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Abstract—This paper proposes a model reference output feed-
back discrete-time terminal sliding mode (DT-TSMC) approach
for SISO systems. The approach is based on a chatter-free
equivalent control design that relies on a delay disturbance
observer to handle exogenous disturbances. The stability of the
proposed is shown via rigorous analysis and it is demonstrated
that the term with the fractional power improves the steady state
phase of the reference tracking and that an error of O

(
T 2

)
can

be achieved. The paper concludes with a simulation example
that shows a comparison of the proposed DT-TSMC with a
classical discrete-time sliding mode control (DT-SMC) approach.
The results show that for a similar transient response, DT-TSMC
produces better steady state performance.

I. INTRODUCTION

Sliding mode control (SMC) is is known for its robustness
to plant uncertainties and disturbances in continuous time.
The rapid development of computer technology and digital
controllers resulted in a lot of attention being given to discrete-
time sliding mode control (DT-SMC), [1]. To implement such
a controller in practice on a digital computer, a discrete
time version of the approach is required. Discretisation of a
continuous SMC controller is one way to do this. Another
approach is to work directly in discrete time, designing the
sliding surface and then deriving from it an equivalent control
law, to be used as the actual control law. The benefit of
the latter approach over the former is the absence of an
explicit switching term which causes undesirable chattering,
[2]. Chattering is the uninted consequence of the limitation on
the switching speed due to the limit on the samling frequency.
Several DT-SMC approaches are shown in [2]-[8] that show a
tracking error of O

(
T 2
)

is achievable.
In addition to disturbance observers, nonlinear SMC de-

signs have been proposed to further improve the robustness
characteristics of DT-SMC, [8]-[11]. One such nonlinear SMC
design is the discrete-time terminal sliding mode control (DT-
TSMC) which is characterized by the finite-time convergence
to the sliding surface and the equilibrium point, which is
more advanced than the asymptotic convergence achieved by
traditional linear DT-SMC . Subsequently, several DT-TSMC
approaces have been proposed such as the DT-TSMC with
disturbance observer, [12] and the fast terminal sliding mode
(FTSM), [13]. In [14], a terminal smc design that achieves
fast chattering-free convergence is presented that combines
with receding optimization to deal with constraints so that the
sliding mode state follows the reference trajectory predefined
by the reaching law.

In this paper a discrete time terminal sliding mode controller
is developed utilising only output feedback. The plant dynam-
ics and desired reference model are first expressed in input-

output form, and then the error dynamics to be driven to zero
in augmented form is obtained. Due to the presence of zeros
in the plant dynamics there are many input history terms in the
expression. To facilitate the control law design a substitution
is used that is inspired by Artsteins model reduction which
was originally proposed for control design of continuous time
plants with time delay. The substitution yields a dynamics
in a new variable that does not contain those input history
terms explicitly. The paper is organized as follows: Section
2, gives the problem definition. In Section 3, the main result
which includes the DT-TSMC design and stability analysis
is presented. In Section 4, a simulation example is presented
that shows a comparison of the proposed DT-TSMC approach
with classical DT-SMC to demonstrate the effectiveness of the
proposed approach. Finally, concluding remarks are given in
Section 5.

II. PROBLEM DEFINITION

Consider the continuous-time SISO plant given as

ẋ(t) = Anx(t) + bn (u+ f(t))

y(t) = cnx(t) (1)

where x ∈ Rn is the state vector, u ∈ R is the input and
f(t) ∈ R is a continuously differentiable disturbance. The
matrices An ∈ Rn×n, bn ∈ R and cn ∈ R are are the nominal
state, input, and output matrices, respectively.

Sampling at uniform time intervals T gives a discrete-time
form of the plant (1) described by

xk+1 = Φxk + γuk + dk (2)
yk = cnxk

where Φ = eAnT , γ =
∫ T
0

Φ(τ)bndτ and dk =

−
∫ T
0

Φ(τ)bnf((k+1)T−τ)dτ . Moreoever, given the fact that
f(t) is continuously differentiable, the disturbance dk satisfies
the following properties:

Property 1: dk = γνk +O
(
T 3
)

Property 2: ‖νk − νk−1‖ ∈ O(T )

Property 3: ‖νk − 2νk−1 + νk−2‖ ∈ O
(
T 2
)

where νk = fk + 1
2vk, fk , f(kT ) and vk , v(kT ) with

v(kT ) given as v(kT ) = d
dtf(kT ), respectively.

Assuming the availability of only the output measurement,
the plant (2) is written in the input-output form given as

yk+1 =− φ1yk − · · · − φnyk−n+1 + γ0 (uk + νk) + · · ·
+ γm (uk−m + νk−m) +O

(
T 3
)

(3)
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where the parameters φ1, . . . , φn, γ0, . . . , γm are obtained
from the matrices Φ and γ respectively and n ≥ m. For the
plant (3), the following assumptions are made:

Assumption 1: φn 6= 0.
Assumption 2: φ1, . . . , φn ∈ O(1) and γ0, . . . , γm ∈ O(T ).
Assumption 3: Open-loop zeros are inside the unit-circle.
Consider, now, the nth order reference model given as

ym,k+1 =− φm,1ym,k − · · · − φm,nym,k−n+1 + γmrk (4)

where ym,k ∈ R is the output of the reference model, rk ∈ R
is a reference signal and φm,1, . . . , φm,n are selected such
that (4) is Schur stable. The control objective is to find a
bounded input uk which will drive the plant output yk to track
the output of a reference model output ym,k asymptotically,
i.e. limk→∞ |yk − ym,k| = O

(
T 2
)

in the presence of the
disturbance νk.

III. MAIN RESULT

In this section, the design of the delay disturbance observer
and the control law is presented which is then concluded by
a rigorous stability analysis of the closed-loop system.

A. Disturbance Observer

Consider the plant (3), a form of the delay disturbance
observer proposed in [2] is obtained by rewriting (3) as

νk−1+
γ1
γ0
νk−2 + · · ·+ γm

γ0
νk−m−1

=
1

γ0

(
yk + φ1yk−1 + · · ·+ φnyk−n

)
− uk−1 − · · ·

− γm
γ0
uk−m−1 +O

(
T 3
)

(5)

and lumping all the terms on the left-hand-side such that

ρk−1 =
1

γ0

(
yk + φ1yk−1 + · · ·+ φnyk−n

)
− uk−1 − · · ·

− γm
γ0
uk−m−1 +O

(
T 3
)

(6)

Substituting the actual disturbance ρk such that ρk−1 = ρ̂k,
where ρ̂k is the estimate of ρk and ignoring the O

(
T 3
)

term,
it is obtained that

ρ̂k =
1

γ0

(
yk + φ1yk−1 + · · ·+ φnyk−n

)
− uk−1 − · · ·

− γm
γ0
uk−m−1 (7)

which is the delay disturbance observer for the disturbance
ρk as the estimate for ρk is the delayed value ρk−1. This is
evident when comparing (7) with the dynamics (6).

Remark 1: To achieve an O
(
T 3
)

disturbance compensation,
the term −2ρ̂k + ρ̂k−1 will be added to the control input u(k)
such that the disturbance term in the closed-loop system will
be reduced to the form ρk − 2ρ̂k + ρ̂k−1 which is nothing
but the second-order backward difference and, according to
Property 4, is given as ρk − 2ρk−1 + ρk−2 ∈ O

(
T 2
)
.

B. Discrete-Time Terminal Sliding Mode Controller Design

To proceed with the DT-TSMC controller design, define the
tracking error as ek = yk−ym,k such that substituting (3) and
(4) gives the tracking error dynamics

ek+1 =− φ1ek − · · · − φnek−n+1 + γ0uk + · · ·+ γmuk−m

+ φ̃1ym,k + · · ·+ φ̃nym,k−n+1 − γmrk + γ0ρk

+O
(
T 3
)

(8)

where φ̃i , φm,i − φi ∀i = [1, n], respectively. Let %k =

ρk + 1
γ0

(
φ̃1ym,k + · · ·+ φ̃nym,k−n+1 − γmrk

)
and writing

the error dynamics (8) in augmented form, it is obtained that

ēk+1 = Θēk + γ̄0uk + · · ·+ γ̄muk−m + γ̄0%k + δk (9)

where ē>k ,
[
ek−n+1 · · · ek

]
∈ Rn is the augmented

output vector, γ̄>i ,
[
0 · · · 0 γi

]
∈ Rn ∀i = [0,m] and

‖δk‖ ∈ O
(
T 3
)

is the approximation error in Property 1. The
state matrix Θ ∈ Rn×n is defined as

Θ ,


0 1 0 0
...

. . . . . .
...

0 · · · 0 1
−φn · · · · · · −φ1


Remark 2: The pairs (Θ, γ̄0) , . . . , (Θ, γ̄m) are in control-

lable form and are, therefore, controllable.
Consider, now, the new state vector given as

zk+1 = ēk+1 +

m−1∑
j=0

ϑj (uk−j + χk−j) (10)

where zk ∈ Rn and ϑj ∈ Rn ∀j = [0,m − 1] are parameter
vectors that will be computed interms of Θ and γ̄i ∀i = [1,m].
The term χk will be derived such that the tracking error
limk→∞ ek = O

(
T 2
)
. Substitution of (9) in (10) and setting

ϑj =
∑m−1
i=j Θj−i−1γ̄i+1, it is obtained that

zk+1 = Θzk + βuk + γ̄0%k + δk + ϑ0χk +
(
ϑ1 −Θϑ0

)
× χk−1 + · · ·+

(
ϑm−1 −Θϑm−2

)
χk−m+1

−Θϑm−1χk−m (11)

where β =
∑m
i=0 Θ−iγ̄i. Adding and subtracting the term

γ̄0χk on the right-hand-side of (11), it is obtained that

zk+1 = Θzk + βuk + γ̄0%k + δk + (γ̄0 + ϑ0)χk − γ̄0χk

+
(
ϑ1 −Θϑ0

)
χk−1 + · · ·+

(
ϑm−1 −Θϑm−2

)
× χk−m+1 −Θϑm−1χk−m (12)

Using the definitions of β and ϑj , (23) is simplified as

zk+1 = Θzk + βuk + γ̄0%k + δk + βukχk − γ̄0χk

− γ̄1χk−1 − · · · − γ̄mχk−m
= Θzk + β (uk + χk) + δk + εk (13)

where εk = γ̄0%k − γ̄0χk − · · · − γ̄mχk−m.
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Remark 3: According to Assumption 1, φn 6= 0 and,
therefore, Θ is non-singular.

Lemma 1: The dynamics (11) is controllable, i.e., the pair
Θ,β is controllable.

Proof: Consider the controllability matrix, for the pair
Θ,β, given as

Wc =
[
β | · · · | Θn−1β

]
=
[∑m

i=0 Θ−iγ̄i | · · ·
| Θn−1∑m

i=0 Θ−iγ̄i
]

=
[
γ̄0 | · · · | Θn−1γ̄0

]
+ Θ−1

[
γ̄1 | · · · | Θn−1γ̄1

]
+ · · ·+ Θ−m

[
γ̄m | · · · | Θn−1γ̄m

]
=
[
I + γ1

γ0
Θ−1 + · · ·+ γ1

γ0
Θ−m

] [
γ̄0 | · · · | Θn−1γ̄0

]
= Θ−m

[
Θm + γ1

γ0
Θm−1 + · · ·+ γ1

γ0
I
]
Wc,0 (14)

where Wc,0 =
[
γ̄0 | · · · | Θn−1γ̄0

]
∈ Rn×n is non-singular

since Θ, γ̄0 is a controllable pair. Let S be a non-singular
transformation matrix such that Θd = S−1ΘS where Θd

is the diagonal (or Jordan) matrix of the eigenvalues of Θ.
Substituting in (14), it is obtained that

ΘmWc =
[
SΘm

d S
−1+γ1

γ0
SΘm−1

d S−1+ · · ·+γ1
γ0
SS−1

]
Wc,0

= S
[
Θm

d + γ1
γ0

Θm−1
d + · · ·+ γ1

γ0
I
]
S−1Wc,0 (15)

Recall that the eigenvalues of Θ and the roots of the poly-
nomial

(
γ0q

n + γ1q
m−1 + · · ·+ γ1

)
are the open-loop poles

and open-loop zeros of the plant (3), respectively. If the
plant (3) is in the proper form then there are no pole-zero
cancellations in the open-loop. This implies that eig(Θ) 6=
roots

(
γ0q

n + γ1q
m−1 + · · ·+ γ1

)
and, as a result, Θm

d +
γ1
γ0

Θm−1
d + · · ·+ γ1

γ0
I is a diagonal (or upper triangular) matrix

of non-zero diagonal elements. Therefore, Θm
d + γ1

γ0
Θm−1

d +

· · ·+ γ1
γ0
I is non-singular and, thus, Θm+ γ1

γ0
Θm−1+ · · ·+ γ1

γ0
I

is also non-singular. Since, all the matrices on the right-hand-
side of (15) are non-singular and Θ is non-singular then Wc

is non-singular and the pair Θ,β is controllable.
With the controllability of the system (11) established in

(Lemma 1), it is now possible to derive the DT-TSMC control
law. Consider the sliding surface, σk ∈ R, given as

σk = d̄zk + ᾱ‖zk−1‖p−1zk−1 (16)

where d̄ ∈ Rn, ᾱ ∈ Rn and p ∈ R are the controller parame-
ters. The exponent p < 1 is a fraction. Setting σk+1 = 0 and
substituting (11), it is obtained that

σk+1 = d̄zk+1 + ᾱ‖zk‖p−1zk
= d̄ (Θzk + βuk + βχk + δk + εk) + ᾱ‖zk‖p−1zk
= 0 (17)

Ignoring the term δk + εk and deriving an expression for the
control law, it is obtained that

uk = −
(
d̄β
)−1 [

d̄Θzk + ᾱ‖zk‖p−1zk
]
− χk (18)

Substitution of the control law (18) in (17) results in a bound
on σk given as

σk+1 = d̄ (δk + εk) (19)

Consider now the definition of εk, since, the disturbance
measurement is not available it is obtained that

εk = γ̄0%k − γ̄0χk − · · · − γ̄mχk−m (20)
= γ̄0%k − γ̄0%̂k + γ̄0%̂k − γ̄0χk − · · · − γ̄mχk−m

where %̂k = 2ρ̂k − ρ̂k−1 + 1
γ0

(
φ̃1ym,k + · · ·+ φ̃nym,k−n+1

+γmrk). Note that %̂k is defined such that %k − %̂k = ρk −
2ρ̂k − ρ̂k−1 = ρk − 2ρk−1 − ρk−2 ∈ O

(
T 2
)
. Futhermore,

if χk is selected such that dynamics χk + γ1
γ0
χk−1 + · · · +

γm
γ0
γ̄mχk−m = %̂k is satisified, it is obtained that

σk+1 = d̄ (δk + εk) = d̄ (δk + εk)

= d̄ (δk + γ̄0 (ρk − 2ρk−1 − ρk−2)) ∈ O
(
T 3
)

(21)

where d̄ is selected such that
∥∥d̄∥∥ ∈ O(1). This bound is

similar to that shown in [2].
Remark 4: The selection of the controller parameter d̄

follows the usual approaches such as that presented in [15]
while ensuring that d̄β > 0. The selection process for the
parameter ᾱ and p will be presented in the next subsection.

C. Stability Analysis

In this subsection, it is shown that the state zk converges
asymptotically (Lemma 2) and that the proposed DT-TSMC
control law drives the plant output yk to a bound of O

(
T 2
)

asymptotically (Theorem 1).
Lemma 2: With the proper selection of the controller pa-

rameters d̄, ᾱ and p, the following is true:

lim
k→∞

‖zk‖ ∈ O
(
T 2
)

(22)

Proof: Consider the system (11), with the substitution of
the control law (18) it is obtained that

zk+1 = Θzk + β (uk + χk) + εk

=
(

Θ− β
(
d̄β
)−1

d̄Θ
)
zk − β

(
d̄β
)−1

ᾱ‖zk‖p−1zk
+ εk

= Θmzk − β
(
d̄β
)−1

ᾱ‖zk‖p−1zk + εk

= Θmzk − λβᾱ‖zk‖p−1zk + εk (23)

where εk = δk + εk, Θm ,
(
Θ− λβd̄Θ

)
and λ ,

(
d̄β
)−1

with d̄ selected such that Θm is Schur stable. Now, consider
the positive function

Vk = z>k Pzk (24)

where P ∈ Rn is some symmetric positive-definite matrix.
The forward difference ∆Vk is

∆Vk = Vk+1 − Vk = z>k+1Pzk+1 − z>k Pzk

=
(
Θmzk − λβᾱ‖zk‖p−1zk + εk

)>
P (Θmzk

−λβᾱ‖zk‖p−1zk + εk
)
− z>k Pzk

= z>k
(
Θ>mPΘm − P

)
zk − 2λ‖zk‖p−1z>k ᾱ>β

>P

× (Θmzk + εk) + 2z>k ΘmPεk + ε>k Pεk

+ λ2‖zk‖2p−2z>k ᾱ>β
>βᾱzk (25)
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Using Q = −
(
Θ>mPΘm − P

)
∈ Rn which is positive-definite

since Θm is Schur stable and setting ᾱ = 1
ρβ
>PΘm for some

ρ > 0 ∈ R, (25) is simplified as

∆Vk = − z>k

(
Q+ 2

λρ

‖zk‖1−p
ᾱ>ᾱ+ 2

λ

‖zk‖3−p
ᾱ>β>

× Pεkz>k −
λ2

‖zk‖2−2p
ᾱ>β>βᾱ− 2

‖zk‖2
ΘmP

× εkz>k −
ε>k Pεk
‖zk‖4

zkz
>
k

)
zk (26)

Note that in (26), if ‖zk‖ ≥ 1
µ‖εk‖ ∈ O

(
T 2
)

where µ is
selected such that µ > 0 ∈ O(T ), then from the terms that
include εk in (26), an inequality is obtained as

z>k

(
2

‖zk‖2
ΘmPεkz

>
k +

ε>k Pεk
‖zk‖4

zkz
>
k −

2λ

‖zk‖3−p
ᾱ>β>

× Pεkz>k

)
zk ≤

(
2 ‖ΘmP‖ ‖εk‖ ‖zk‖

‖zk‖2
+
‖P‖
‖zk‖4

× ‖εk‖2 ‖zk‖2 + 2
λ
∥∥∥ᾱ>β>P∥∥∥ ‖εk‖ ‖zk‖

‖zk‖3−p

)
z>k zk

≤ µ
(
µ+ 2

(
‖Θm‖+

λ ‖ᾱβ‖
‖zk‖1−p

))
‖P‖ z>k zk (27)

Substitution of (27) in (26), it is obtained that

∆Vk ≤ − z>k

(
Q+

2λ

‖zk‖1−p

(
ρᾱ>ᾱ− µ ‖ᾱβ‖ ‖P‖ I

)

− λ2β>β

‖zk‖2−2p
ᾱ>ᾱ− µ

(
2 ‖Θm‖+ µ

)
‖P‖I

)
zk (28)

Let Q = Q1 +Q2 and ρ = ρ1 + ρ2 for some positive-definite
Q1,Q2 and ρ1, ρ2 > 0 such that

Q2 = µ
(
2 ‖Θm‖+ µ

)
‖P‖ I (29)

and

ρ2ᾱ
>ᾱ− µ ‖ᾱβ‖ ‖P‖ I ≥ 0 (30)

Substituting in (28), it is obtained that

∆Vk ≤ − z>k

(
Q+ λϕ (‖zk‖) ᾱ>ᾱ

)
zk (31)

where ϕ (‖zk‖) is defined as

ϕ (‖zk‖) ,

(
2ρ1

‖zk‖1−p
− λβ>β

‖zk‖2−2p

)
(32)

Note that the maximum positive value of the function ϕ (‖zk‖)
is computed by solving

∂

∂‖zk‖
ϕ (‖zk‖) =

1

‖zk‖2−p

(
ρ1 −

λβ>β

‖zk‖1−p

)
= 0 (33)

which gives a non-trivial solution as

‖zk‖ =

(
λβ>β

ρ1

) 1
1−p

(34)

Futhermore, the function ϕ (‖zk‖) changes sign if

‖zk‖ ≤

(
λβ>β

2ρ1

) 1
1−p

(35)

Therefore, ρ1 and p can be selected such that the maximum
gain occurs as ‖zk‖ approaches the O

(
T 2
)

bound while the
sign change of ϕ (‖zk‖) occurs below the O

(
T 2
)
.

Theorem 1: The output tracking error of the closed-loop
system approaches a bound of O

(
T 2
)

asymptotically, i.e.
limk→∞ |ek| ≤ O

(
T 2
)
.

Proof: Consider the expression (10), with the substitution
of the control law (18) it is obtained that

zk+1 = ēk+1 +

m−1∑
j=0

ϑj (uk−j + χk−j) (36)

= ēk+1 − λ
m−1∑
j=0

ϑj
(
d̄Θzk−j + ᾱ‖zk−j‖p−1zk−j

)
From Lemma 2, the parameters ρ1 and p are selected such
that (34) is true within the vicinity of O

(
T 2
)
. Therefore,

substitution of (34) in (36), it is obtained that

ēk+1 = zk+1 + λ

m−1∑
j=0

ϑj

(
d̄Θ +

ρ1

β>β
ᾱ

)
zk−j (37)

= zk+1 + λ

m−1∑
j=0

ϑj

(
d̄Θ +

ρ1

ρβ>β
β>PΘm

)
zk−j

= zk+1 + λ

m−1∑
j=0

ϑj

(
d̄Θ +

ρ1
ρ‖β‖2

β>PΘm

)
zk−j

and ek+1 is obtained as

ek+1 = czk+1 + λc

m−1∑
j=0

ϑj d̄Θzk−j +
ρ1

ρ‖β‖2
λc

m−1∑
j=0

ϑj

× β>PΘmzk−j (38)

where c =
[
0 · · · 0 1

]
. The bound on yk is obtained as

|ek+1| ≤ ‖zk+1‖+
ρ1 ‖P‖ ‖Θm‖

ρ‖β‖

m−1∑
j=0

‖ϑj‖ ‖zk−j‖

+ λ ‖Θ‖
m−1∑
j=0

∥∥ϑj d̄∥∥ ‖zk−j‖ (39)

From Assumption 2, ‖Θ‖ ∈ O (1) and
∥∥Θ−1

∥∥ ∈
O (1). Furthermore, since β =

∑m
i=0 Θ−iγ̄i and ϑj =∑m−1

i=j Θj−i−1γ̄i+1 then ‖β‖, ‖ϑj‖ ∈ O (T ). Finally, if ρ,
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ρ1, P and Θm are selected such that O(ρ) = O(ρ1) and
‖P‖, ‖Θm‖ ∈ O(1) then it is obtained that

|ek+1| ≤ ‖zk+1‖+
O(1)

O(T )
·O(T ) ·O(1) ·O(1) ‖zk‖

+O

(
1

T

)
·O(T ) ·O(1) ‖zk‖ (40)

and, since, limk→∞ ‖zk‖ ∈ O
(
T 2
)

then

lim
k→∞

|ek| ≤ O
(
T 2
)

(41)

IV. SIMULATION EXAMPLE

In this section, a simulation example is presented that shows
a comparison between the proposed DT-TSMC approach and
classical non-chattering DT-SMC. The disturbance observer
(7) will be utilized in both approaches so that the comparison
will highlight the advantages of the term with the fractional
power.

Consider the system represented as follows

ẋ(t) =

0 1 0
0 0 1
0 0 0

x(t) +

8.6× 10−3

2.8
20

 (u(t) + f(t))

y(t) =
[
1 0 0

]
x(t) (42)

where the disturbance signal is given as f(t) = 10 sin(2πt).
Sampling the system at an uniform sampling interval of T =
0.01s gives a sampled-data input-output model given as

yk+1 = 3yk − 3yk−1 + yk−2 + 0.001(uk + νk)− 0.0017

× (uk−1 + νk−1) + 0.0007(uk−2 + νk−2) (43)

The reference model is selected as

ym,k+1 = 1.1ym,k − 0.19ym,k−1 + 0.009ym,k−2 + 0.081rk
(44)

where rk profile can be seen in Fig.1. The DT-TSMC param-
eters are selected as

d̄> =

−1
−1
2.1

, α> =

−1.4688
3.0121
−1.4756

, p =
4.3

5
, ρ1 = ρ2 = 0.1

For the conventional DT-SMC, the controller parameter is
selected as d̄ = [−1 − 1 2.2] with the control law given
as

uk = −λd̄Θzk − χk (45)

The controller paramter is selected such that the transient
response of both approaches are similar. This is to demonstrate
the better steady state performance of the DT-TSMC. In Fig.1-
Fig.4, the performance of the DT-TSMC compared to that of
the DT-SMC is shown. In Fig.2, it can be seen that the steady
state tracking performance of the proposed DT-TSMC ap-
proach is superior to that of the classical DT-SMC comtroller
for the same control effort as shown in Fig.3. In Fig.4, the
disturbance estimation performance of the delay disturbance

observer is shown. Finally in Fig.5, the performance of the
approach is shown for p ∈ [0.1, 1]. It can be seen that, for
this system, the optimal performance is when p ≈ 4.3

5 . In
conclusion, it is clearly seen that when the transient response
of both approaches are matched the steady state performance
of the DT-TSMC is better. This is due to the fractional power
term which affects the performance of the control when the
error is small.

V. CONCLUSIONS

In this paper, an outout feedback discrete-time terminal slid-
ing mode control approach for SISO systems was presented.
It was shown that the control approach can drive the system to
an error of O

(
T 2
)
. A rigorous stability proof was presented

that shows the fractional power term is effective at the steady
state and can improve the tracking performance. Finally, it
was demonstrated via a simulation example that the proposed
approach can outperform the classical DT-SMC even with
similar transient performance.
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