in FL by efficiently incorporating Hessian curvature
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information without storing it. Same as GIANT, FONN
utilizes global gradient and harmonic mean of local Newton
updates to find the global update. To approximate local
Newton update, FONN utilizes Nys-Newton [11] which has
linear-time space and time complexities. As compared to
existing state-of-the-art FL algorithms, SCAFFOLD, GI-
ANT and DONE, utilization of Nys-Newton leads to better
convergence and reduction in communication rounds while
achieving a desired performance from the global model
which may be observed from the experimental results on
various heterogeneously partitioned datasets. Our proposed
FONN can achieve better performance while maintaining
same local time complexities as GIANT and DONE.

II. PROBLEM FORMULATION

The objective of federated learning is to find the optimized
parameters of the global model w ∈ Rd by minimizing the
global loss function F(w) which is average of all K local
loss functions {Fi(w)}, where i ∈ {1, 2, ....,K} and K is
number of clients participated in federated learning. The ith
client Pi has its own dataset Di.

min
w

F (w) =
1

K

K∑
i=1

Fi(w,Di) (1)

Where Fi(w)= 1
|Di|

∑|Di|
j=1 Fj(w, xj ∈ Di)

III. PRELIMINARIES

A. Newton method of optimization

Newton method of optimization scales the gradient gt with
the help of inverse of Hessian Hd×d while updating model
parameters as shown in equation- 2

wt+1 = wt −H−1
t gt (2)

The main challenges associated with Newton method of
optimization are the calculation and storing of Hessian and its
inverse as the time & space complexities of Hessian matrix
are both O(d2) and time & space complexities of inverse
Hessian matrix are O(d3) & O(d2) respectively which may
be difficult to implement for learge scale applications.

B. Federated Learning

In federated learning, instead of collecting raw data from
the clients, locally trained models {wi

t} are collected and
then aggregated for finding global model wt+1. Initially, the
server shares a common global model wt to all the clients
and each client separately updates this global model with
the help of their local optimizer, local data (Di) and local
gradient (git). Server then receives all the locally updated
models {wi

t} and aggregates these to find the global model
wt+1.

wt+1 =
1

K

K∑
i=1

wi
t = wt −

η

K

K∑
i=1

git (3)

C. Harmonic mean of local Hessians

While aggregating local models, first-order based FL algo-
rithms use arithmetic mean over all the client’s models as the
locally updated models involve scaling the gradient with a
learning rate or step size (η) parameter as shown in equation-
3. But if the local models are updated by using Newton
method (equation- 2), the arithmetic mean of the local models
contains harmonic mean of local Hessians (which is not
same as arithmetic mean of local Hessians [15]) which
results in inappropriate aggregation of local models while
finding global model. This is one of the major bottleneck of
using Newton method of optimization in federated learning
[20]. GIANT [15] addresses this issue and proves that the
arithmetic mean is nearly same as harmonic mean of local
Hessians when the local models are updated with the help
of same global gradient (gt) and the data are incoherent.
Our proposed FONN algorithm uses the same concept of
GIANT. To efficiently aggregate local models, FONN uses
same global gradient for finding all the local updates.

Algorithm 1 FONN
0: Input: T : Number of FL iterations, w0: Initial global

model, η: learning rate, ρ: Hessian regularization
parameter

1: for t = 1 to T do
2: Server sends wt to all the clients
3: Each client Pi receives wt and finds local gradient git=

∂Fi(wt)
∂wt

and sends this git to the server
4: Server aggregates all the local gradients {git} and finds

global gradient gt = 1
K

∑K
i=1 g

i
t over all the clients.

5: Server sends this global gradient gt to all the clients
6: Each client updates wt with the help of Nyström

approximatited Newton direction or Nys-Newton [11]
and finds wi

t+1 as mentioned in equation-4. Each client
uses global gradient gt instead of local gradient while
finding local Newton update.

7: Server collects all the locally updated models {wi
t+1}

and aggregates these to find the global model wt+1 =
1
K

∑K
i=1 w

i
t+1

8: end for

D. Nys-Newton

Nys-Newton [11] is a variant of Newton method of op-
timization where the true Hessian is approximated with the
help of Nyström approximation on partial column Hessian of
size d×m with m ≪ d randomly selected Hessian columns.
In nys-Newton, the update direction is calculated directly
with out calculating and storing full Hessian matrix which
in the key advantage of Nys-Newton. To invert the approx-
imated Hessian, Nys-Newton uses a regularized variant of
Newton method as given in equation-4

wt+1 = wt − ηBg (4)

Where, B=(ZZT +ρId)
−1 , Z = CUrΣ

− 1
2

r , Mr= UrΣrU
T
r is

the best r rank approximation of M (M is found by taking the
intersection of m columns and corresponding m rows of the
Hessian), η is learning rate, ρ is Hessian regularization term,
Id is Identity matrix of size d and g is stochastic gradient.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 530



Fig. 1. Comparisons of training loss, test loss and test accuracy on MNIST

Fig. 2. Comparisons of training loss, test loss and test accuracy on FashionMNIST

Fig. 3. Comparisons of training loss, test loss and test accuracy on SVHN

By using these Z and ρ, Nys-Newton finds the Newton
update Bg = (ZZT + ρI)−1g = 1

ρg − QZT g, where Q =
1
ρ2Z(Ir+

1
ρZ

TZ)−1 and Ir is Identity matrix of size r. This
Bg is then used for updating model parameters as mentioned
in equation-4

IV. PROPOSED FONN

Our proposed FONN is a Newton method based FL
algorithm where the local Newton update is approximated
by using Nys-Newton [11] and global gradient (gt). One
global iteration of FONN is shown in algorithm-1. In FONN,
server sends initial global model wt to all the clients and
finds global gradient gt across all the clients by collecting
and aggregating all the local gradients {git}. Each client then
receives this global gradient gt and updates wt separately
with the help of equation-4 of Nys-Newton. While applying
Nys-Newton, each client uses their own local data and the
global gradient. Use of global gradient while finding local
Newton update makes the harmonic mean equivalent to arith-
metic mean of local Hessians which helps us to efficiently
aggregate local models while finding global model.

A. Complexities in each global iteration
In FONN, the local time and space complexities for finding

Newton update are both O(md), where m ≪ d is number of
selected Hessian columns. In GIANT and DONE, the local
time and space complexities are O(Rd) and O(d), where R
is the number of conjugate gradient iterations or number of
Richardson iterations. We compare FONN with GIANT and
DONE with same local time complexity i.e. R=m. The server
space and time complexities of FONN are same as FedAvg.

V. EXPERIMENTAL SETTINGS

We evaluate the performance of FONN on heterogeneously
partitioned MNIST, FashionMNIST and SVHN datasets.
We also compare FONN with existing state-of-the-arts FL
algorithms, SCAFFOLD, GIANT and DONE. We use multi-
nomial logistic regression (MLR) model with crossentropy
loss function for federated multi-class classification tasks.
For a clear comparison, we convert original 10 classes SVHN
datasaets into binary classes. For pytorch [21] SVHN dataset,
we replace original 0, 1, 2, 3, 4 classes with 0 and 5, 6, 7, 8,
9 classes with 1. For each dataset, we use same initialization
and same settings for all the methods. To find the best
performing model for each method, we conduct extensive ex-
periments with multiple sets of hyperparameters and choose
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TABLE I
Comparisons of global iterations for SCAFFOLD, DONE, GIANT and FONN using their optimal hyper-parameters

Targeted test
accuracy DONE GIANT SCAFFOLD FONN

MNIST 80 % 18 24 25 16
FashionMNIST 78 % 28 27 — 24

SVHN 62 % 13 20 — 8

the best performing model by considering global iteration
wise minimum train & test losses and maximum test accu-
racy. We use learning rate η ∈ {1, 0.1, 0.01, 0.001, 0.0001},
FONN regularization parameter ρ ∈ {0.5, 0.1}. To compare
FONN with existing Newton method based FL algorithms,
GIANT and DONE with the same local time complexity, we
use R=10 local iterations for GIANT & DONE and m=10
number of randomly selected Hessian columns for FONN.
For DONE, we use α = 0.01 ≤ 1

R . For all the methods,
we use full batch while updating local model. To consider
partial device participation due to network connectivity issue
or internal problem of client’s devices, we use 40% clients
participation in each global iteration out of total 200 clients.
We implement all the methods using Tesla V100 GPU and
PyTorch-1.12.1+cu102.

we use the Dirichlet distribution based heterogeneous and
unbalanced partition strategy to make heterogeneous data
distribution across the clients, which is same as the utilization
of the paper of Yurochkin et al. [22]. We simulate pi ∼
Dir(0.2) and find a heterogeneous partition by allocating a
p(j,i) proportion of the samples of jth class to ith client.
As we use very small value of Dirichlet distribution’s con-
centration parameter (0.2), each client may not get samples
of all the classes which indicates a high degree of data
heterogeneity across all the clients. For our experiments, we
use K=200 clients with 40% partial participation in each
round.

VI. RESULTS

Our experimental results on heterogeneously partitioned
MNIST, fashionMNIST and SVHN datasets are shown in
figures-1, 2, 3 and table-I. From these figures, it may be ob-
served that in FONN, training and test losses decrease faster
than state-of-the-art FL algorithms SCAFFOLD, GIANT and
DONE. As we use same initialization and same settings for
all the methods, it may be claimed that FONN has faster
convergence rate than SCAFFOLD, GIANT and DONE in
terms of global iteration wise training and test losses. From
the table-I and Test accuracy vs global iterations plots , it
may also be observed that FONN requires comparatively less
number of global iterations than SCAFFOLD, GIANT and
DONE, while gaining a targeted accuracy from the global
model which indicates that in heterogeneous data partitions,
FONN can deceases number of FL iterations or can improve
the convergence of the global model better than existing
state-of-the-art FL algorithms such that SCAFFOLD, GIANT
and DONE, while achieving a targeted test accuracy from the
global model.

VII. CONCLUSIONS

This paper proposes FONN to reduce the number of global
iterations in federated learning. FONN use global gradient in

Nys-Newton while finding local Newton updates and calcu-
lates the harmonic mean of local models to get the global
model. Experimental results on heterogeneously partitioned
MNIST, fashionMNIST and SVHN datasets show that FONN
performs better than existing state-of-the-art FL algorithms,
SCAFFOLD, GIANT and DONE in terms of requirement of
lower number of global iterations while achieving a targeted
performance from the global model.

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
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