
An interplay of energy and temperature minimization

techniques for heterogeneous multiprocessor systems

Yanshul Sharma
IIIT Guwahati, India

yanshul.sharma@iiitg.ac.in

Swati Gupta
IIIT Guwahati, India

swati.gupta21b@iiitg.ac.in

Sanjay Moulik
IIIT Guwahati, India

sanjay@iiitg.ac.in

Abstract—Real-time embedded systems are designed to per-
form specific functions in real-time, with a microcontroller,
memory, and input/output devices. The scheduler is a criti-
cal component that manages resource allocation and schedules
jobs based on priority and available resources. Multiprocessor
platforms improve performance, scalability, redundancy, and
flexibility, with different approaches to scheduling, such as global,
partitioned, and semi-partitioned. Minimizing dynamic energy
consumption and processor temperatures is essential for improv-
ing battery life and reliability and meeting power and thermal
constraints in applications such as mobile devices, aerospace,
and defense systems. There are many energy and temperature
management techniques, but their effect on each other has not
been studied in detail. Hence, we want to employ a few of those
techniques and want to observe their impacts. In this work, we
first propose a basic semi-partitioned scheduler for heterogeneous
multiprocessor systems which supports the execution of real-
time jobs. Then, we apply well-known energy and temperature
minimization techniques over the proposed scheduler to study
their impact on the system. To conduct our experiments, we use
benchmark programs whose characteristics have been extracted
using various simulators.

Index Terms—Real-time, Multiprocessor, Scheduler, Frequency
Scaling, Bin Packing

I. INTRODUCTION

A real-time embedded system is a computer system de-
signed to perform specific functions in real-time, meaning that
the system must respond to external events within a specific
time frame. These systems are often used in industrial control
systems, medical devices, and automotive systems. Real-time
embedded systems typically consist of a microcontroller or mi-
croprocessor, memory, and various input/output devices. They
are designed to handle specific jobs and operate under strict
time constraints to deliver consistent, reliable performance in
a time-critical environment.

A scheduler is a critical component in real-time embedded
systems that allocates system resources and schedules jobs
based on their priority and available resources. It plays a
key role in ensuring time-critical operations are completed
within their deadline, preventing any job from monopolizing
system resources, providing predictable system behaviour,
and preventing interference between jobs. The scheduler is
responsible for deciding which job should be executed next,
allowing the system to operate efficiently and reliably, even in
environments with limited resources and time-critical opera-
tions. Without a scheduler, real-time embedded systems would
be unable to operate predictably, efficiently, and safely, making
them a crucial component for various applications such as
industrial control systems, medical devices, and automotive
systems.

Multiprocessor platforms have become increasingly impor-
tant for real-time systems as they offer several benefits that
improve performance, scalability, redundancy, and flexibility.
Multiprocessor platforms allow multiple jobs to run simul-
taneously on separate processors, reducing overall response
time and increasing throughput. Additional processors can
be added as needed to handle additional jobs, ensuring the
system can keep up with increasing workloads. Critical jobs
can be executed on multiple processors, ensuring the system
can continue operating even if one or more processors fail.
Dynamic resource allocation ensures that the most critical
jobs are given priority and that resources are used efficiently.
Overall, multiprocessor platforms enable real-time systems to
operate reliably and efficiently, making them ideal for use
in a wide range of applications. There are several different
approaches to multiprocessor scheduling, including global,
partitioned, and semi-partitioned scheduling.

Global scheduling [1] involves treating all processors as
a single pool of resources, with jobs being assigned to any
available processor based on their priority and the available
resources. This approach offers good performance, but it may
not be suitable for systems with critical jobs, as there is no
guarantee that a job will be assigned to a specific processor.
Partitioned scheduling [2] involves dividing the set of pro-
cessors into separate partitions, with each partition assigned
to a specific job or group of jobs. This approach ensures
that critical jobs are assigned to specific processors, ensuring
predictable performance and reducing the risk of interference
between jobs. Semi-partitioned multiprocessor scheduling [3],
[4] is a hybrid approach that combines the benefits of global
and partitioned scheduling. It offers several advantages over
these two approaches, making it a popular choice for real-
time systems. One of the key advantages of semi-partitioned
scheduling is its ability to provide a balance between pre-
dictability and performance. In this scheduling approach, the
timeline may be divided into chunks, and in each chunk of time
slots, the progress of every job is monitored. There is another
variation of the semi-partitioned approach whereby reserving
some processors for critical jobs while allowing non-critical
jobs to be assigned to any available processor. The scheduler
ensures that critical jobs are assigned to specific processors
while still providing the flexibility to optimize performance
by using any available processor for non-critical jobs.

Minimizing dynamic energy consumption and processor
temperatures is critical for real-time embedded systems for
several reasons [5], [6]. Firstly, reducing dynamic energy
consumption is essential to maximize the battery life of
mobile and portable devices, such as smartphones, tablets,

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuMoXC.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 628

and wearables [7], [8]. These devices are typically powered
by batteries that have a limited capacity, and reducing
dynamic energy consumption can significantly extend the
battery life, improving the user experience and reducing the
need for frequent charging. Secondly, reducing processor
temperatures is critical to ensure the reliability and longevity
of the processor. High temperatures can cause damage
to the processor, leading to system failures and reduced
lifespan [9], [10]. By minimizing processor temperatures,
real-time embedded systems can operate more reliably and
have a longer lifespan. Thirdly, minimizing dynamic energy
consumption and processor temperatures is essential for
applications that have strict thermal and power constraints,
such as aerospace and defense systems. These systems must
operate reliably in harsh environments and have limited
power and cooling resources, making it essential to minimize
energy consumption and processor temperatures to ensure
optimal performance and reliability. Overall, minimizing
dynamic energy consumption and processor temperatures is
essential for real-time embedded systems to improve battery
life, ensure reliability and longevity, and meet strict power
and thermal constraints.

Contributions: Although there is a lot of work in litera-
ture which addresses energy and temperature management.
However, most of them are targeted towards homogeneous
multicore platforms. In addition, there are many techniques for
these optimizations, but their effect on each other has not been
studied in detail. Hence, we want to employ a few of those
techniques and want to observe their impacts. The following
are the contributions of the proposed work:

1) We propose a basic scheduler for heterogeneous multi-
processor systems with a generic number of processor
types. The execution requirement of each job varies on
the processors of such systems, which makes scheduling
on such systems very challenging.

2) We extract job characteristics from Parsec benchmark
programs using gem5 simulator [11], McPAT [12], and
HotSpot [13] simulators.

3) We employ various techniques over the proposed sched-
uler to make it energy and temperature cognizant.

4) We compare the performances of these strategies under
various system configurations.

II. BACKGROUND

The energy consumption and processor temperatures can
be minimized at various levels in the system. However, in our
work, we are only concerned about the techniques which can
be employed at the software level for the processors.

Dynamic Voltage and Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM) are techniques employed in
computer processors/processors to reduce energy consumption
while maintaining performance [14], [15]. DVFS adjusts the
voltage and clock frequency of a processor based on workload
demands, striking a balance between performance and energy
efficiency. By lowering the voltage and frequency during
low workloads and increasing them during intensive jobs,
DVFS optimizes power consumption. DPM extends beyond
DVFS to encompass various strategies for managing power
usage throughout the system. It involves techniques such as

power gating, where idle components are turned off or put
into low-power states, and clock gating, which selectively
stops the clock signal to inactive parts of the processor.
Job scheduling algorithms intelligently distribute workloads
among processors, minimizing the need for all processors to
be active simultaneously. Together, DVFS and DPM optimize
power consumption by adapting to workload variations and
performance needs, resulting in improved energy efficiency
without sacrificing performance. These techniques play a cru-
cial role in reducing energy consumption in modern processors
and systems.

When a processor enters sleep mode, it consumes signif-
icantly less power compared to its active state. However,
there is an overhead involved in transitioning between sleep
and active states. This overhead includes the time it takes to
wake up the processor, restore its state, and resume normal
operation. The break-even time [14] can be defined as the
duration it takes for the power savings achieved during sleep
mode to compensate for the power consumed during the
transition to and from sleep mode. In other words, it’s the point
where the energy savings from being in a low-power state
surpass the energy expended during the transition. To optimize
power management, system designers and developers aim to
balance the time spent in sleep modes with the energy savings
achieved and the responsiveness required for the system to
wake up and resume its jobs.

Combining idle time slots and DVFS can be a powerful
approach to controlling processor temperatures also. DVFS
can be employed to reduce voltage and frequency during heavy
workloads, which mitigates heat generation. Further, as stated
before, each job has its own temperature characteristics. In
embedded systems, most of the jobs which need execution
are known beforehand. Hence, they may be studied and based
on it, intelligent schedulers may be designed to reduce energy
consumption.

III. SPECIFICATIONS

A. System Model

We consider a job set J = {J1, J2, . . . , Jn} having n
periodic jobs and a heterogeneous multiprocessor platform
P = {P 1, P 2, . . . , Pm} having m processor types. For
simplicity, we assume that each processor type has a single
processor. Although, this assumption can be easily general-
ized by employing any optimal homogeneous scheduler for
each processor type in the case of multiple processors. Each
instance of a periodic job J i is associated with a (m + 3)
tuple, ⟨ci, τ iss, di, ri1, ri2, . . . , rim⟩, where ci, τ iss and di are
the execution requirement, steady state temperature, and the
deadline (as well as the period) of J i in the system and rij ,
is the rate of execution of J i on P j . Hence, each job J i can
further be related to the terms: ui (= ci/di), which represents
utilization of J i in the system and, uij (= ci/(di × rij)),
which represents utilization of J i on a processor P j . Each
of the processors can operate at a discrete frequency level
which is chosen from the normalized operating frequency set
µ = {µ1, µ2, . . . , µl}, where all the levels are having values
between 0 (excluding) and 1 with µl = 1. The processors can
also be put in DPM mode, where they will not perform any
operation.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 629

B. Power Specifications

We have utilized the analytical processor energy model
introduced in a previous work [5]. The overall power consump-
tion (Γ) of a processor based on CMOS technology comprises
two components: dynamic power consumption (γd) and static
power consumption(γs).

Γ = γd + γs (1)

The dynamic power consumption (γd) of CMOS circuits is
determined by the following equation:

γd = Ceff × V 2
dd × µj (2)

Here, Vdd represents the supply voltage, Ceff denotes the
average switched capacitance per cycle, and µj indicates
the clock frequency. The primary contributors to the static
current in a standard inverter arise from reverse bias junction
current and sub-threshold conduction. As a result, the static
power consumption (γs) can be calculated using the following
expression:

γs = (Vdd × Isubn + |Vbs| × I)Lg (3)

In this equation, Vbs represents the body bias voltage, Isubn
denotes the sub-threshold leakage current, I signifies the
reverse bias junction current in the NMOS device, and Lg

represents the number of devices in the circuit. Using this
energy model, we can determine the corresponding clock
frequency (µj), dynamic power (γd), and static power (γs)
for different voltage levels.

C. Thermal Model

For an interval [t0, te] in which J i is executing on the
processor P j , if the processor temperature is Γ0 at time t0,
the temperature Γe at the end of the interval at time te is given
by [16]:

Γe = τ ijss + (Γ0 − τ ijss)e
−B(te−t0) (4)

where B is a constant depending upon power consumption
in the system. τ ijss represents the steady state temperature of
job J i, which relies on the overall power consumption of J i.
The steady state temperature of a job refers to the temperature
reached by a processor when a job runs continuously on it for a
significant duration, possibly spanning multiple instances. By
reducing the operating frequency of a processor, the rate at
which the temperature changes decreases, thereby resulting in
a lower steady state temperature for the job. To establish the re-
lationship between the operating frequency of a heterogeneous
multiprocessor platform and the steady state temperature of a
job, we employed the following equation [16]:

τ ijss(k) = β ∗ µk ∗ τ ijss(µl) (5)

where β is a constant, τ ijss(k) denote the steady state
temperature of J i on P j at kth level of operating frequency.

IV. THE BASIC SCHEDULER

The proposed hierarchical scheduler comprises three phases.
The overall progress of individual jobs is monitored in Phase-
1. The algorithm performs the job-to-processor assignment
in Phase-2 along with preparation on the initial schedule.
It is done for jobs which can be fully assigned on single
processors. In Phase-3, only those jobs are assigned across

Algorithm 1: BASIC-SCHEDULE
Input: J , P
Output: Final Schedule

1 while true do
// Phase-1: Basic Computations

2 Find next window Wk using Equation 6
3 Let Sk[n×m] be the Schedule Matrix for Wk

4 Let LT1 and LT2 be sorted lists of jobs based on their
workload in Wk

5 for i = 1 : n do
6 for j = 1 : m do
7 Compute qijk using Equation 7
8 LT1 = LT1 ∪ {⟨i, j, qijk ⟩}

// Phase-2: Basic Job Assignment and
Schedule Preparation

9 while LT1 is not empty do
10 Get the first element of LT1: ⟨i, j, qijk ⟩
11 if qijk can be fully allocated on P j then
12 Assign start and end times of Ji on P j , i.e., Sk[i][j]

= ⟨start time(Ji), end time(Ji)⟩
13 Remove all entries of Ji from LT1 and LT2

14 else
15 LT2 = LT2 ∪ {⟨i, j, qijk ⟩}

// Phase-3: Migrating Job Assignment and
Schedule Preparation

16 while LT2 is not empty do
17 Let LT3 be an empty list of jobs
18 Get the first entry ⟨i, j, qijk ⟩ from LT2

19 Move all entries of Ji from LT2 to LT3

20 Starting from the first node of LT3, assign Ji on
processors using Next-Fit Bin Packing Algorithm

multiple processors, which the algorithm was unable to do in
the previous phase.

A. Description of the basic scheduler

The algorithm called BASIC-SCHEDULE, is designed
to generate a schedule for a set of jobs and processors. It
begins with the inputs J (the set of jobs) and P (the set of
processors) and aims to produce the final schedule as output.
The algorithm operates within an infinite loop, indicating that
it will continue scheduling jobs indefinitely. Each iteration
of the loop performs several steps to generate a schedule.
The pseudo-code for the basic scheduler used in our work
is presented in Algorithm 1. In the following section, we
elaborate on the phases of the algorithm.

• Phase-1: In this phase, the overall progress of the jobs
is monitored. To do so, the algorithm breaks the timeline
into multiple chunks of time slots using the technique
of Deadline Partitioning [17], which are called windows.
The use of such a technique allows the scheduler to keep
track of jobs’ progress at the end of every window. To
compute the next window Wk, the scheduler finds the
minimum of all job deadlines:

|Wk| = min{d1, d2, . . . , dn} (6)

Next, the workload or quota of all individual jobs J i on
a processor P j in the current window are computed as:

qijk = uij × |Wk| (7)

If all jobs complete the execution of their computed
quota in the window, there will be no lag for any

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 630

job. Hence, boundaries of individual windows also act
as mini-deadlines. The algorithm initializes a schedule
matrix Sk[n × m] that will hold the schedule for the
jobs within Wk. The matrix is initially empty, with all
its entries set to ∅. Next, the algorithm creates two sorted
job lists based on their quota values, LT1 and LT2, which
will be used for job scheduling. LT1 and LT2 are initially
empty. The algorithm iterates through all the jobs in J
and processors in P , calculating and storing the share
values in LT1.

• Phase-2: Moving to the second phase, the algorithm
enters a loop that continues until LT1 becomes empty.
Within this loop, the algorithm processes the jobs in
LT1 one by one. For each job J i in LT1, the algorithm
checks if the entire quota qijk of the job can be allocated
to a single processor P j . If it is feasible, the algorithm
assigns the start and end times of the job on the assigned
processor, recorded as Sk[i][j]. It then removes the corre-
sponding job entries from both LT1 and LT2, indicating
that the job has been fully allocated. If the entire quota
of a job cannot be allocated to a single processor, the
job is added to LT2 for further processing in subsequent
iterations.

• Phase-3: In this phase, the algorithm continues process-
ing jobs that were not fully allocated in the previous
phase. Within a loop that runs until LT2 becomes empty,
the algorithm creates an empty list LT3 to store jobs
temporarily. The algorithm retrieves the first entry, de-
noted as ⟨i, j, qijk ⟩, from LT2 and moves all entries of the
corresponding job J i from LT2 to LT3. It then proceeds
to assign the jobs in LT3 to available processors using
the Next-Fit Bin Packing algorithm [18], starting from
the first node of LT3.

After completing the third phase, the algorithm returns to
the beginning of the loop to repeat the process for the next
window Wk. This loop continues indefinitely, allowing for
the continual scheduling of jobs on processors until the final
schedule is obtained.

B. Techniques Employed

We have used Algorithm 1 to prepare the basic assignments
of jobs on available processors. Over the algorithm, we have
employed various energy and temperature minimization tech-
niques which are used at the processor level to propose the
following strategies:

• Strategy 1: In this approach, we have put the processors
in sleep mode whenever idle time slots are available on
processors. It may be noted that we have considered two
time slots as the break-even time (refer to Section II).
During the idle time slots, the processors in sleep mode
not only save energy but also cools down.

• Strategy 2: We have segregated the jobs as hot and cold
jobs in this approach [19]. We computed the average
steady state temperature of the input job set on a reference
processor (say P j) and then considered individual jobs
one by one. If a job J i is having its τ ijss less than the
computed average steady state temperature of the job set,
it is classified as a cold job, or else a hot job. After
the segregation process is over and the jobs have been
assigned to individual processors, we rearrange the job

execution of processors in such a way that every hot job
is followed by a cold job (if available). It is a well-known
temperature management technique for processors which
keeps the processor temperatures balanced [20]–[22].

• Strategy 3: We have employed DVFS on individual
processors. Based on the workload assigned to individual
processors by Algorithm 1, we have scaled the volt-
age/frequency such that there is no deadline miss for any
job in a window, and the workload gets completed. As
stated in Section II, DVFS not only helps in reducing
energy consumption in the system by reducing operating
voltage/frequency on individual processors but also re-
duces steady state temperatures of individual jobs (refer
Equation 5). It ultimately leads to reduced processor
temperature also [6], [16].

• Strategy 4: In this approach, we have used both DVFS
and job resequencing based on temperature characteris-
tics, i.e. we have used Strategy 2 along with Strategy 3.
Thus it is a hybrid approach which uses two techniques
together.

V. EXPERIMENTAL SET UP AND RESULTS

In this section, we discuss the configurations used for our
experiments, followed by a discussion on the performance of
various strategies (refer to Section IV-B).

Job ⟨Requirement, Temp.⟩ Job ⟨Requirement, Temp.⟩
(in ms and ◦C) (in ms and ◦C)

x264 ⟨1203, 85⟩ Body ⟨3824, 85⟩
Canneal ⟨1007, 80⟩ Swap ⟨4535, 76⟩
Dedup ⟨6455, 91⟩ Stream ⟨6156, 68⟩
Freq ⟨11082, 84⟩ Fluid ⟨4090, 81⟩

TABLE I: Job Specifications for Benchmark

A. Experimental Set Up
We performed simulations for a duration of one million

time slots to evaluate our algorithms. The job sets used in the
simulations were assigned predefined utilization factors (UF).
The UF is calculated as: UF =

∑n
i=1 avgm

j=1(u
ij)

m . To generate
job sets with specific UF values, we appropriately scaled the
randomly generated utilization values. For each set of input
parameters, we conducted 50 simulation runs on different test
cases and considered the average of these runs as the final
outcome.

To analyze the performance of our algorithms in real-
life scenarios, we utilized jobs from the PARSEC bench-
mark [23] running on systems with four types of processors.
The measurement of execution requirements and steady state
temperatures of each job can be found in [24], and the
corresponding results are listed in Table I. These values are
obtained using the following simulators: gem5 simulator [11],
McPAT [12], and HotSpot [13]. The configurations are an
ARMv8 processor operating at 3.0 GHz with 32 nm CMOS
technology. The steady state temperatures (τ ijk) are randomly
varied on different processors within the range of τ ijk ± α,
where α ranges from 0% to 10%.

Each job set consisted of 20 jobs randomly selected from
the eight benchmark jobs listed in Table I. The operating
frequencies used in our experiments vary from 0.9 GHz to
3.0 GHz. For each job, a randomly chosen β value (used in
Equation 5) ranging from 1 to 1.25 was assigned to calculate
the steady state temperatures (τ ijk) for that specific job.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 631

 0

 20

 40

 60

 80

 100

 120

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
e
a

k
 T

e
m

p
e
ra

tu
re

 (
in

 °
C

)

Utilization Factor

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(a) Processor 1

 0

 20

 40

 60

 80

 100

 120

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
e
a

k
 T

e
m

p
e
ra

tu
re

 (
in

 °
C

)

Utilization Factor

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(b) Processor 2

 0

 20

 40

 60

 80

 100

 120

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
e
a

k
 T

e
m

p
e
ra

tu
re

 (
in

 °
C

)

Utilization Factor

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(c) Processor 3

 0

 20

 40

 60

 80

 100

 120

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

P
e
a

k
 T

e
m

p
e
ra

tu
re

 (
in

 °
C

)

Utilization Factor

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(d) Processor 4

Fig. 1: Effect of Utilization Factor

B. Experimental Results

We compared the performance of Strategy 1, Strategy 2,
Strategy 3, and Strategy 4 (refer Section IV-B) under various
system configurations. The results of the experiments are
discussed in this section.

1) Effect of Utilization Factors: In this experiment, the UF
values range from 0.5 to 1.0 while the number of processors
and the number of jobs remain at 4 and 20, respectively. The
average steady state temperature for the job set is kept at
70◦C. By referring to Figure 1, we can infer that the peak
temperature rises in proportion to the workload in the system.
This phenomenon can be noticed for all four processors in
the system. Further, this feature is true for all the concerned
strategies. It may be attributed to the fact that at lower
UF values, the number of idle time slots in a processor is
more, which the concerned strategies use to cool down the
processors. However, Strategy 2 fetches better results than
Strategy 1 because it judiciously arranges jobs on processors
based on job characteristics along with using idle time slots
by allowing processors to enter sleep modes. Strategy 3 uses
idle time slots to scale down the voltage/frequency, which
further improves the results. However, Strategy 4 uses DVFS
along with intelligent job sequencing to fetch the best results.
This phenomenon can also be inferred from Figure 2, where
we plotted the average temperature for the processors. In
particular, the average temperatures of the processors rise from
52◦C to 67◦C, 51◦C to 66◦C, 37◦C to 66◦C, and 37◦C to
65◦C for Strategy 1, Strategy 2, Strategy 3, and Strategy 4,
respectively with the rise in UF values for the system.

 0

 20

 40

 60

 80

 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
v
e
ra

g
e
 T

e
m

p
e
ra

tu
re

 (
in

 °
C

)

Utilization Factor

Strategy 1
Strategy 2
Strategy 3
Strategy 4

Fig. 2: Effect of Utilization Factor on Average Temperature
of Processors

2) Effect of Steady State Temperatures: In this experiment,
the average steady state temperature of the job set range from
50◦C to 90◦C while the number of processors and the number
of jobs remain at 4 and 20, respectively. The UF value for the
system is kept at 0.5. From Figure 3, we can notice that the

peak temperature rises for all the processors with the increase
in average steady state temperature. As stated in Section II, the
steady state temperature is the temperature which is attained
on a processor if a job is run on it for an infinite duration.
Since the experiments are run for a long duration of 10 million
time slots, the processors are able to reach the steady state
temperature values easily. However, as we can notice from
Figure 4, the average temperature of the processors is lowest
for Strategy 4, which can be attributed to its intelligent job
sequencing and voltage/frequency scaling. In particular, the
average temperatures of the processors rise from 39◦C to
66◦C, 38◦C to 65◦C, 24◦C to 55◦C, and 24◦C to 54◦C for
Strategy 1, Strategy 2, Strategy 3, and Strategy 4, respectively
with the rise in steady state temperature of the job set.

3) Effect on Normalized Energy Consumption: In this ex-
periment, the average steady state temperature of the job set is
kept at 70◦C, m at 4 and n at 20. The UF varied from 0.5 to
1.0. Since job sequence does not have any effect on the energy
consumption of the system, Strategy 1 and Strategy 2 fetch
similar results (refer Figure 5). This is also true for Strategy 3
and Strategy 4, which fare similar results. Hence, we only
plotted the results of Strategy 1 and Strategy 3. In Strategy 1,
the processors are put in sleep mode to conserve energy,
whereas Strategy 3 judiciously scales down voltage/frequency
to do the same. Hence, both strategies are able to fetch good
results at lower workloads. But when the UF rises, both these
strategies get a lesser scope to apply the energy conservation
techniques, and therefore, the energy consumption in the
system rises. Further, it can be noticed that the difference in
results of the concerned strategies is very less at UF = 1.0.
However, Strategy 4 is able to fetch the overall best results.

VI. CONCLUSION

In real-time embedded systems, the scheduler is considered
to be one of the most important parts of the system. With the
new technological advancement, the schedulers are not only
required to schedule jobs but reduce energy consumption and
maintain processor temperatures within a threshold also. The
problem becomes more significant when the system supports
heterogeneous multiprocessors. In this paper, we propose a
basic scheduler for such platforms. Further, we employ various
well-known energy and temperature management techniques
on top of the proposed scheduler. We extracted job characteris-
tics of various Parsec benchmark programs using the following
simulators: gem5, McPAT, and HotSpot. Then we provided
them as inputs to our proposed strategies. Through our ex-
periments, we demonstrated that the DVFS based strategy,

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 632

 0

 20

 40

 60

 80

 100

 120

 140

50 60 70 80 90

A
v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 (

in
 °

C
)

Steady State Temperature

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(a) Processor 1

 0

 20

 40

 60

 80

 100

 120

 140

50 60 70 80 90

A
v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 (

in
 °

C
)

Steady State Temperature

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(b) Processor 2

 0

 20

 40

 60

 80

 100

 120

 140

50 60 70 80 90

A
v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 (

in
 °

C
)

Steady State Temperature

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(c) Processor 3

 0

 20

 40

 60

 80

 100

 120

 140

50 60 70 80 90

A
v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 (

in
 °

C
)

Steady State Temperature

Strategy 1
Strategy 2
Strategy 3
Strategy 4

(d) Processor 4

Fig. 3: Effect of Steady State Temperature

 0

 20

 40

 60

 80

 100

50 60 70 80 90

A
v
e
ra

g
e
 T

e
m

p
e

ra
tu

re
 (

in
 °

C
)

Steady State Temperature

Strategy 1
Strategy 2
Strategy 3
Strategy 4

Fig. 4: Effect of Steady State Temperature on Average
Temperature of Processors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n

Utilization Factor

Strategy 1
Strategy 3

Fig. 5: Effect of Utilization Factor on Normalized Energy
Consumption

which intelligently prepared the job sequence by alternatively
executing hot and cool jobs, fetched the best result.

REFERENCES

[1] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in 2009
30th IEEE Real-Time Systems Symposium, 2009, pp. 469–478.

[2] Q. Zhao, M. Qu, Z. Gu, and H. Zeng, “Minimizing stack memory for
partitioned mixed-criticality scheduling on multiprocessor platforms,”
ACM Trans. Embed. Comput. Syst., vol. 21, no. 2, mar 2022.

[3] L. Zeng, Y. Lei, and Y. Li, “A semi-partition algorithm for mixed-
criticality tasks in multiprocessor platform,” in 2019 IEEE 10th In-
ternational Conference on Software Engineering and Service Science
(ICSESS), 2019, pp. 694–697.

[4] S. Moulik, R. Devaraj, A. Sarkar, and A. Shaw, “A deadline-partition
oriented heterogeneous multi-core scheduler for periodic tasks,” in 2017
18th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2017, pp. 204–210.

[5] S. Moulik, A. Sarkar, and H. K. Kapoor, “Dpfair scheduling with
slowdown and suspension,” in 2018 31st International Conference on
VLSI Design and 2018 17th International Conference on Embedded
Systems (VLSID), 2018, pp. 43–48.

[6] Y. Sharma, S. Chakraborty, and S. Moulik, “ETA-HP: an energy and
temperature-aware real-time scheduler for heterogeneous platforms,” The
Journal of Supercomputing, vol. 78, no. 8, pp. 1–25, 2022.

[7] P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban,
A. Maity, B. K. Upadhyaya, J. B. Holm-Nielsen, and P. Choudhury,
“Power consumption analysis, measurement, management, and issues:
A state-of-the-art review of smartphone battery and energy usage,” IEEE
Access, vol. 7, pp. 182 113–182 172, 2019.

[8] M. Tawalbeh, A. Eardley, and L. Tawalbeh, “Studying the energy con-
sumption in mobile devices,” Procedia Computer Science, vol. 94, pp.
183–189, 2016, the 11th International Conference on Future Networks
and Communications (FNC 2016) / The 13th International Conference
on Mobile Systems and Pervasive Computing (MobiSPC 2016) / Affil-
iated Workshops.

[9] M. Arbabzadeh, G. M. Lewis, and G. A. Keoleian, “Green principles
for responsible battery management in mobile applications,” Journal of
Energy Storage, vol. 24, p. 100779, 2019.

[10] S. L R, A. A, M. S. Ramkumar, G. Emayavaramban, K. Balachander,
and P. Nagaveni, “Battery management system with iot for enhancement
of battery life,” in 2021 Fifth International Conference on I-SMAC (IoT
in Social, Mobile, Analytics and Cloud) (I-SMAC), 2021, pp. 1743–1750.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, Dec
2009, pp. 469–480.

[13] M. R. Stan, R. Zhang, and K. Skadron, “Hotspot 6.0: Validation,
acceleration and extension,” 2015.

[14] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal dvfs and dpm combination,”
ACM Trans. Embed. Comput. Syst., vol. 13, no. 3s, mar 2014.

[15] M. E. T. Gerards and J. Kuper, “Optimal dpm and dvfs for frame-based
real-time systems,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, jan
2013.

[16] Y. Sharma and S. Moulik, “Cetas: A cluster based energy and tem-
perature efficient real-time scheduler for heterogeneous platforms,” in
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Comput-
ing, ser. SAC ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 501–509.

[17] J. Yang, X. Luo, and X. Long, “A discrete dp-wrap scheduling algorithm
for multiprocessor systems,” in 2015 IEEE International Conference on
Smart City/SocialCom/SustainCom (SmartCity), 2015, pp. 958–962.

[18] C. C. Lee and D. T. Lee, “A simple on-line bin-packing algorithm,” J.
ACM, vol. 32, no. 3, p. 562–572, jul 1985.

[19] S. Moulik and Z. Das, “TASOR: A Temperature-Aware Semi-Partitioned
Real-time Scheduler,” in TENCON 2019 - 2019 IEEE Region 10
Conference (TENCON), 2019, pp. 1578–1583.

[20] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and
voltage scaling,” in 2008 IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 618–623.

[21] Y. Lee, K. G. Shin, and H. S. Chwa, “Thermal-aware scheduling for
integrated cpus–gpu platforms,” ACM Trans. Embed. Comput. Syst.,
vol. 18, no. 5s, oct 2019.

[22] Y. Lee, H. S. Chwa, K. G. Shin, and S. Wang, “Thermal-aware resource
management for embedded real-time systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 11, pp. 2857–2868, 2018.

[23] D. Chasapis, M. Casas, M. Moretó, R. Vidal, E. Ayguadé, J. Labarta,
and M. Valero, “Parsecss: Evaluating the impact of task parallelism in
the parsec benchmark suite,” ACM Trans. Archit. Code Optim., vol. 12,
no. 4, dec 2015.

[24] S. Bygde, A. Ermedahl, and B. Lisper, “An efficient algorithm for
parametric WCET calculation,” in 2009 IEEE RTCSA, Aug 2009, pp.
13–21.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 633

