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Abstract— Climate and Weather Modelling is a highly 

complex and computationally intensive task which consumes 

substantial amounts of energy. A desire to improve forecast skill 

demands further advances in these forecasts, such as increased 

model fidelity and more comprehensive physical 

representations of the underlying processes. Another driver 

towards better forecasts is the goal of uncertainty 

quantification, with ensembles of forecasts a popular technique. 

But ensembles place much higher demands on the 

computational workload as N ensemble members require N 

times the compute cycles. This leads to an even higher energy 

demand. 

This study examines one approach to reducing the energy 

demands of ensembles by taking advantage of a hardware 

feature in modern NVIDIA GPUs known as Multi Instance GPU 

(MIG). This feature allows us to run multiple ensemble 

members on hardware-isolated GPU slices to maximize efficient 

use of the GPU resources and subsequently reduce the Carbon 

Footprint for an Ensemble forecast. We examine both small and 

large test cases across a range of setups to determine the optimal 

runtime configuration. Our study shows a 2.5-2.8x reduction in 

CO2 emissions across all cases which translates into a savings of 

between 141-171 tonnes of carbon emissions annually per GPU. 

Keywords— Numerical Weather Prediction, Energy 

Efficiency, GPU MIG, Ensemble Forecasting 

I. INTRODUCTION 

Climate change is arguably the most important event 
occurring on the planet today and understanding its impact is 
increasingly vital to our society. We need more accurate and 
more timely forecasts for both short-term extreme weather 
event forecasting as well as longer term scenario modelling.   

Modern climate research places extreme demands on 
computational resources. These demands are driven by many 
factors that relate to improving the accuracy of the climate 
models and the subsequent scenario results. One such example 
is the modelling of clouds. The greatest amount of uncertainty 
in climate models usually comes from the prediction of 
incoming (downward) solar radiation which affects the energy 
budget of the planet. The amount of this energy is directly 
related to the cloud reflectance, and therefore it is driven by 
the accuracy of the cloud model. Accurate models of clouds 
need to be run at a very high resolution that is generally less 
than 3km – these are so-called cloud resolving models (CRM). 
But running global climate models for many years at such a 
high resolution is beyond todays’ capabilities. A team at 
MeteoSwiss and ETH Zurich [4] showed that a 36-year 
simulation of a 1km climate model would take 840 days to 

complete a single run, consuming some 22GWh of power in 
the process. It is clear that we are on an ever-increasing energy 
utilization path that is unsustainable in the future. In 2018, 
computers in data centers consumed 1% of all power 
worldwide with that figure estimated to grow anywhere from 
3-13% by 2030 [1]. 

Improving the accuracy of individual forecast runs by 
itself is insufficient. Weather is an inherently chaotic 
phenomena with highly non-linear behavior and substantial 
sensitivity to initial conditions. This leads to uncertainty in the 
prediction of the model. One method to improve our 
confidence in the forecasts is to use a statistical technique 
known as ensemble forecasting in which multiple forecasts are 
executed with minor variations in the model parameters and/or 
perturbations of the initial state of the atmosphere. The various 
runs, known as ensemble members, can be analysed to 
produce a mean and a variance which leads to both an 
improved forecast as well as uncertainty quantification [3]. 
These improvements in the predictions come at a substantial 
cost in additional computational resources, power, and carbon 
emissions. The goal of this study is to look at how new 
features in GPUs can be exploited to ameliorate these costs.  

Prior work in studying GPU energy efficiency, such as [2], 
have mostly focused on energy efficiency at the kernel level 
and how that applies to overall GPU utilization vs power. Our 
study considers application performance efficiencies by 
taking advantage of the ability to perform fractional GPU 
matching to application requirements through the MIG 
feature.  

This paper is organized as follows: In section 2, we 
introduce GPU accelerated computing and MIG. In section 3, 
we discuss the experiment setup and methodology. In section 
4, we present the results of our experiments. Finally, we 
summarize the conclusions from our results and discuss future 
steps. 

II. GPUS AND MIG 

In the past decade, we’ve witnessed the fast development 
of high-performance computing (HPC) technologies, e.g., 
heterogenous computing, and applications, e.g., Large Scale 
Simulation, Artificial Intelligence model training. NVIDIA 
Graphics Computing Unit (GPU) is one of the most widely 
adopted accelerators for heterogenous HPC computing 
because of its performance leadership and the dominance 
position of CUDA based software eco-system that has deeply 
rooted in HPC and AI development lifecycle.  In HPC domain, 
although continuously scaling out is always the main theme, 

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuMoXC.4

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 634



which requires GPU to be as powerful as possible, fine grained 
GPU resource allocation and scheduling have become more 
and more critical because of the rapidly emerging nano to 
medium scale HPC workloads and Service Layer Objectives 
(SLO) requirements from computing service QoS perspective. 
In response to such new technical challenges, as part of 
NVIDIA A100 GPU’s seven key features, NVIDIA 
announced Multi-Instance GPU (MIG) technology which 
basically allows users to physically provision one high end 
GPU into multiple independent smaller GPU instances. 
Compared with the GPU sharing technologies that were 
available, MIG has multiple desirable advantages including, 
but not limited to, flexible provision, Isolated GPU failure, 
Isolated workload Interference, Low power overhead.  Such 
advantages will not be possible without MIG’s capability of 
partitioning physical GPU into GPU instance(s) with 
dedicated stream multi-processor clusters, GPU memory, L2 
cache as well as the IO bandwidth, which minimized many 
technical issues that caused by time sharing GPU resource. 
MIG is currently also supported by NVIDIA A30 and H100 
GPUs 

III. METHODOLOGY AND SETUP 

The goal of this study is to examine the best method to run 
an ensemble of forecasts on a given hardware solution that 
minimizes the energy footprint of that run. To that end, we 
devised and undertook a series of experiments to determine 
the energy profiles of representative forecast models covering 
both large and small model sizes. 

A. Capturing energy usage 

In capturing the energy consumption or our experiments, 
we followed the methodology of [5] which defines three 
quality levels of measurement. For this experiment we used 
Level 1, which is based on version 0.9 of the Green500 run 
rules1. For level 1, power needs to be sampled at one-second 
intervals over at least 20% of the run – in fact we capture the 
full run. Power measured at level 1 is also limited to the 
computing elements only and does not include other 
components such as I/O devices or network components. We 
believe this is an appropriate level to base this study on as we 
are interested in the difference in computing element 
consumption, rather than the total power consumption. 

To measure the CPU power, we used the lm-sensors 
package on Ubuntu which can return, using the sensors 
command, the instantaneous CPU Power at any interval.  

To measure the GPU power we used the nvidia-smi 
command which has a built-in loop option for regular 
measurements.  

To determine the carbon footprint, we use published 
figures for both the USA and Singapore that determine the rate 
of CO2 emitted per kWh used. The experiments were run in 
Singapore – we include the USA energy values as Singapore 
is somewhat skewed due to the country’s high dependence on 
fossil fuels. These values are summarized in Table I. 

B. Workload Cases 

As the MIG capability allows us to slice the GPU into 1-7 
slices, we wished to test both a small case that could fit into 
the smallest slice as well as a case that required larger slices.  

 
1 http://green500.org/docs/pubs/RunRules_Ver0.9.pdf 

TABLE I.  POWER GRID CARBON FOOTPRINT VALUES 

 

To meet this requirement, we used two cases names Ksmall, 
and IP4, depicted in Fig. 1. 

 

 

 

 

Ksmall is a 24 hour, 18km resolution forecast over South 
East Asia centered on the Khorat plateau in central Thailand. 
The case is derived from a nested 18km-6km-2km forecast of 
the same region called ModelK. The model uses a tropical 
physics suite and consists of about 1.2 million grid cells.  

IP4 is a 24 hour, 4km resolution forecast over the Iberian 
Peninsula centered on Spain. The model uses a temperate 
physics suite and consists of about 6 million cells.  

The two models and their parameters are summarized in 
Table II. 

C. Experiment Setup 

1) Experimental Hardware  
Our experiments were run on the NVIDIA ARM HPC 

Devkit system. The NVIDIA Arm HPC Developer Kit is an 
integrated hardware and software platform for creating, 
evaluating, and benchmarking HPC, AI, and scientific 
computing applications on a heterogeneous GPU- and CPU-
accelerated computing system. The kit includes a single 
Ampere Altra Q80-30 Arm CPU, 512GB DDR4 RAM, 6TB 
SAS/SATA HDD, an NVIDIA A100 Tensor Core GPU 
server, and the.  

2) Base Software Layers 
The software stack was comprised of several layers with 

the base OS layer of Ubuntu 20.04.3 LTS (Focal Fossa) with 
the NVIDIA GPU driver version 510.47 and CUDA version 
11.5. On top of this was the NVIDIA HPC SDK suite of tools 
versions 22.1 providing the Compilers and accelerated HPC 
libraries. Finally, the HDF5 version 1.12.0, NetCDF-C 
version 4.7.4 and NetCDF-Fortran version 4.5.3 packages 
provided the I/O libraries. 

3) Application Software 
For the application software (WRF), CPU runs of the 

workload were performed using WRF Version 3.8.1. from 
NCAR [6] whereas GPU runs of the workload were performed 

Country Year kg CO2/kWh Source 

USA 2021 0.385 www.eia.gov 

Singapore 2020 0.408 www.ema.gov.sg 

Fig. 1. Ksmall (left) and IP4 (right) case model domains 
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TABLE II.  MODEL COMPARISONS 

Model Ksmall IP4 

Resolution 18km 4km 

Meteorology Tropical Temperate 

Horizontal Grid Size 230x170 400x400 

Vertical Levels 31 38 

Total number of cells 1.2 million 6 million 

 

using AceCAST Version 1.2 from TQI [7].  AceCAST 
V1.2 is a GPU accelerated version of NCAR WRF V3.8.1. 

D. Experimental Runs 

Baseline measurements were first gathered for the CPU 
and GPU computing elements without any workload. These 
measurements were performed three times and averaged to 
derive device PIDLE values. These values are considered 
‘fixed’ costs for the subsequent calculations with the same 
justification as was used for the non-computing elements. We 
measured CPU PIDLE at 9.84 Watts and GPU PIDLE at 63.61 
Watts 

We then ran a standard CPU only workload for both 
forecast cases. These are our gold runs that all subsequent runs 
are compared to. We also ran standard (without MIG enabled) 
GPU workloads. These runs were used to compare the cost of 
enabling MIG for the same workload. 

Once gold runs were complete, we enabled MIG mode on 
the GPU. We configured the MIG in various different 
geometries and ran comparison studies. We restricted our slice 
geometries to symmetric combinations only. Table III shows 
the geometries that were tested on the GPU. 

The 4g.40gb slice geometry was not used as it has no 
benefit over the 7g.80gb slice (because we are only testing 
symmetric slices). In theory we could have used a 4g.40GB 
plus other smaller slices but that would give the ensemble 
members uneven resources leading to uneven completion 
times. For the smaller case we ran up to the number of 
instances shown in the table (i.e. 7 instances on the 1g.10gb 
geometry). The large case required more resources by design 
– it specifically required a minimum 20GB GPU memory 
footprint to run. As such, we could only run up to three 
ensembles members for the large case.  

For each run, we gathered and calculated various metrics. The 
definition and derivation for each of the metrics are 
enumerated in Table IV. 

 

TABLE III.  MIG SLICE GEOMETRIES 

TABLE IV.  METRICS COLLECTED AND THEIR DERIVATION 

 

IV. EXPERIMENT RESULTS 

A. Baselines 

The baseline measurements on CPU and GPU (both in 

standard mode and MIG mode) are summarized below for 

key metrics in Table V and Table VI respectively. 

TABLE V.  BASELINE CPU RESULTS 

TABLE VI.  BASELINE GPU RESULTS (SINGLE INSTANCE) 

 

B. Full MIG GPU Runs 

We next summarise the results for MIG mode for both a 
single ensemble member and the maximum number of 
ensemble members (7 for the Ksmall model and 3 for the IP4 
model). These results are included in Table VII. 

 

 

 

Case Ksmall IP4 

Members 1 7 1 3 

TWALL 185 1293 667 2000 

PTOT 12194 85358 49270 147809 

PAVG 66.3 66.3 73.9 73.9 

PCONS 3.387 23.711 13.686 41.058 

Geometry Instances Ksmall IP4 

MIG Disabled 1 YES YES 

1g.10gb 7 YES NO 

2g.20gb 3 YES YES 

    

3g.40gb 2 YES YES 

4g.40gb 1 NO NO 

7g.80gb 1 YES YES 

Metric Description Units Derivation 

TWALL Total Wallclock Runtime s Measured 

TIOR Time in I/O Reads s App reported 

TIOW Time in I/O Writes s App reported 

TIOT Total I/O Time s TIOR + TIOW 

TCOMP Total Compute Time s TWALL - TIOT 

NSAMP Number of Samples  Counted 

PINST Instantaneous Power W Measured 

PINJ Instantaneous Job Power W PINST – PIDLE 

PTOT Total Job Power W ∑ 𝑃𝐼𝑁𝐽

𝑁𝑆𝐴𝑀𝑃

𝑖=0

 

PAVG Average Power W PTOT/NSAMP 

PEFF Power Efficiency J/s PTOT*1000/TWALL 

CONS Power Consumption kWh (PEFF*TWALL)/3.6e6 

Case Ksmall IP4 

MIG Disabled Enabled Disabled Enabled 

TWALL 116 110 175 180 

PTOT 6337 4376 16221 17386 

PAVG 55.1 40.1 92.7 96.6 

PCONS 1.760 1.215 4.506 4.829 
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TABLE VII.  GPU MIG RESULTS 

 

C. Cost of MIG (MIG slice size vs Compute) 

The A100 GPU has 112 streaming multiprocessors (SM) 
contained within 8 GPCs (each GPC has 14 SMs). When 
running in MIG mode, only 7 of the GPCs are available, which 
sets the upper bound on the number of MIG slices per GPU as 
each slice needs at least 1 GPC. The total number of SMs 
available for each slice configuration is shown in Table VIII.  

TABLE VIII.  AVAILABLE SM PER MIG SLICE 

Slices 0 1 2 3 7 

No. SM 112 98 42 28 14 

 

Clearly having a smaller number of cores available has an 
impact on the performance of the model. We examine that 
impact of using these smaller slices on our two cases. We plot 
the inverse of the average integration time for various slices in 
Fig. 2 for Ksmall and Fig. 3 for IP4 respectively. In the left 
column the full GPU, and all 112 SMs are available for the 
code to use.  In the worst case the Ksmall model with a 7 slice 
geometry configuration has only 14 SMs to execute on and 
compute performance is 3x slower. For the large IP4 model 
the impact is greater; at 3 slices (28 SMs) it is 2.36x slower. 
This cost is of course more than made up for by the fact that 
the remainder of the GPU is available for other ensemble 
members to run on. 

D. Power consumption with MIG 

When the GPU is sliced, total GPU power increases as 
more and more slices are utilized. This is shown below for 
Ksmall in Fig. 4 and IP4 in Fig. 5 respectively 

Plots of power for each member are shown in Fig. 6 
(Ksmall) and Fig. 7 (IP4) below 

Case Ksmall IP4 

Members 1 7 1 3 

TWALL 185 1203 180 977 

PTOT 4376 34098 17386 54333 

PAVG 40.1 28.4 96.6 55.6 

PCONS 1.215 9.471 4.829 15.092 

Fig. 3. IP4 performance with different slices 

Fig. 2. Ksmall performance with different slices 

Fig. 4. Ksmall average power per member 

Fig. 5. IP4 average power per member 

Fig. 6. Ksmall power per member 

Fig. 7. IP4 power per member 
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E. Total power consumption comparisons 

The total power consumption for both CPU only and GPU 
MIG-enabled runs is summarized in table IX. The table also 
includes the total power saved through the GPU for each of 
the runs in kilowatt-hours. 

 

TABLE IX.  TOTAL POWER CONSUMPTION 

 

F. Carbon footprint and efficiency 

Finally, we plot the total CO2 emissions for both models 
using power generation values for Singapore in Fig. 8 and 
power generation values for the USA in Fig. 9 

For single members we see a reduction of 2.78 times and 
2.83 times CO2 emissions for the small and large cases, 
respectively. For fully GPU loaded ensembles the reduction is 
2.50 times for the small case and 2.72 times for the large case. 

 

 

 
2 Source: epa.gov/energy/greenhouse-gas-equivalencies-

calculator, accessed November 2022 

 

V. SUMMARY 

Our study confirmed that GPU accelerated forecasting can 
provide tangible value in reducing energy consumption, 
leading to reduced operational cost and lowered greenhouse 
gas emissions. We measured a minimum of 250% reduction 
and up to a 283% reduction in CO2 emissions for the various 
experiments. Extrapolating the reduction in CO2 emissions 
over longer timescales demonstrates the potential for greater 
savings. For 24 hour runs using Singapore power, we save 
between 388 – 468 kg per run per GPU. Annualised, this 
would equate to 141 – 171 tonnes of saved emissions (134-
161 tonnes for US power). That is the equivalent of removing 
up to 36.8 gasoline-powered vehicles from the roads for a 
year2  

The main conclusion from our research is that the use of 
the MIG facility in GPU accelerated computing allows us to 
utilise the GPU resources more completely and therefore more 
efficiently. This effect is particularly demonstrated by 
workloads with a larger number of smaller jobs. This allows 
us to deliver improved carbon emission reductions at the 
application level, rather than simply at a kernel level. 

One negative effect that we noted during the experiments 
was that the I/O time per ensemble member grew much larger 
than expected as the number of members computed 
simultaneously was increased. This led to longer run times and 
this effect somewhat reduces the overall benefit of using MIG. 
We suspect that the I/O may be a bottleneck in getting the data 
to the storage over the PCIe interface as all members attempt 
to write at the same time. We theorise that staggering the 
ensemble members by a small amount, such that each MIG 
slice is doing I/O at a different time, may be one method to 
mitigate this effect and testing this theory could be a good 
future extension of this work. 
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