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Abstract—As we are aware that the world witnesses a huge
number of fire breakouts everyday, which results in high
numbers of hazardous events and severe losses to property
and forest vegetation. Therefore, early stage fire detection is of
vital importance, for once it spreads it becomes unmanageable
and disastrous. The early detection of fire can be performed
with the help of vision based deep learning techniques. The
novelty of the work lies in performing the fire detection using
the static and dynamic features of fire. The static fire features
are taken as shape, texture, and color, while the dynamic
feature accounts for its flickering motion. For this purpose,
the fire motion is estimated in terms of optical flow from videos
(image sequences) by using a motion edge preserving level set
segmentation based fractional order variational model. Level
sets provide nicely segmented flow fields, while fractional
order derivatives are capable to deal with discontinuities in
the motion field. The estimated optical flow field is used
to derive four fire features, which are constituted as 4D
vectors. These 4D vectors reduce the data dimensionality
and mitigates over-fitting problem. Finally, the fire detection
is carried out by implementing a mixed data CNN-LSTM
model. The mixed data presented in the work is composed
of a reference image frame and the corresponding 4D vector
sequence. Also, the significance of the model is manifested
through an ablation study. The model performance validation
is performed thorough a comparison study conducted with
several existing models.

Keywords- CNN-LSTM, Fire detection, Fractional order
optical flow, Level set segmentation, Static and dynamic
features.

I. INTRODUCTION

As we know that the conventional fire detectors rely
on temperature and smoke [1], which makes them highly
sensitive to the presence of humidity, dust, pollen, cooking
fumes, environment temperature fluctuations, and system
sparking, etc. [2]. This results in false fire alarms. Also,
these detectors exhibit limited applicability when imple-
mented in larger areas and for longer distances.

In recent years, image-based fire detection utilizing com-
puter vision algorithms has garnered significant attention
as an alternative solution [3]. Xu et al. [4] introduced an
ensemble learning based framework using a dual learner
Yolov5-EfficientDet and an individual learner EfficientNet
for identifying forest fires. Li et al. [5] developed a deep
learning model composed of three multi-scale feature ex-
traction modules and four implicit deep supervision mod-
ules with channel attention in fire detection. An et al. [6],

implemented a dynamic convolution YOLOv5 fire detection
method and performed anchor box optimization by utilizing
K-mean++ algorithm to reduce the error rate of the method.
All such studies are based on image features such as color,
texture and shape. Many researchers have demonstrated that
several distinguishing features of fire can be obtained from
its flickering motion in an image sequence [7]. This makes
the extraction of fire motion content in an image sequences
extremely crucial, which is generally represented in terms
of optical flow.

Optical flow is a 2D vector field which establishes
a correspondence between the pixels of two consecutive
image frames in an image sequence [8]. Computation of
optical flow is generally done by using variational ap-
proaches. These approaches encode the optical flow prop-
erties in the form of an energy functional. These properties
generally include flow field smoothness, preservation of
motion edges, and denseness. The minimization of the
resulting energy functional provides a system of equations
for optical flow estimation [8], [9]. However, these are
integer order derivative models, and unable to illustrate the
flickering motion of fire accurately. The works presented
in [10]–[13] provide variational model generalization from
integer to fractional order and demonstrated an increased
accuracy in optical flow applications. The fractional order
derivatives are capable of producing better results compared
to integer order derivative for discontinuous functions such
as images [14]. Further, Khan et al. [15] exhibited the
significance of level set segmentation (LSS) framework in
fractional order variational techniques and shown nicely
segmented optical flow fields. This work is aimed at
utilizing fractional order optical flow for performing fire
detection.

This paper proposes a novel binary classification frame-
work for fire detection in videos based on static and
dynamic features of fire. Static features are incorporated as
shape, texture, and color of fire, while the dynamic features
are derived from fire motion. The fire motion is estimated
in terms of optical flow using an LSS based fractional
order variational model. The estimated optical flow field
is employed in calculating four distinct features associated
with fire motion. These features are organised in the form of
4D vectors, which assists in data dimensionality reduction.
The reference images and their corresponding 4D vector
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sequences are used to produce mixed data. This data is
employed in training and testing of the proposed mixed
data CNN-LSTM (convolutional neural network-long short-
term memory) model. The motivation behind utilizing a
CNN-LSTM model instead of a CNN model is to fuse
the convolution based processing capabilities of CNN with
time-series dealing strength of LSTM. Moreover, LSTM
has a hierarchal structure that makes it a potential candidate
for performing complex feature extraction in comparison
to traditional machine learning approaches [16]. Also, an
ablation study is conducted to discuss the significance of
each component of the presented framework. The results
are compared with several state-of-the-art models to vali-
date the performance of the propounded research.

The forthcoming part of the research paper is outlined as:
Section II outlines the methodology, Section III delves into
the results and discussions of the experiments, and Section
IV wraps up the paper with conclusion.

II. METHODOLOGY

The dataset utilized in the presented work is taken from
[17], which contains different image sequences extracted
from several fire and non-fire videos. The total number
of image frames for fire and non-fire are 27, 461 and
11, 392, respectively. These image sequences correspond to
different scenes such as forest, hotel, market, traffic, sports
ground, crowds, illumination change, etc. From these image
sequences, 35 and 43 image sequences are randomly chosen
for experiments in fire and non-fire classes, respectively.
Thus, the prepared dataset contains total 3, 603 and 3, 349
image frames for fire and non-fire videos, respectively.
The motivation behind selecting only a few image frames
from the entire dataset [17] is that each video contains a
sequence of image frames from a single scene. Therefore,
image frames in a video are correlated with one-another.
Thus, extracting and utilizing all the image frames from
a video make training and testing computationally less
efficient and lead to overfitting. In order to deal with these
issues, only a few image frames are taken instead of the
entire dataset [17]. The size of each frame is 128 × 128.
Further, the dataset is preprocessed in accordance with [7]
to highlight the fire content in the image frames. These
preprocessed dataset is passed to the LSS based fractional
order variational model to generate the sequences of optical
flow fields for fire motion. Also, the preprocessed image
sequences are thresholded to produce binary masks. Now,
utilizing these binary masks with their corresponding op-
tical flow sequences, the 4D feature vectors are calculated
from the localized fire region. Finally, by the fusion of
first image frame from an input image sequence and its
corresponding sequence of 4D feature vectors, a mixed
dataset is obtained. This dataset is employed in training and
testing of a novel CNN-LSTM model. The dataset is split
into a ratio 8:2 for training and testing purpose. Hence,
the numbers of training and testing images are 5, 561
and 1, 390, respectively. The overall methodology to the
proposed framework is demonstrated in Fig. 1. Each step
of the methodology is described in detail in the forthcoming
sections.

Image sequence

Fire color enhanced
sequence

Optical flow fields

Preprocessing
Optical flow
estimation

Taking the reference

frame

Reference frame CNN-LSTM model

Input

Input

Construct binary

masks

Sequence of
binary masks

Use binary masks with colors maps

Sequence of
4D feature vectors

to calculate 4D feature vectors

Fig. 1. Methodology for the proposed work.

A. Fire color region enhancement

In general, a scene may contain several objects that are
moving over time. Therefore, for an accurate estimation
of fire motion, it becomes important to suppress the back-
ground object motion. For this purpose, Mueller et al. [7]
emphasized the importance of the Hue term in the HSV
color space. They found that the objects like fire exhibit a
Hue value in the vicinity of 0.083 and 1.0. In the presented
work, to highlight the fire color in each frame of an image
sequence, the RGB color space is transformed into HSV
color space. The values of hue component which lie near
0.083 and 1.0 are retained, while the remaining values are
smothered by using the logistic function as given in Mueller
et al. [7]

Fl(z) =
e−a.(z−b)

1 + e−a.(z−b)
(1)

where, z is any variable, a and b are the parameters, those
are chosen to weigh the fire flames in the image. Using this
function, fire highlighted images are obtained as grayscale
images

I = Fl(min {|0.083−H|, 1− |0.083−H|})�S�V (2)

here, H, S, and V are the hue, saturation and intensity values
of the image, respectively and � is the Hadamard product
of matrices. The complete process is described in Fig. 2.

Extract H, S and V frames

Image frame

Processed Hue Saturation Value
Fire enhanced
image frame

HSV Image frame

Convert RGB into HSV

Process Hue
frame with

logistic function

Hadamard
product

Fig. 2. Producing fire enhanced image frames.
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B. Fire optical flow estimation using LSS based fractional
order variational model

The proposed model is described by the following ex-
pression [15]

F = λFdp + Fsc (3)

where, Fdp and Fsc are the segmented data penalty and
smoothness terms, respectively. The forthcoming subsec-
tions depict the mathematical formulation of Fdp and Fsc.

1) Segmented data penalty term: Let π0 and πC
0

represent two disjoint image regions. Thus, the desired
penalty term is implemented with Charbonnier norm as
follows [15]

Fdp =

∫
π0

√
κ2 + (It +∇ITw)2dX+

∫
πC
0

√
κ2 + (It +∇ITw)2dX

(4)
where, κ is a Charbonnier norm parameter [18], ∇I =

(Ix, Iy)T , and Ix, Iy , and It denote the partial differ-
entials of I with respect to x, y, and t, respectively.
Here, w = (u, v)T is the optical flow, π0 describes a
component of the region segmented by L∪ = Lu ∪ Lv ,
while πC

0 is the complements of π0. Here, Lu and Lv
are the u and v-component level sets [19], respectively.
This expression (4) is further simplified by following the
definition of Heaviside’s function H as

Fdp =

∫
R

[
H(Λ∪)

√
κ2 + (It + wT∇I)2 (5)

+(1−H(Λ∪))
√
κ2 + (It + wT∇I)2

]
dX

here, Λ∪ represents the level surface corresponding to the
level set L∪, and R = π0 ∪ πC0 . On simplification of (5)
gives

Fdp =

∫
R

√
κ2 + (It + wT∇I)2dX (6)

This is desired data penalty term.
2) Segmented smoothness constraint: The smoothness

constraint incorporated with fractional order derivatives is
defined as

Fsc =

∫
R
‖DαwT ‖F dX (7)

where w = (u, v)T , the Marchaud fractional order deriva-
tive of order α ∈ (0, 1) is denoted by Dα = (Dαx ,Dαy )T ,
and ‖.‖F represents Frobenious norm. The rationale of
utilizing Marchaud fractional derivative is its ability to deal
with non-differentiable functions.

Thus, the LSS based smoothness term of the above
expression (7) is defined as [19]

Fsc =

∫
π0

‖DαwT ‖F dX+

∫
πC
0

‖DαwT ‖F dX+ϑ

∫
R
‖∇HTw ‖Col2dX

(8)
where the parameter ϑ is defined as in [19], Hw =

(H(Λu),H(Λv))
T , and the symbol ‖.‖Col2 stands for a

norm function that computes the sums of the column of
L2-norm values in a matrix. The formulation of (8) allows
the proposed model to locally smoothen the distinct region
component corresponding to both the u and v components.

Further simplification of (8) follows the use of Heaviside’s
function Hω as

Fsc =

∫
R
‖DαwTHd

1
2

w ‖F+‖DαwT (I−Hdw)
1
2 ‖F+ϑ‖∇HTw ‖Col2dX

(9)
where, the superscript d, and I represent the diagonal and

identity matrices, respectively. Expression in (9) is solved
following [15], [20] to obtain

Fsc =

∫
R
‖DαwT ‖F + ϑ‖∇Λwδ

d
w‖Col2dX (10)

where, Λw = (Λu,Λv)
T . Here, δ denotes the dirac’s delta

function such that δw = (δ(Λu), δ(Λv))
T . The expression

in (10) performs vertically and horizontally oriented seg-
mentation of the flow field.

Thus, the proposed fractional order variational model (3)
can be written as

F =

∫
R

[
λ
√
κ2 + (It + wT∇I)2 + ‖DαwT ‖F + ϑ‖∇Λwδ

d
w‖Col2

]
dX

(11)

Solution procedure of (11) involves its decomposition into
multiple simpler functionals in accordance with [21]. The
minimization of these component functionals is carried out
using calculus of variation. The resulting system of Euler-
Lagrange equations is as follows(

λ

T
∇I∇IT +

1

Φ
I
)

ŵ =
1

Φ
w−

λ

T
It∇I (12)

u+ − û =− 2Φ{(Dα−Dα+)T e}u+ on {(x, y)|Λu(x, y, t) > 0}

(13)

u− − û =− 2Φ{(Dα−Dα+)T e}u− on {(x, y)|Λu(x, y, t) < 0}
(14)

∂

∂t
Λw(x, y, t) =

− δdw
[

1

2Φ
(w+ − ŵ)d(w+ − ŵ)−

1

2Φ
(w− − ŵ)d(w− − ŵ)

+ diag{(Dαw+)T (Dαw+)} − diag{(Dαw−)T (Dαw−)}

− ϑ
{
∇T

{
(∇ΛTw )

(
diag(diag((∇ΛTw )T (∇ΛTw )))

)− 1
2

}}T ]
(15)

where, the parameter Φ is a small real number and
provides a close approximation of w by ŵ, and T =√
κ2 + (It + ŵT∇I)2. Here, ∂t is the level set function

evolution time step. Similarly, the v component provides
a system of equations. For numerical implementation pur-
pose, these equations can be discretized using the theory
available in [19], [21].

C. Formation of 4D feature vector

Once, the fire optical flow field is estimated, it can be
used to extract the four 4D feature vector elements as
follows

1) Mean fire flow (MFF):
This feature is based on the flow magnitude of the
fire in a scene, which is calculated using fire localized
optical flow field. This estimates the mean of fire flow
magnitude. Its is defined as

feat1 = mean
RF

(‖w‖22) (16)
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here, RF represents the localized fire region in an
image frame.

2) Weighted mean fire flow (WMFF):
This feature is based on weighted fire flow magnitude
and estimated as the mean of the product of the
localized optical flow field with its corresponding fire
color enhanced image. It is given as

feat2 = mean
RF

(I � ‖w‖22) (17)

The features feat1 and feat2 produce high values for
fire colored objects, which also includes rigid objects.
Thus, the fire can be further distinguished from these
rigid objects by using the next two features that give
large values for turbulent fire motion.

3) Sink/Source matching:
Since fire motion is curl free [7], therefore, the turbu-
lent motion of fire results in the formation of sources
and sinks in the estimated optical field, whereas rigid
objects tend to represent a motion mostly composed
of parallel flow vectors. Thus, in order to calculate
this feature, an ideal fire flow template If is designed
and implemented as a kernel with odd dimensions.
The location of (x, y) = (0, 0) corresponds to the
center pixel in the kernel window. It is convolved with
the estimated flow field w. This feature is obtained
as the maximum of the final convolved image. It is
written as

If (x) = e−‖x‖x (18)
feat3 = max

R
|If ? w| (19)

where, R is the image frame, x = (x, y)T and ?
represents convolution operation

4) Flow direction variance:
Since, fire colored rigid objects generally move in a
certain direction, that results in a large variance in the
flow directions. While, fire demonstrates motion in all
the directions, which causes the flow field to have a
low directional variance value. The flow field is used
to produce a uv plot, where a flow vector is denoted
as a point (u, v). This plot is further broken down
into n wedge shaped regions r1, r2,. . ., rn. Then the
number of vectors mi contained in each region ri is
derived and normalized by dividing it from the total
number of flow vectors. This feature is calculated by
using the following expression

feat4 = Variance{m1,m2, . . . ,mn} (20)

D. Proposed mixed-data CNN-LSTM model

These four features are organised to form a 4D vector
corresponding to the input reference images. Thus, using
the reference image and its corresponding sequence of
4D vectors, a mixed dataset is prepared as described
in methodology. This mixed dataset is then employed in
training and testing of the proposed CNN-LSTM model.
Now, the reference images are taken as an input to the
CNN branch of the model, which is composed of two
conv2D layers with 16 and 32 filters, two maxpooling and

batchnormalization layers, and one GAP (global average
pooling) layer. This branch outputs a feature vector of
length 32. On the other end of the CNN-LSTM architecture,
the corresponding sequences of 4D vectors are passed
as the input. This branch is comprised of timedistributed
conv2D, reshape, batchnormalization, LSTM and flatten
layers. The time step taken is 10 and the output of this
branch is a vector of length 80. Further, these output vectors
are concatenated to construct the output feature vector and
fed into a sequence of two dense layers containing 32 and 2
units, respectively for binary classification purpose. Further,
in order to localize the fire region in the reference image
frame, the output feature map from the batchnormalization
layer of the CNN branch is fused with the weight vector
corresponding to fire node in the classifier layer. The
complete architecture is shown in Fig. 5 and contains
only 10, 818 parameters, which makes it simple and to be
implemented even in mobile devices. The complete pseudo
code of the presented framework is given in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The dataset used in experiments is curated from [17]
which contains 27, 461 fire and 11, 392 non-fire images.

First experiment discusses the classification results in
terms of probability score and fire region localisation for
the presence of fire in a scene. This is illustrated in Fig. 3 on
some sample reference image frames (bottom left corner).
In Fig. 3, first row contains fire images, while the second
row corresponds to non-fire images. These images show
both the indoor and outdoor scenes. The first image on
the first row is mostly composed of background objects
such as fire colored vehicles, trees and buildings, which
makes fire detection difficult. Despite these obstacles, the
fire is successfully detected and localised in this video with
a probability score 0.97. The second and third images in
this row show small and saturated fire flames, respectively,
moreover in the third image, the fire is in its initial stage and
resembles a lamp. But, the proposed algorithm provides an
accurate fire detection and localisation for both these scenes
with probability scores 0.85 and 0.99, respectively. In the
second row, the first image describes a scene of a moving
orange colored truck, while the second image represents a
view from the ground towards the saturated sky through
trees, and the third one gives a look of a scene containing
an actual electric lamp. The probability score for each of
these three videos are calculated as 0.01, 0.01 and 0.02,
respectively. This experiment validates the applicability of
the proposed algorithm under different conditions.

Second experiment manifests the performance of the
proposed algorithm in terms of ROC curve as shown in
Fig. 4. This figure represents a nearly rectangular curve,
and has the area under the curve (AUC) score of 0.999.
This high AUC score infers a satisfactory classification
performance of the proposed framework.

Third experiment establishes the proposed algorithm as
a state-of-the-art algorithm for fire detection by providing a
comprehensive comparison with other existing algorithms.
The comparison is exhibited in Table I. In order to compare
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Algorithm 1: Algorithm to prepare mixed data
Input: Image sequence I1, I2, . . . , In
Output: Mixed data for training and testing

CNN-LSTM model
for r = 1 to n do

H , S, V = convert rgb to hsv(Ir)
IFr = fire enhanced image(H,S, V );

for s = 1 to n do
Initialize Imasks as a zero matrix of size(IFs );
for x = 1 to end do

for y = 1 to end do
if IFs (x, y) ≥ c×max IFs then
Imasks (x, y) = 1;

else
Imasks (x, y) = 0;

for p = 1 to n− 1 do
Set up image pyramids Ipyr(k)p and Ipyr(k)p+1 by
collecting images from sequence
{IFq : 1 ≤ q ≤ n}
for k = Npyr−1 to 0 do
I1 = Ipyr(k)p , I2 = Ipyr(k)p+1 ;
if k == Npyr−1 then

Set wp = 0;
else

Upsample u, v to the current level;
if k 6= Npyr−1 then

Update I1 = warping(I1,wp);
Initialize ∆wp and ∆ŵp to zero with
size == size(I1);
for w = 1 to Nwarp do

for i = 1 to Nit do
if i==1 then

Initialize ΛW for W = u or v;
Update û and v̂;
Evaluate û+, û−, v̂+, v̂− using û, v̂
and ΛW ;
Update ΛW for W = u or v; Estimate
∆wp using updated ΛW ;

Update wp = wp + ∆wp;
Update I1 = warping(I1,∆wp);
Initialize ∆wp to zero;

for z = 1 to n− 1 do
Calculate Vz , the 4D vector using Imaskz and wz;

Iref = I1;
Mixed data = {Iref , {V1,V2, . . . ,Vn−1}};

the proposed algorithm with the existing techniques, their
fire detection results have been cited from the respective
publications. The existing models are chosen for compar-
ison purpose based on the types of dataset and features
such as image data [22]–[24], GIS (Geographic Infor-
mation System) data [25], temperature, CO2 and relative
humidity [26] etc. Table I illustrates that the propounded
algorithm outperforms these existing techniques.

Fig. 3. Sample reference images used in fire detection: First row contains
fire images, and second row contains non-fire images.

Fig. 4. ROC curve corresponding to the proposed framework.

Last experiment illustrates the significance of different
components of the proposed algorithm through an ablation
study. In order to perform this ablation study, the algorithm
is considered in three different forms. In first form, the fire
detection is performed by using the color maps only. A
color map is an RGB image representation of an optical
flow field. In a color map, different colors correspond
to distinct flow directions and color intensities describe
the flow magnitudes [15]. The second form performs fire
detection by using the fire color enhanced images only. In
third form, the training and testing is conducted only with
raw image frames. The results are described in Table II.
Thus, the novelty of model is justified.

IV. CONCLUSIONS AND FUTURE WORK

The proposed work introduced a fire detection framework
based on the fusion of static and dynamic features of
fire. The static features were considered as color, texture
and shape of fire, whereas the dynamic features were
estimated using the motion edge preserved LSS based
fractional order fire optical flow. Optical flow fields are
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Fig. 5. Architecture of the proposed mixed data CNN-LSTM model.
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TABLE I
COMPARISON BETWEEN THE PRESENTED ALGORITHM AGAINST THE

STATE-OF-THE-ART ALGORITHMS.

Algorithm Accuracy Precision Recall F1-
Score

Proposed 0.97 0.93 1.00 0.96
DBN [22] 0.94 0.93 0.96 0.94
DLBN [23] 0.89 0.98 0.81 0.89
ResNet50 model [24] 0.89 0.81 1.00 0.89
ResNet101 model [24] 0.95 0.95 0.93 0.94
Catry et al. [25] 0.80 − − −
Yan et al. [26] 0.83 − − −
Liu et al. [27] 0.40 − − −

TABLE II
ABLATION STUDY OF THE PROPOSED ALGORITHM.

Accuracy Precision Recall F1-
Score

Proposed algorithm 0.97 0.93 1.00 0.96
Color maps 0.72 0.83 0.67 0.74
Fire enhanced images 0.60 0.33 0.33 0.33
Raw images 0.50 0.33 0.67 0.40

reduced into 4D feature vectors which describe the fire
motion related information. This flow field to 4D vector
transformation provided data dimensionality reduction that
helps in mitigating overfitting. Further, a mixed dataset
has been prepared, which contains reference image frames
and their corresponding sequences of 4D feature vectors.
The classification accuracy obtained for the given algorithm
is 0.97, which is quite satisfactory. The presence of fire
is also illustrated through probability scores. ROC curve
demonstrated a high AUC score that indicated a good clas-
sification performance corresponding to different test sam-
ples. A detailed comparison established the validity of the
proposed algorithm. Finally, an ablation study emphasized
the importance of the proposed framework. The processing
time taken by the CNN-LSTM model is 124 ms/input
sample, while that for deep learning with raw data is 92
ms/input sample. Yet, the ablation study demonstrated that
the proposed model provides twice more accurate results.
Thus, in future, this algorithm can be further improved by
using four color theorem to estimate more accurate fire flow
fields.
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