TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

ThuA1SA.2

Parametric Optimization of Magnetic
Abrasive Finishing Process Using Genetic
Algorithm and Particle Swarm
Optimization

Gopal Kumar Saxenaa, Anjaneyulu Kamepalli, Venkatesh Gudipadu, Satish Kumar Injeti,
and Ramalingaswamy Cheruku

Abstract—Magnetic Abrasive Finishing (MAF) is
advanced finishing techniques which can generate
surface finishes at the nanoscale for both magnetic
and non-magnetic materials.By enhancing or opti-
mizing the important MAF process parameters, the
material’s surface finish may be greatly enhanced.
The current paper looks into the experimental stud-
ies of Hastelloy C- 276 for surface finish improve-
ment (%AR,), material removal (MR) and forces
(Fn & Fy) as well as the parametric optimization of
MAF process. The optimum results obtained after
the application of Particle swarm optimization (PSO)
and Genetic algorithm (GA) were compared with
each other for improving the finishing of Hastelloy
C- 276 using the MAF process. The experimentation
was carried out using MATLAB software. Using GA
and PSO algorithms, the regression equation was
utilized to determine the optimal influencing factors.
Particle swarm optimization was found to be the best
optimization method and to have produced the best
optimal outcomes when these optimum results were
compared.
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I. INTRODUCTION

Fine finishing of advanced materials is essential
because of rapid improvements in aerospace and
medical implants [1]. However, the finishing of ad-
vanced materials using traditional methods (grind-
ing, lapping, and honing, etc.) is a challenging
task [2], [3]. Magnetic abrasive finishing (MAF)
process is alternative to get a nano-scale finish
because the MAF setup can easily fabricate on the
conventional lathe and milling machines [4]. MAF
process is becoming more popular because of
the flexibility of flexible magnetic abrasive brush
(FMAB) and getting nano level finish of materials
[5]. MAF process involves the finishing of flat
surfaces using a milling machine. In the MAF
process, the FMAB is formed between the elec-
tromagnet is continuously rotating electromagnet
and fixed work piece. Hence, due to the relative
motion between FMAB and work surface mate-
rial removal takes place in terms of microchips.
Kanish et al. studied experimentally the finishing
of SS 316L using the MAF process. The authors
conducted experimentation using orthogonal ar-
rays Lp7 and also explains the relation of each
parameter on change in the surface finish (R,)
and material removal (MRR) [6]. Authors also
reported the most influencing process parameters
are increased in voltage and rational speed, and
abrasive size gives a positive effect on change in
surface roughness and material removal, whereas
an increase in working gap and feed gives a
negative effect. Any process that wants to improve
product quality, lower machining costs, and boost
machining efficiency must optimize its process
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variables [7]. To increase the efficiency of the
MATF process, it is crucial to optimize the process
parameters and choose the best process parameters
[8]. According to the examination of the literature,
some researchers optimized the MAF process pa-
rameters using orthogonal arrays, and others were
claimed to have used Grey relational analysis to
optimize various processes (such as EDM, drilling,
wire EDM, etc.) for a superior surface quality
[9]. While a small number of researchers concen-
trated on utilizing a genetic algorithm to optimize
various operations (such as turning, scheduling,
welding, etc.). Some studies employed JA to op-
timize the variables for a distinct process (surface
grinding, welding, electrode deposition, etc.) [10],
[11]. Hastelloy C-276 finishing and MAF pro-
cess parameter optimization are the attention of a
very small number of researchers. To evaluate the
impact of various process parameters on surface
finish improvement (Ra), material removal (MR),
and forces (Fn & Ft), no targeted optimization
of processes parameters of the MAF process was
utilized.

II. EXPERIMENTAL DETAILS

The experiment is run on a vertical milling
machine using a MAF process that was created
in the lab, as illustrated in Fig.1. The work piece
is secured to the work surface, and an arbour is
used to attach the electromagnet. SiC abrasives
with a mesh size of 60 and magnetic particles
with a mesh size of 220 were utilized on a work
piece with dimensions of 10 X 10 x 0.6 cm. The
flexible magnetic abrasive brush (FMAB), which
is used to finely polish both metallic and non-
metallic surfaces, is made up of both abrasive and
magnetic particles. The experimental information
is displayed in Table 1.

TABLE I
DETAILS OF EXPERIMENT

Work materials
Workpiece size
Abrasives used
Abrasive size

: Hastelloy C- 276

: 100mmx100mmx6mm
: Silicon carbide (SiC)

: SiC (60&220 mesh)
Magnetic particles & size  : Iron powder (300 mesh)
Magnetic flux : 1-1.5 Tesla

Run time : 5 min

Dimmer stat : 10 A-230 V
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Fig. 1. 1. MAF set up on a vertical milling machine

A. Design of experiments

L27full factorial orthogonal array was used
for the investigations’ three-level and four-factor
designs. The benefit of employing a complete
factorial design is that it provides a substantial
regression model as well as insight into how
process factors affect response percent (%ARa),
material removal (MR), and forces (Fn & Ft). The
coded variables and their ranges are displayed in
Table 2.

TABLE II
PARAMETERS AND LEVELS
Coded variables 1 2 3
Sic weight% (%Wt.) (C1) 20 25 30
Voltage (V) (C2) 35 45 55
Speed of electron (rpm) (C3 500 750 1000
Working gap(mm) (C4) 2 2.5 3

B. Parametric optimization

The following elements are frequently neces-
sary for parametric optimization, including em-
pirical equations relating to tool life, force, per-
formance, surface polish, etc. The most popular
production process optimization criteria are used
to minimize process costs while maximizing pro-
cess profits and offer a practical solution to the
issues of uncertainty, many inputs, and discrete
data. These sorts of issues may be solved and
the process’ effectiveness and efficiency improved
by using Grey’s relationship analysis. Because
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the genetic algorithm may create a population
of solutions for generations without being distin-
guished by the study of difficult research areas
and the utilization of genetic resources, genetic
algorithms are employed as an effective technique
for optimizing many goals. In order to successfully
apply GA to a given issue, the solution must be
correctly designed (coded), operators, fitness func-
tions, and restrictions must be removed, among
other things. The behavior of flocks of birds or
schools of fish serves as the inspiration for the
evolutionary computing approach known as parti-
cle swarm optimization (PSO), which is utilized
for optimization. The algorithm’s efficiency and
simplicity make it suitable for usage in a variety
of sectors, including operations and the production
process.

1) Genetic algorithm: Selection, crossover, and
mutation are three crucial genetic operators used
by the GA algorithm [12], [13]. They serve as
the fundamental building blocks of strong genetic
algorithms. They are the main conduits for re-
production simulation and natural selection. Mu-
tations and hybridization happen as a result of
genetic processes. The GA method is described
in detail below in Fig.2.

1. You must select a type of code that reflects
the MAF process’s most important parameters.

2. The length of the chromosome, population
size, selector, crossover operator, Crossover prob-
ability, mutation probability, and adaptive param-
eters are just a few examples of the factors that
need to be properly chosen.

3. Random numbers within the range of each
process should be used to start the GA process.

4. Choose the maximum number of iterations
or the permitted algebra Set t= 0

5. Decoding binary to decimal conversion pro-
cess variables

6. The fitness function for each string must
be built using a regression equation in order to
forecast the goal function, such as surface quality
improvement.

7. Take the optimal solutions for the following
generation when t > t max (i.e., the objective
function achieves the maximum value).

8. Reproduce the new population

9. There is a chance that the two randomly
chosen chains will cross at the chosen intersection.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE

10. Mutations can happen because the entire
population chain is susceptible to them

11. Decoding the new overall chain in accor-
dance with steps 5 and 6. To mark the conclusion
of each iteration, the iteration value is increased
by t =t + 1, and step 7 is repeated.

Fig. 2. Genetic algorithm flow chart

2) Particle

Particle
Swarm Optimization (PSO) is a metaheuristic
optimization algorithm that was inspired by the
social behavior of bird flocking or fish schooling.
In 1995 Kennedy and Eberhart proposed this
algorithm. PSO is commonly used to solve

swarm  optimization:

optimization problems where the objective
function is not known in advance or is difficult
to evaluate analytically. In PSO, a population of
candidate solutions, called particles, move through
the search space to find the optimal solution.
Each particle represents a potential solution to
the problem and is associated with a position and
a velocity. The position represents a point in the
search space, while the velocity determines the
direction and speed of movement. The particles
in the swarm collaborate and communicate
with each other to guide their search. At each
iteration, the particles update their velocity and
position based on their own experience (local
best) and the experience of the swarm (global
best). The updating process is influenced by the
best positions found by individual particles and
the best positions found by the swarm as a whole.
Fig. 3 shows process involved in particle swarm
optimization technique.
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Fig. 3. Flowchart of the particle swarm optimization algorithm

An Intuition of Particle Swarm Optimization

To get the global optimum there is movement
towards a promising area. Traveling velocity of
each particle is adjusted dynamically. Each par-
ticle keeps track of : It’s best result for him/her,
known as personal best or pbest and best value
of any particle is the global best or gbest. Po-
sition of each particle modified according to:
Its Current Position , Its Current Velocity, The
Distance Between Pbest & Its Current Position
and The Distance Between Gbest & Its Current
Position. Lets us assume a few parameters first.
f: Objective function, Vi: Velocity of the particle
or agent, A: Population of agents, W: Inertia
weight, C1: cognitive constant, Ul, U2: random
numbers , C2: social constant, Xi: Position of the
particle or agent, P;: Personal Best, g;: global
Best. The actual algorithm goes as : Assemble a
"population" of particles that are evenly scattered
over X, Determine each particle’s location while
taking the objective function into account, If a
particle’s current position is superior than its prior
best position, update its position, Locate the best
particle based on the particle’s last best locations,
Update the speed of the particles by using equation
V= WV, + ciU" Py’ — Pi') +coUs ("=
P;!) , Place the particles in their new locations
P;/*! = P;/+ V;/*!, Return to step 2 until the
stopping requirements are met.
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ITII. RESULTS AND DISCUSSIONS

The surface finish improvementis
calculated  using the  below  equation.
%AR, = FralRa—initialRa 100 Material
removal (MR (mg)) ‘= (Weight  before
experimentation - Weight after experimentation )

Dynamometer is used to measure the forces &
Talysurf is used to measure the roughness.

A. Regression equations

With the help of experimental datas Regression
equations [14] are being generated using minitab
software. Our objective is to maximize change in
surface roughness (% AR,) & material removal
(MR) and minimize the forces (Fy & Fr ).

Maximize

% AR,=T73.7—-3.606C1 + 0.244C2 - 0.0822C3
- 091C4 + 0.0700C1*C1 - 0.00991C2*C2 -
0.000010C3*C3 + 0.31C4*C4 + 0.00959C1*C2 +
0.001519C1*C3 - 0.281C1*C4 + 0.001666C2*C3
+ 0.0000C2*C4 + 0.00470C3*C4 (1)

Maximize

MR = 204 - 0.59Cl1 + 0.081C2 +
0.00319C3 - 4.83C4 + 0.01225C1*C1 +
0.00181C2*C2 + 0.000000C3*C3 + 0.878C4*C4
+ 0.00145C1*C2 + 0.000007C1*C3  +
0.0085C1*C4 — 0.000174C2*C3 — 0.0045C2*C4
— 0.00015C3*C4 (2)

Minimize

Fn = 50.8 — 1.660C1 + 0.574C2 - 0.0024C3
— 12.31C4 + 0.0341C1*C1 + 0.00330C2*C2 +
0.000004C3*C3 + 2.49C4*C4 + 0.00405C1*C2 +
0.000019C1*C3 - 0.024C1*C4 — 0.000488C2*C3
— 0.08221C2*C4 + 0.00255C3*C4 (3)

Minimize

Fr= -154 + 0.296C1 + 0.275C2 +
0.00041C3 - 1.02C4 - 0.00245C1*C1
0.00078C2*C2 — 0.000005C3*C3 + 0.770C4*C4
- 0.00166C1*C2 + 0.000166C1*C3 -
0.0600C1*C4 — 0.000098C2*C3 + 0.0130C2*C4
—0.001060C3*C4  (4)

B. Optimization of maf process parameters

The following are the basic assumptions for the
optimization of both PSO and GA .

Assomptions

e Population size was considered as 400 for
genetic algorithms and 50 for PSO.
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e Maximum number of iterations kept for GA
is 200 and for PSO it is 400.

o Number of variables is kept 4 , lower bond is
[20 35 500 2] [2] & upper bond is [30 55 1000
3] [3] for both GA and PSO.

e For PSO inertia weights Wmax & Wmin are
kept 0.9 & 0.4 and acceleration factors cl and c2
both are kept 2.05

e The random numbers are considered between
0tol.

o Generations time is the default it depends on
how effectively the algorithm is working

o The search space is continuous, and the move-
ment of the solution within the search space moves
randomly.

1) Genetic algorithm: The GA was applied
using MATLAB R2021a. It is observed that opti-
mum values for %AR, MR , Fn and Ft obtained
at optimum input parameters % Wt. ( 30 ),Voltage
(55V ), RPM ( 1000 ) , Working gap ( 2 mm )
are shown in Table 3

TABLE III
GA RESULTS
A Ra (%) MR Fn Fy
64.273799 12.01405218  34.63559273  16.907958

Pareto front obtained for the maximization and
minimization objective functions are :

Esrslo froat Parsto front

s
7
/

AR (%) Fu

a. Parcto front for maximization b. Parcto front for minimization

Fig. 4. Pareto fronts

Fig. 4a and Fig. 4b are representing the pareto
front for maximization & minimization. In a GA,
the Pareto front is the collection of non-dominated
solutions that cannot be improved for any one
goal or objective without degrading performance
for a another goal. Here dotted line (in Fig.4a)
and dotted curve (in Fig.4b) represents the pareto
fronts for maximization and minimization and the
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values presents here will give the optimal results
for at least one of the objective function.

2) Particle swarm optimization: The PSO was
applied using MATLAB R2021a. It is observed
that optimum values for %AR,, MR , Fn and Ft
obtained at optimum input parameters % Wt. ( 30
),Voltage ( 55V ) , RPM ( 1000 ) , Working gap
( 2 mm ) are shown in Table 4.

TABLE IV

PSO RESULTS
A Ra(%) MR Fn F¢
62.1525 15.0152  25.7247  10.8968

PSO convergence graph for different outputs are

PSO convergence graph
0 convergence grapt ence 20

vai
N ———
e
M =
—
» ——
= —
aa——
—
—
—
—————

Fig. 5. PSO convergence characteristicsfor various functions

Fig. 5a, Fig. 5b, Fig. 5c and Fig. 5d are rep-
resenting PSO convergence graph obtained for
percentage change in surface roughness , Mate-
rial removal and Forces are representing how the
values of objective functions are changing as the
iterations progress (here number of iterations kept
are 400). The graph starts with an initial popula-
tion of particles, and as the iterations proceed, the
particles moves towards the optimal solutions.

IV. COMPARISION OF RESULTS

Comparison of results obtained using GA and
PSO with experimental values at optimum input
parameters % Wt. ( 30 ),Voltage ( 55V ) , RPM
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TABLE V
COMPARING RESULTS

Objectivkctual
value value (%Er- (%Er-
us- using ror) ror)
ing PSO for for
GA GA PSO
%AR, 61.5384 64.2738 62.1525 4.445 0.9978

MR 13.6824 12.0140 15.015  12.1933 9.740
Fn 27.6525 34.6355 25.7247 252526 6.9715
F, 11.7835 16.079 10.8968 43.4879 7.5249

( 1000 ) , Working gap ( 2 mm ) are shown in
Table 5.

Plotting the results of Actual , GA and PSO on
bar graph. Fig.10 showing how different output
parameters are close to the actual value. X-axis
representing the output parameters and y-axis rep-
resenting their values.

70

60 -
50
40 - M Actual
30 - mGA
20 + 1 PSO
° .
O -

ARa (%) MR Fn Ft

Fig. 6. Comparing results

V. CONCLUSION

Conclusions are listed below based on exper-
imental investigations and optimization methods
used for the MAF process.

e Metals and non-metals can both be fin-
ished using the magnetic abrasive finishing (MAF)
method.

o MAF process improved the Surface roughness
of Hastelloy material approximately by 61.5%.

e Based on PSO and GA the global optimum
process parameters obtained are 30% Wt ratio of
Sic, speed of electromagnet is 1000 rpm, voltage
is 55V and working gap is 2mm.

e For GA corresponding to optimum input
parameters output parameters such as change in
surface finish improvement, MR and forces(Fn &
Ft) are 64.273799, 12.0140, 34.6355 & 16.9079.
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e For PSO corresponding to optimum input
parameters output parameters such as change in

Predicte®redicted Comparistmmparisiostrface finish improvement, MR and forces(Fn &

Ft) are and 62.1525, 15.015, 25.7247 & 10.8968.

e The particle swarm optimization technique
gave better result compared to genetic algorithm
and ouputs obtained using PSO is close to exper-
imental values.
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