
A Method of Distributing Clients to MQTT
brokers Using Server Redirection

1st Keisuke Yoshimura
Kogakuin University

Tokyo, JAPAN
em23046@ns.kogakuin.ac.jp

2nd Ryohei Banno
Kogakuin University

Tokyo, JAPAN
banno@computer.org

Abstract—MQTT is a simple message protocol with the
publish/subscribe model, which enables loosely coupled com-
munication. In large-scale systems, load balancing is required
because of the problem of concentrated load on brokers and
subscrebers. However, existing load balancing methods have
difficulty in distributing the load according to the load status
of broker and the sending frequency of publisher, and there is
a problem of a single point of failure.

In this study, we propose a load balancing method using
server redirection specified in MQTT v5.0 to improve the
problems of existing methods. In order to verify the effectiveness
of the proposed method, we conducted comparison experiments
with DNS round-robin, an existing method, and measured the
throughput and CPU utilization of each broker as evaluation
indices.

Index Terms—MQTT, Publish/Subscribe, Load distribution

I. INTRODUCTION

IOT devices have been spreading rapidly in recent years,
and according to the Ministry of Internal Affairs and

Communications’ 2022 White Paper on Information and
Communications [1], the number of IoT devices is expected
to grow to 39.85 billion by 2024. HTTP [2], WebSocket
[3], and other protocols are examples of protocols used to
collect information using IoT devices, These protocols are
unsuitable for some large-scale IoT systems because they
are one-to-one communication protocols. In addition, their
large header can cause a bandwidth squeeze.

In recent years, the MQTT protocol [4] has been attract-
ing attention. It is multicastable and allows many-to-many
communication. MQTT is more suitable for large-scale IoT
information collection than HTTP or other protocols because
the small header size does not squeeze the communication
bandwidth. IoT information collection with MQTT has a
problem where the load concentrates on the broker and
the subscriber, and various methods have been proposed to
distribute the load. However, existing load balancing methods
have difficulty in distributing the load according to the
broker’s load status and the publisher’s sending frequency.

This study aims to improve the issue of the single point of
failure and to realize the allocation according to the sending
frequency of publishers and the load status of brokers,
which are problems that have occurred in the existing load
balancing methods.

This paper consists of five sections: Chapter 2 describes
existing studies and related techniques, Chapter 3 describes
the proposed method, and Chapter 4 presents the results

This work was supported in part by JST PRESTO Grant Number
JPMJPR21P8.

Fig. 1. Overview of MQTT protocol

from the experimental environment and discusses the results.
Finally, Chapter 5 summarizes the paper and discusses future
prospects and issues.

II. EXISTING TECHNIQUES AND RELATED RESEARCH

A. MQTT

MQTT consists of three roles: publisher, broker, and sub-
scribe. MQTT is characterized by its simple and lightweight
message protocol, which means that it consumes little power
and does not overwhelm the communication bandwidth.
It also provides a loosely coupled nature due to its Pub-
lish/Subscribe model. Figure 1 shows how MQTT works. In
MQTT, the publisher sends a message with a topic to the
broker and the broker stores the message. Then the broker
forwards a it to the subscribe who has subscribed to its topic.

B. Load Balancing Method Using DNS Round Robin and
Shared Subscription

When a publisher sends a large amount of data to a broker,
there is a possibility of increased latency and packet loss. A
method proposed by Banno et al. [5] successfully produced
high throughput by using DNS round-robin to distribute the
broker’s receiving load and Shared Subscription to distribute
the subscribe’s receiving load.

1) DNS Round Robin: DNS round robin is also available
as a product [6] and is one of the major load balancing
systems. Figure 2 shows an overview of the DNS Round
Robin mechanism. In DNS round robin, a DNS server keeps
a table of domain names and IP addresses, and returns the IP
address corresponding to the domain name in question to a
client query. Clients connect to the IP address returned by the
DNS server to distribute the load. Advantages include ease of

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA1XP.2

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 86

Fig. 2. Allocating publishers by DNS round robin.

implementation and the fact that the DNS server configura-
tion file only needs to be changed when adding new servers.
The disadvantage is that DNS servers can only distribute
clients according to the order in the table corresponding
to domain names, so it is not possible to distribute clients
according to the broker’s load status. In addition, when
a problem occurs in the broker, communication continues
without detection. A time lag due to caching occurs when
DNS settings are changed due to the addition of new servers.

C. Load Balancing Method Using Load Balancers and Bro-
ker Clustering

To improve the aforementioned problems such as DNS
round robin, Jutadhamakorn’s method [7] uses a load bal-
ancer between the publisher and broker, and clusters the
brokers together to achieve more scalable load balancing.

1) Load Balancer: Load balancers are one of the major
load balancing systems available in the market [8]. Figure 3
shows an overview of the load balancer mechanism. When a
client connects to the load balancer, the load balancer stores
the client ID as a hash and assigns it to the broker for
each client ID. Messages sent from clients then pass through
the load balancer to the broker allocated earlier for load
balancing. The advantage of this method is that it provides
higher performance load balancing than DNS round-robin.
In addition, some load balancers have fault detection. The
disadvantage is that the load balancer is the single point
of failure because all communications go through the load
balancer. The larger the network, the higher the required
performance of the load balancer is. Besides, the latency
could be larger since it increases the relay points between
publishers and brokers.

III. PROPOSED METHOD

Figure 4 shows an overview of the proposed method,
in which a dispatcher implementing server redirection is
provided. Hereinafter, it is referred to as MQTT Dis-
patcher.MQTT Dispatcher obtains CPU utilization from each
broker and directs the publisher to connect to the broker
with the lowest load by using Server redirection. The CPU
utilization data obtained from each broker is sent to MQTT
Dispatcher using socket communication, and a 5-second
average is calculated by MQTT Dispatcher. When a client
connects, the broker with the lowest average value is set
as the redirection destination for Server redirection. Server
redirection is a new functionality defined in MQTT version
5.0 [9]. Figure 5 shows an overview of the server redirection

Fig. 3. Communication Between Publishers and Brokers with a Load
Balancer

Fig. 4. Overview of the Proposed Method

mechanism. Server redirection is a mechanism that includes
information on other brokers in the response message when
a client connects to a broker.

IV. EXPERIMENTAL ENVIRONMENT

Table 1 shows the specifications of the machines used in
this experiment. A total of eight machines were used to
run the following process. Two types of publishers were
implemented.Publisher 1 has 9 units.Publisher 2 one unit.
Broker has two units. MQTT dispatcher has one unit. Five
machines were used to implement the publishers. One ma-
chine each was used for the broker and MQTT dispatcher
implementation. We omit deploying subscribers since the
experiment focuses on allocating publishers. MQTTLoader
v0.8.2 [10] was used as the measurement tool, and Mosquitto
[11] was used to implement the broker. Since the brokers
run on Ubuntu, the CPU utilization was calculated every
second using the output information from /proc/stat in Linux.
Table 2 shows the parameter settings for the two types of
publishers. In this experiment, we evaluated the throughput
between publisher and broker and the CPU utilization of each
broker.

A. Experimental Methods

We compared the proposed method and a method using
DNS round-robin (hereinafter referred to as the “existing

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 87

Fig. 5. An Example of Server Redirection.

TABLE I
MACHINE SPEC

publisher，broker
CPU Celeron N3350
Memory 4GB
OS Ubuntu 20.04

method”). The experimental configuration of the proposed
method is shown in Figure 4, and that of the existing
method is shown in Figure 6. The existing method omitted
the implementation of DNS servers and publishers were
alternately connected to the broker. publishers were added
at intervals of approximately 5 seconds, and the order of
addition was randomly determined.

B. Result

The average throughput betweenthe publishers and the
brokers is shown in Figure 7. Figure 8 and 9 show the results
of CPU transition for each broker where Publisher2 was the
second to be added, and Figure 10 and 11 show the results
where Publisher2 was the fourth to be added. In terms of
throughput, the proposed method shows less difference in
throughput among brokers compared to the existing methods.

C. Discussion

The difference in throughput between the two brokers
is about 8000msg/sec for the existing method, while the
difference is about 3000msg/sec for the proposed method.
These indicate that the load on each broker is more uniform
than that of the existing method, and thus the proposed
method is more efficient in load balancing.

Comparing Figures 8 and 9, the proposed method has a
smaller difference in CPU utilization between the two bro-
kers than the existing method during the entire measurement
time. In other words, the proposed method could distribute
the load on the brokers more evenly than the existing method.
The reason is that the addition of the high-load publisher was
early, and the addition of the following publishers gradually
smoothed the biased load.

The proposed method seems to be less effective when
comparing Figures 10 and 11. Its difference between the two
brokers was smaller than the existing method for the entire
measurement time.

However, in Figure 10, the load on Broker2 increases
rapidly at around 20 seconds and then decreases quickly at
around 120 seconds. This period of about 100 seconds is
considered the operating time of Publisher2. Since the load
of Broker2 was down to almost zero after that period, it is

TABLE II
CONFIGURATION OF PUBLISHERS

publisher1 publisher2
Number 9 1
Payload size 600byte 600byte
Sending frequency 2000msg/sec 10000msg/sec
Operating Time 100sec 100sec

Fig. 6. The existing method in the experiment.

considered that no publishers were added to Broker2 after the
addition of Publisher2. That is, the CPU monitoring system
reflects the addition of the high-load publisher, which has
a high frequency of sending messages. From these, we can
say that load balancing according to the sending frequency
of publishers and the load status of brokers, which is the
objective of this study, can be achieved by the proposed
method.

On the other hand, only monitoring the CPU utilization
might be insufficient. Comparingthe results of the CPU
utilizations of the existing method (Figures 9 and 11), they
differ greatly, even though the load on the brokers is logically
almost the same from 50 seconds to 100 seconds.From this,
considering other metrics might make more effective load
distribution.

V. CONCLUSIONS

In this study, we proposed a load balancing method using
server redirection specified in MQTT v5.0 to balance the
load according to the load status of brokers and the sending
frequency of publishers. To verify the effectiveness of this
method, we compared it with an existing method based on
DNS round-robin, measured the throughput between pub-
lisher and broker and the CPU utilization of each broker,
and confirmed that the proposed method is superior to the
existing method.

Since the CPU utilization might not fully represent the
load by publishers, it is necessary to consider load indicators
other than CPU utilization. In addition, the protocol used to
monitor the load status of the brokers was proprietary, so
introducing an open-source monitoring system [12] could
improve the practicality. Finally, since the implementation
of server redirection this time was only for CONNACK
packets to the publishers, it is necessary to implement it
for subscribers and DISCONNECT packets to achieve more
flexible load balancing.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 88

Fig. 7. Throughput between the publishers and the brokers

Fig. 8. CPU utilization of proposed method where Publisher2 was second.

REFERENCES

[1] Ministry of Internal Affairs and Communications, “2022
white paper on information and communication technology,”
https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r04/pdf/index.html
(accessed May 19, 2023).

[2] HTTP Working Group, “HTTP Documentation,”
https://httpwg.org/specs/ (accessed May 19, 2023).

[3] “RFC 6455 - The WebSocket Protocol,”
https://datatracker.ietf.org/doc/html/rfc6455/ (accessed Mqy 19,
2023).

[4] “MQTT - The Standard for IoT Messaging,” https://mqtt.org/ (accessed
May 19, 2023).

[5] R. Banno and T. Yoshizawa, “A scalable iot data collection method by
shared-subscription with distributed mqtt brokers,” EAI International
Conference on Mobile Networks and Management, pp. 218–226, 2021.

[6] “AdGuard DNS ― ad-blocking DNS server,” https://adguard-
dns.io/en/welcome.html (accessed May 19, 2023).

[7] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, and
D. Kobayashi, “A scalable and low-cost mqtt broker clustering sys-
tem,” 2017 2nd International Conference on Information Technol-
ogy(INCIT), 2017.

[8] Liam Crilly of F5, “NGINX Plus for the IoT:Load Blancing MQTT,”
https://www.nginx.com/blog/nginx-plus-iot-load-balancing-mqtt/ (ac-
cessed May 19, 2023).

[9] OASIS, “MQTT version 5.0,” https://docs.oasis-
open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html (accessed May 19,
2023).

[10] “MQTTLoader,” https://github.com/dist-sys/mqttloader/ (accessed
May 19, 2023).

[11] “Eclipse Mosquitto,” https://mosquitto.org/ (accessed May. 19, 2023).
[12] “Zabbix ;; The Enterprise-Class Open Sourse Network Monitoring

Solution,” https://www.zabbix.com/jp/ (accessed May 19, 2023).

Fig. 9. CPU utilization of existing method where Publisher2 was second.

Fig. 10. CPU utilization of proposed method where Publisher2 was fourth.

Fig. 11. CPU utilization of existing method where Publisher2 was fourth.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 89

