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Abstract— Image denoising holds significant importance in 

the realm of image processing due to the potential distortions 

caused by environmental factors and technical problems. 

Consequently, it is logical to consider image denoising as a 

critical research domain as it aids in addressing various other 

image processing challenges. Although numerous techniques 

for image denoising have emerged in recent years, a majority 

of them primarily focus on restoring images afflicted by a 

single source of noise. In this study, the effectiveness of UNET 

and its variant in denoising facial images with mixed noises is 

examined. Furthermore, traditional filtering techniques are 

investigated for the purpose of comparison. The experimental 

results indicate the insufficiency of conventional filtering 

techniques in effectively mitigating mixed noise in facial 

images. Conversely, employing UNET-based architectures 

yields promising outcomes, characterized by facial images 

exhibiting commendable values of peak signal-to-noise ratio 

(PSNR) and structural similarity index (SSIM). Furthermore, 

the denoised images produced by employing the proposed 

residual attention UNET exhibit notable enhancements in 

terms of clarity and intricate details. 

Keywords—Image Denoising, Deep Learning, Traditional 

Filtering, UNET, Residual, Attention. 

I. INTRODUCTION 

Image denoising is a crucial task in image processing, 
aiming to recover the original image by reducing noise in a 
noisy version. It helps solve other image processing 
problems and is divided into two main techniques: traditional 
filtering [1]-[3] and deep learning [4]. Traditional filtering 
uses mathematical operations and spatial filters like mean or 
median filters, but it has limitations in complex scenarios. 
Deep learning utilizes convolutional neural networks to learn 
noise patterns from pairs of noisy and clean images, resulting 
in more accurate denoising. Image denoising is an important 
area of research with the potential to enhance various image 
processing applications. 

Deep learning, a subset of machine learning, employs 

models like transformers [5], LSTM [6], and CNN [7] to 

mimic human learning. The encoder-decoder [8] method 

excels in image denoising. Training deep learning systems 

demands substantial data to adjust parameters, yet the same 

architecture can handle diverse noise types without 

modifications. By utilizing input and target, the encoder-

decoder generates a mathematical function. Iterative 

learning allows the model to approximate the desired output, 

resulting in target-resembling images upon reaching a 

threshold. 

In this paper, our objective is to design experiments and 

models for denoising mixed-noise facial images. Our main 

contributions are: (1) We introduce novel combinations of 

Gaussian and Salt & Pepper noise for experimentation. (2) 

We propose two UNET-based architectures with attention 

and simplified residual blocks, enhancing the extraction of 

relevant information. (3) We compare our methods with 

other deep learning and traditional denoising approaches to 

evaluate their performance. 

II. LITERATURE 

The popularity of deep learning in image processing has 

grown due to abundant data availability and powerful 

processors. Numerous neural network-based techniques 

have been developed specifically for image denoising. 

Ghose et al. [9] proposed a CNN model for image 

denoising, achieving better qualitative and quantitative 

results compared to traditional filtering methods. However, 

their comparison did not include current methods and used a 

limited number of noise levels. Ramos et al. [10] introduced 

RDUNet, a residual dense neural network, for image 

denoising. Their approach demonstrated competitive results 

without requiring knowledge of the noise level. However, 

the study employed constrained noise levels and 

necessitated separate training for each noise type. 

Limshuebchuey et al. [11] compared traditional and deep 

learning-based denoising algorithms using PSNR on 

Gaussian and Salt and pepper noise conditions. The 

comparisons showed that the deep learning algorithm 

yielded superior PSNR values. However, the evaluation 

lacked other metrics and the dataset size was limited. Olaf 

Ronneberger [12] introduced a UNET structure for 

biological image segmentation, incorporating a skip 

connection between the encoding and decoding layers. This 

innovation improved image formation by allowing selective 

data transfer. O. Oktay et al. [13] proposed the attention gate 

(AG) model for medical imaging. AGs automatically focus 

on target structures of varying sizes and shapes, eliminating 

the need for external localization modules. They enhance 

CNN architectures like U-Net, improving sensitivity and 

accuracy without significant computational overhead. 

Evaluation on CT abdominal datasets shows consistent 

performance improvement and computational efficiency. 

Zhang et al. [14] introduced RatUNet, an enhanced deep 

convolutional U-Net framework for image denoising. It 

improves network depth, down-sampling, up-sampling, 

skip-connection, and utilizes depthwise and polarized self-

attention mechanisms. RatUNet achieves better performance 

than existing methods, although it focuses on removing 

AWGN noise only. 
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III. IMAGE NOISES 

A multitude of factors can be responsible for producing 
image noise. The primary focus of this investigation is on 
Gaussian and Salt & Pepper noise. Gaussian noise is 
generated when a random Gaussian function is introduced 
into an image function, as illustrated in Equation (1), which 
depicts the process of adding Gaussian noise to a denoised 
image. 

𝑦 = 𝑥 + 𝑤 × 𝐺 () 

The noised image is represented by the variable ′𝑦′ , 
whereas the noise-free original image is represented by the 
variable ′𝑥′. The Gaussian noise is denoted by the variable 
′𝐺′, and the noise factor is denoted by the variable ′𝑤′.  

Salt and pepper noise is generated by randomly adding 
bright and dark areas to an image. To add salt and pepper 
noise to an image, two parameters are used. The first 
parameter, ′𝑆′, determines the amount of noise added to the 
image, while the second parameter controls the proportion of 
salt and pepper noise. This second parameter is always set to 
0.5, indicating that the impact of salt and pepper noise will 
be equal.  

Mixed noise occurs when an image is distorted by more 
than one type of noise. In this study, images corrupted with 
seven distinct types of mixed noise are utilized, and a 
visualization of these images is displayed in Fig. 8. 

IV. DENOISING METHODS 

UNET and its variants are investigated in this study to 
denoise images. 

A. UNET 

The Autoencoder model can maintain the dimensions of 
an image, but its linear evaluation of the input creates a 
bottleneck that restricts the complete transmission of 
information. However, the UNET [12] model overcomes this 
limitation by integrating a skip connection that enables 
feature representations to bypass the bottleneck. Fig. 1 
provides a graphical representation of the UNET model's 
architecture. 

Fig. 1. UNET architecture. 

B. Attention UNET 

UNET is quite effective, but it uses a lot of GPU memory 
and wastes resources on pointless activations. Attention 
UNET addresses these problems by emphasizing only the 
pertinent activations during training. This cuts down on the 
amount of time lost on unimportant activations and improves 
the method's generalizations. Fig. 2 shows a structure of the 
Attention UNET [13] model’s architecture.  

 

 

 

Fig. 2. Attention UNET architecture. 

In Fig. 2, ′𝐹′ corresponds to the number of output 
channels, ′𝐷′ corresponds to the number of input channels, 
and ′𝐻′ and ′𝑊′ represent the length and depth of the 
convolution kernel. 

In the Attention UNET model, the skip connection is 
augmented by an attention gate that requires two inputs, ′𝑥′ 
and ′𝑔′. The gating signal ′𝑔′ corresponds to the next lower 
layer in the network and has a superior feature representation 
as it originates from a deeper area of the network. On the 
other hand, the input ′𝑥′ is a skip connection that contains 
more precise spatial information because it comes from the 
earlier layers. Consequently, only relevant information is 
allowed to flow through the skip connection. 

In Fig. 3, attention gate is shown in more detail. 

Fig. 3. Attention gate in-depth. 

The input ′𝑥′ originates from the upper layer, resulting in 
a higher-dimensional representation, while ′𝑔′ originates 
from the lower layer, resulting in a lower-dimensional 
representation. To ensure consistent dimensions, appropriate 
convolution operation is applied, followed by concatenation. 
Subsequently, a rectified linear unit (ReLU) activation is 
applied, and the resulting tensor is passed through a 
convolutional layer with a filter count of 1. This yields a 1-
depth vector, which represents the weight of the input. To 
ensure interpretability, the ReLU output is further processed 
using a sigmoid activation function. Finally, the obtained 
weight vector is upsampled to match the size of ′𝑥′ , and 
element-wise multiplication is performed with ′𝑥′ . This 
scaling operation adjusts the vector based on its relevance. 

C. Residual Attention UNET 

The flow of data in conventional feedforward neural 
networks occurs sequentially, where the output of one layer 
serves as the input for the next layer. Residual [14] 
connections offer an additional pathway for data to reach 
later segments of the neural network, bypassing certain 
layers. 

In the case of feedforward neural networks, training a 
deep network can be challenging because of issues like 
vanishing gradients and exploding gradients. However, the 
use of residual connections in a neural network has been 
demonstrated to lead to much easier convergence during 
training, even with networks containing hundreds of layers. 
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Fig. 4 shows the architecture of residual blocks. 

Fig. 4. Residual block. 

where, ′𝑥′  represents input, ′𝐹(𝑥)′  represents the mapping 
function then 𝐹(𝑥) + 𝑥  is the output gained from the 
network. Let’s assume that the desired output is denoted by 
function ′𝐻(𝑥)′  then, 𝐻(𝑥) ≔ 𝐹(𝑥) + 𝑥 . As the model 
becomes more larger there will be gradient disappearance in 
the network resulting 𝐹(𝑥) = 0, then the function 𝐻(𝑥) = 𝑥 
serves as an identity mapping that eliminates convolution 
layers and reduces the depth of a network, while still 
maintaining accuracy. 

Assume ′𝑅(𝑥)′ is the residual then, 

𝑅(𝑥) = 𝐻(𝑥) − 𝑥 () 

Rearranging, we get, 

𝐻(𝑥) = 𝑅(𝑥) + 𝑥 () 

The primary objective of the residual block is to learn the 
actual output, ′𝐻(𝑥)′. It can be observed from the Fig. 4 that 
due to the presence of an identity connection from ′𝑥′, the 
layers are, in fact, attempting to learn the residual 
component, ′𝑅(𝑥)′. Consequently, the block is referred to as 
a Residual Block. 

An example of residual attention UNET architecture is 
shown in Fig. 5. 

Fig. 5. Residual attention UNET. 

V. EXPERIMENT SETUP 

In this experiment, the FER2013 dataset [15] is 
employed, which comprises 35887 grayscale images with a 
resolution of 48×48 pixels. For training and validation of the 
deep learning model, a total of 28709 images (80%) and 
7078 images (19.72%), respectively, are used. Additionally, 
100 images are kept for testing purposes to compare the 
performance of the conventional filter and deep learning 
algorithms. While the validation data improves the model 
during training, the testing data confirms its effectiveness. 

To produce noisy data, several combinations of Gaussian 
noise with a mean of 0 and standard deviation of 1, and salt 
and pepper noise are utilized. These combinations are 
divided into three categories: Noise Added without 
Overlapping (Top & Down (𝐺: 30 & 𝑆: 4%)  and Side by 

Side (𝐺: 30 & 𝑆: 4%)), Noise Added with Overlapping (Full 
Overlap (𝐺: 30 & 𝑆: 4%), Full Overlap (𝐺: 20 & 𝑆: 4%) and 
Full Overlap (𝐺: 30 & 𝑆: 1.8%)) , and Noise Added with 
Partial Overlapping (Partial Overlap (𝐺: 30 & 𝑆: 4%) and 
Complex Overlap (𝐺: 30 & 𝑆: 4%)) .Fig. 8 provides a 
visualization of these examples. The ′𝐺′ value represents the 
Gaussian Noise Factor, which regulates the amount of 
Gaussian noise added to the image. As the ′𝐺′ value exceeds 
0, the image becomes more corrupted. ′𝑆′ represents Salt & 
Pepper, which indicates the percentage of image pixels that 
will be replaced with noise on a scale of [0, 1]. As the value 
approaches 1, image blurriness increases. The noise factors 
of the two noises are adjusted to achieve identical PSNR 
values when comparing the image with its noised and noise-
free versions. 

The first five mixed noises can be easily understood by 
examining the images and their corresponding descriptions. 
For Partial Overlap, the two noises overlap each other at the 
area that is six pixels away from the center of the image on 
both sides horizontally. It constitutes 25% of the total area of 
the image. For Complex Overlap, Salt & Pepper noise is 
added to half of the image horizontally on the left side, and 
Gaussian noise is added to half of the image vertically on the 
bottom part. The noise overlaps at the lower left side, and the 
upper right side of the image is noise-free. It occupies 75% 
of the overall image area. 

To evaluate the performance, two metrics, Peak signal-
to-noise ratio (PSNR) [16] and Structural Similarity Index 
(SSIM) [17], are utilized. 

Mathematically, PSNR can be represented as, 

𝑃𝑆𝑁𝑅(𝑑𝐵) = 10𝑙𝑜𝑔10[𝑀𝐴𝑋𝑆𝑖𝑔𝑛𝑎𝑙
2 /𝑀𝑆𝐸]                         () 

where ′𝑀𝑆𝐸′ represents mean square error of all the pixels in 
the images and ′𝑀𝐴𝑋′  represents the maximum value of 
pixel. 

Mathematically, SSIM can be represented as, 

𝑆(𝑥, 𝑦) = 𝑙(𝑥, 𝑦) ∙ 𝑐(𝑥, 𝑦) ∙ 𝑠(𝑥, 𝑦)                                    () 

where ′𝑙′ represents luminance, ′𝑐′ represents contrast and s 
represents structural similarities between two images ′𝑥′ and 
′𝑦′. 

For UNET schemes, this experiment uses UNET 
architecture based on this paper [18].  

The diagram of proposed Attention UNET architecture 
used in this research is shown in Fig. 6 and the diagram of 
proposed Residual Attention UNET architecture is shown in 
Fig. 7. 

In this experiment, Traditional Filtering schemes were 
employed using specific parameters: Median Filter, Gaussian 
Filter with a standard deviation (𝜎) of 1, and Bilateral Filter 
with 𝜎1 = 1 and 𝜎2 = 0.3. All filters have a size of 3 × 3. 
Additionally, BM3D [19] with 𝜎 = 30 was utilized. For 
Deep Learning schemes, UNET-based models were trained 
using specific hyperparameters, including the Adam 
optimizer, 10 epochs, a batch size of 64, a learning rate of 
0.001, and Mean Squared Error (MSE) loss function. 
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Fig. 6. Architecture of proposed attention UNET. 

Fig. 7. Architecture of proposed residual attention UNET. 

VI. RESULTS AND DISCUSSION 

Tables I and II display the outcomes of comparing an 
original image that is free of noise with images that have 
been corrupted by various mixtures of Gaussian and Salt & 
Pepper noise. In addition, the tables showcase the results of 
image denoising for these corrupted images through the use 

of various techniques such as Gaussian Filter, Median Filter, 
Bilateral Filter, BM3D, UNET, Attention UNET and 
Residual Attention UNET. The metric values obtained from 
the denoising process are presented in the Tables I and II. 

TABLE I.  PSNR GAINED BEFORE AND AFTER DENOISING 

Seven Styles of Noise Mixture 

(Gaussian + S&P)  

Noisy 

Image 

Gaussian  Median Bilateral BM3D 

[19] 

UNET 

[18] 

Proposed 

Attention 

UNET  

Proposed 

Residual 

Attention 

UNET  

1. Top & Down (G:30 & S:4%) 18.8399 24.1452 24.8698 21.6051 24.7184  29.7757 30.0286 30.0373 

2. Side by Side (G:30 & S:4%) 18.8188 24.1774 24.8911 21.6085 24.7012  29.4725 29.8376 29.8799 

3. Full Overlap (G:30 & S:4%) 15.9222 22.3650 22.8052 18.7671 21.2442  26.7138 26.7744 26.8218 

4. Full Overlap (G:20 & S:4%) 17.4327 23.1841 24.5596 19.8160 22.9010  28.1612 28.8056 28.8319 

5. Full Overlap (G:30 & S:1.8%) 17.1746 23.4601 23.0945 20.6884 23.9008  26.7099 26.8523 26.8722 

6. Partial Overlap (G:30 & S:4%) 17.8299 23.6261 24.2922 20.6333 23.7847  28.3086 28.8061 28.8660 

7. Complex Overlap (G:30 & S:4%) 18.8702 24.2588 24.8064 21.7276 24.2208 29.0547 29.5508 29.5980 

TABLE II.  SSIM GAINED BEFORE AND AFTER DENOISING 

Seven Styles of Noise Mixture 

(Gaussian + S&P) 

Noisy 

Image 

Gaussian  Median Bilateral BM3D 

[19] 

UNET 

[18] 

Proposed 

Attention 

UNET  

Proposed 

Residual 

Attention 

UNET  

1. Top & Down (G:30 & S:4%) 0.6529 0.8463 0.8644 0.7678 0.8678 0.9550 0.9584 0.9578 

2. Side by Side (G:30 & S:4%) 0.6525 0.8467 0.8664 0.7658 0.8638 0.9545 0.9562 0.9580 

3. Full Overlap (G:30 & S:4%) 0.4958 0.7797 0.7862 0.6356 0.7516 0.9105 0.9127 0.9150 

4. Full Overlap (G:20 & S:4%) 0.5824 0.8152 0.8508 0.6929 0.8114 0.9386 0.9433 0.9444 

5. Full Overlap (G:30 & S:1.8%) 0.5506 0.8142 0.7947 0.7133 0.8395 0.9099 0.9145 0.9149 

6. Partial Overlap (G:30 & S:4%) 0.6081 0.8266 0.8448 0.7255 0.8394 0.9369 0.9442 0.9448 

7. Complex Overlap (G:30 & S:4%) 0.6949 0.8546 0.8647 0.7893 0.8567 0.9499 0.9546 0.9555 
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The results of denoising noise from images indicate that 
the residual attention UNET algorithm is more effective than 
other algorithms in nearly all cases. In Fig. 8, examples of 
images that were denoised using different filters can be seen, 
including Gaussian, median, bilateral, BM3D, UNET, 
attention UNET, and residual attention UNET. Traditional 
filters do not improve the quality of images, and as the noise 

becomes more complex, their performance worsens. 
However, deep learning-based filters, such as residual 
attention UNET, can produce high-quality denoised images. 
In fact, images denoised using residual attention UNET 
exhibit slightly greater clarity and detail than other UNET 
variants, which is clearly visible in Fig. 9. 

Fig. 8. Visualization of image denoising on images corrupted by the mixture of the Gaussian and salt & pepper noise. 

Fig. 9. Visualization of image denoising on images corrupted by the mixture of the Gaussian and salt & pepper noise. Experiment Number 1. Top & Down 

(G:30 & S:4%), 2. Side by Side (G:30 & S:4%)), 3. Full Overlap (G:30 & S:4%), 4. Full Overlap (G:20 & S:4%), 5. Full Overlap (G:30 & S:1.8%), 6. Partial 

Overlap (G:30 & S:4%), and 7. Complex Overlap (G:30 & S:4%).  

VII. CONCLUSION 

This research presents a comparative analysis of several 
UNET-based algorithms designed to remove mixed noise 
from facial images. Additionally, conventional filters, 
including Gaussian, Median, Bilateral, and BM3D, are also 
evaluated. The findings indicate that traditional filters are 

inadequate for mixed noise denoising, whereas UNET-based 
architectures achieve facial images with high PSNR and 
SSIM values. Moreover, the denoised images generated 
using proposed residual attention UNET are characterized by 
slightly greater clarity and detail than other UNET variants. 
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In order to enhance the denoising performance, our plan 
is to explore a more advanced deep learning architecture. 
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