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Abstract—Diabetic retinopathy, one of the main causes of 

blindness in the world, can be diagnosed early by utilizing 

microaneurysms (MA). The existence of microaneurysms can be 

detected by performing semantic segmentation on the retinal 

fundus image. In this paper, deep learning method testing was 

carried out using the GlobalNet model at various input image 

resolution values to see the effect of resolution alteration on MA 

detection in retinal fundus images. The experiment provided 

AUPR values of 0.391 ± 0.026, 0.387 ± 0.035, and 0.394 ± 0.050, 

along with F1 scores of 0.361 ± 0.034, 0.361 ± 0.022, and 0.360 ± 

0.022. Evaluation done at pixel and lesion levels shows that the 

difference in resolution of the input images does not cause a 

significant change in the AUPR and F1 scores. However, the 

resolution alteration does affect the total number of false 

positive lesions in outputs. In addition, a combination method is 

developed, providing a better trade-off in sensitivity and 

precision compared to the GlobalNet segmentation model. 

Keywords — microaneurysm, GlobalNet, multi-resolution, 

diabetic retinopathy 

I. INTRODUCTION 

 Diabetic retinopathy (DR), a complication of diabetes 
mellitus, is largely to blame for the rise in the number of 
visually impaired people worldwide. According to the World 
Report on Vision in 2019, diabetic retinopathy is one of the 
leading causes of blindness in the world [1]. Blindness in DR 
patients is often attributed to a delayed diagnosis that occurs 
when the disease is detected after the patient has experienced 
damage from visual loss, which will be difficult to repair. 
Hence, to reduce the occurrence of diabetic retinopathy-
related blindness, early detection of the disease is essential. 
Retinal features found on each DR stage, which consists of the 
Proliferative Diabetic Retinopathy (PDR) stage and the Non-
proliferative Diabetic Retinopathy (NPDR) stage, can be used 
to aid the early diagnosis of DR [2]. 

 A sac-like formation which bulges from the retina’s blood 
vessels called a microaneurysm (MA) develops in the mild 
NPDR stage and is often used to support the initial detection 
of DR. A Microaneurysm appears as the result of blood vessel 
obstruction caused by a high glucose level in DR patients and 
can be found as a red spot or a small circular structure with a 
diameter of 10-100 µm on a fundus image [3], and sometimes 
also as an irregular shape. The presence of one or more 
microaneurysm lesions enables the ophthalmologist to make 
the diagnosis without considering the size of the lesion, since 
the lesion’s size does not accurately reflect the severity level 

of DR. The diagnosis can also help the doctor as the first step 
in treatment to avoid the disease getting worse. 

 The presence of microaneurysms in the retina can be 
determined using semantic segmentation on retinal fundus 
images, which will act as the framework for lesion-level MA 
detection [4]. By using semantic segmentation [5], each pixel 
of the fundus image will be classified as a microaneurysm or 
non-microaneurysm. The modest size of the lesions makes 
them particularly vulnerable to a change in resolution values 
in fundus images, which is one of the challenges in 
segmenting microaneurysms. The lesion may be partially or 
completely obscured when the input’s resolution is decreased. 
As a result, the purpose of this study is to determine how the 
resolution value impacts the output of the segmentation model 
for microaneurysm detection. 

In recent days, a lot of microaneurysm segmentation 
methods have been developed to support the diagnosis of 
diabetic retinopathy. However, some of the existing methods 
have certain limitations, such as the model’s inability to 
identify tiny lesions near blood vessels [4] and its incapacity 
to identify lesions with irregular forms [6]. 

II. METHODOLOGY 

A. Dataset 

The experiment was conducted using the Indian Diabetic 
Retinopathy Image Dataset (IDRID) [7]. The fundus images 
have a resolution of 4288 x 2848 pixels and were captured 
using a Kowa VX-10α fundus camera with a field of view of 
50°. Along with 81 RGB fundus images in JPG format, the 
dataset also contains pixel-level annotations for each image in 
TIF format. Observers trained by ophthalmologists annotated 
each lesion on the dataset with the help of software developed 
by ADCIS. 

B. Architecture 

In this paper, microaneurysm segmentation was done by 

modifying the architecture of U-Net [8] to a model called 

GlobalNet [9]. This model was adopted by Yan et al. by 

changing the number of the pooling layer in U-Net [8], which 

was used for the backbone architecture, and applying 

weighted cross entropy as the loss function instead of cross 

entropy. The basic U-Net architecture consists of a 3x3 

convolutional layer with the activation function ReLu, 

followed by a 2x2 pooling layer at the end of each 

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA1P.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 119



 

 

convolutional layer. Instead of having four max pooling 

layers like basic U-Net, GlobalNet consists of three max 

pooling layers. In this paper, the model was also 

complemented by a dropout layer at the end of each 

convolutional layer. While U-Net used a resolution of 572 x 

572 pixels for its input, GlobalNet by Yan et al. utilized a 

resolution of 640 x 640 pixels for its input. To determine the 

best resolution value to do a microaneurysm segmentation, 

we utilized three different resolution values for the model 

input. 

C. Training 

Dataset preparation was performed before the training to 

optimize the segmentation results. The background of the 

fundus image was removed using the crop center method, and 

the dataset images were downsized to a value of 640 x 640 

pixels, 960 x 960 pixels, and 1280 x 1280 pixels. The 

downsized images will serve as the input for each 

segmentation model. 

During training, bicubic interpolation was used to do 

downsampling and upweighting of the model input image. 

The bicubic interpolation method will predict the pixel value 

in the enlarged or cropped image by looking at the nearest 16 

pixels or 16 neighboring pixels from the pixel of the predicted 

image [10]. This method performs downsampling and 

upweighting with the least amount of interpolation distortion.  

During preparation, data on MA pixel distribution, total, 

and the size distribution of MA per image were also collected 

to divide the dataset into folds. Before downsampling, the 

dataset was divided into folds, where each fold contained a 

similar percentage of the total pixels of microaneurysms per 

image. This was done to reduce bias in the segmentation 

model. The dataset was divided into five different folds, with 

16 or 17 images on each fold. 

 
TABLE I. HYPERPARAMETER TRAINING OF GLOBALNET 

MULTIRESOLUTION 

Hyperparameter Value Note 

Dropout 0.1 

0.2 

0.1 for fold 1-4 

0.2 for fold 5 

Optimizer Adam - 

Batch size 1  

Initial learning rate 0.0002 - 

Maximum epochs 450 When the validation 
loss remains 
unchanged after 20 
epochs, the training 
comes to  an end 

 

Segmentation model GlobalNet was trained using three 

different resolution values. Hyperparameter optimization was 

performed for selected hyperparameters such as dropout, 

batch size, and epochs as shown in Table I, and their outputs 

were evaluated at the lesion and pixel levels. Weighted cross 

entropy was also used as the loss function for the training in 

this paper. The utilization of dropouts in the segmentation 

model serves to prevent its overfitting. 

D. Multiresolution Combination Method 

Due to their small size, the pixels of microaneurysms are 

very susceptible to changes in image resolution. Based on our 

findings on the IDRID dataset, 5.157% of microaneurysm 

pixels were missing on images with a resolution of 640 x 640 

pixels, 7.027% of microaneurysm pixels were missing on 

images with a resolution of 960 x 960 pixels, and 10.421% of 

pixels were missing on images with a resolution of 1280 x 

1280 pixels. In this paper, we propose a combination method 

to optimize the output result from the GlobalNet 

segmentation model where Figure 1 describes the flow of the 

combination methods. The approach was developed by taking 

into consideration the impacts of the input resolution on the 

presence of microaneurysms in images. 

 
Fig. 1. Flow of our combination method 

To begin with, the outputs of the segmentation models 
from the previous step were enlarged to a size of 3328 x 2816 
pixels, this image will be used as the input for the combination 
methods. Following this, the pixel values of the input were 
transformed from 0-255 to 0-1. Then, the input images were 
binarized using a threshold value of 0.5. The process of 
combining the segmentation images with different resolutions 
begins with creating an empty array with the same size as the 
input (3328 x 2816). In the next stages, each pixel value of the 
input will be checked, and each pixel will be grouped based 
on the rules as shown in Figure 1. Once this has been 
completed, the pixel value will be assigned to the empty array 
to create a new image based on the combination of the 
segmentation results from GlobalNet. 

 The combination method utilized a threshold value of 0.5 
for binarization of all models output to make the result easier 
to interpret. In addition, the algorithm of the combination 
method does not require additional training, which contributes 
to the light computational load of the model. 

E. Evaluation 

The evaluation of the result was measured both at the 
pixel and lesion levels. Pixel-level evaluation was done by 
calculating the area under precision recall (AUPR) and F1 
Score, while lesion-level evaluation was done by calculating 
the sensitivity. The evaluation for lesion level was executed 
on the resolution of 3328 x 2816 pixels, while the pixel level 
evaluation was performed on the model size (640 x 640 
pixels, 960 x 960 pixels, and 1280 x 1280 pixels). 
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III. RESULTS 

A. Deep learning multi-resolution segmentation model 

GlobalNet 

Table II displays the results of the performance of the 
GlobalNet segmentation model with various resolution inputs. 
In this experiment, an ANOVA statistical analysis was carried 
out for the AUPR value and F1 score to determine the impact 
of the resolution value on the AUPR and F1 score. The p value 
was checked for a significance threshold of 0.05. From the 
statistical analysis, the p value for the AUPR of the 
segmentation model was found to be 0.955, while the p value 
for the F1 score was 0.999. The value denotes that the varying 
input resolution settings have no impact on the AUPR value 
or F1 score and suggests that the AUPR value or F1 score of 
the three models’ outputs is not statistically significant.  

TABLE II. AUPR AND F1 SCORE OF GLOBALNET MULTI-RESOLUTION 

MODEL (PIXEL LEVEL) 

Input resolution 

(pixel) 
AUPR F1 Score 

640 x 640  0.391 ± 0.026 0.361 ± 0.034 

960 x 960 0.387 ± 0.035 0.361 ± 0.022 

1280 x 1280 0.394 ± 0.050 0.360 ± 0.022 

 Because of their size, the pixels of microaneurysms are 
prone to a change in image resolution, resulting in a low score 
of evaluation at the pixel level for AUPR and F1 score. For a 
more accurate assessment, an evaluation at the lesion level is 
needed, which will be discussed in the next section. 
Meanwhile, Figure 2 shows the output images of GlobalNet 
segmentation models. True positive lesions are shown as 
yellow spots; false positive lesions are shown in red; and false 
negative lesions are shown in green. 

 
Fig. 2 (a) Retina fundus image IDRiD_57 (b) Predicted image of 

segmentation model GlobalNet 640 x 640 pixels (c) Predicted image of 

segmentation model GlobalNet 960 x 960 pixels (d) Predicted image of 

segmentation model GlobalNet 1280 x 1280 pixels 

Based on Figure 2, the output of segmentation models with 
a resolution input of 1280 x 1280 pixels produced a lower 
number of true positive lesions than the other two models, 
which were shown on the yellow circle. From Figure 2, the 
image output from the segmentation model with a resolution 
of 640 x 640 pixels produced a segmentation output with the 
highest number of true positive lesions compared to other 
output, which is indicated by the number of yellow spots 
surrounded by a yellow circle in Figure 2b. While the yellow 
circle highlights the true positive lesions, the dark blue circle 

denotes the false positive lesions that appeared on one 
segmentation output. On Figure 2b, 2c, and 2d, the location of 
the blue circle differs for each image because of the various 
locations of the false positive lesion from each output. 
Meanwhile, the white circle that can be seen at the same 
location for Figure 2b, 2c, and 2d indicates the false positive 
lesions that appeared across all outputs of the segmentation 
models. 

Based on the output results, each segmentation model 
produces unique segmentation results for microaneurysms, 
with certain lesions being recognized in all three segmentation 
models and others being detected in just one or two models. 
Using this circumstance, it was possible to merge the data 
from all three outputs of the segmentation model and produce 
a composite image. 

B. Multi-resolution combination method 

In our combination method, a pixel with a positive value 
(a pixel with a value of 1) only in one image output will be 
discarded, whereas a pixel with a value of 1 on two or more 
image outputs will be considered a positive pixel in the 
combined image of the three segmentation models. Figure 3 
shows the comparison between the output images of both the 
deep learning GlobalNet segmentation method and the 
combination method. Like Figure 2, true positive lesions are 
shown in yellow, false positive lesions in red, and true 
negative lesions are shown as green lesions. 

Figure 3 displays that the yellow circle region in Figure 3a 
and 3c denotes the existence of two true positive lesions. On 
the other hand, Figure 3b shows the presence of one true 
positive lesion and one false negative lesion within the yellow 
circle area. Since two true positive lesions were detected in the 
two outputs of the segmentation model, two true positive 
lesions appeared in the same exact area in the combined 
image, as shown in Figure 3d.  

 
Fig. 3 (a) Lesion map of predicted image GlobalNet 640 x 640 pixels (b) 

Lesion map of predicted image GlobalNet 960 x 960 pixels (c) Lesion map 

of predicted image GlobalNet 1280 x 1280 pixels (d) Lesion map of 

combination method 

The green circle in Figure 3a and 3b indicates the presence 
of one false negative lesion. However, the same green circle 
in Figure 3c shows the presence of one true positive lesion. As 
the true positive lesion was detected in only one of the outputs, 
the combination method identified the related lesion as a false 
negative lesion in the concatenated image, which can be seen 
in Figure 3d. A comparison of the predicted image from each 
method shows the difference in the total amount of true 
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positive, false negative, and false positive lesions between the 
segmentation output of the deep learning segmentation model 
with GlobalNet and the segmentation result of the 
combination method. Therefore, we also compare the 
assessment outcomes for each approach at the lesion level. 
Table III displays evaluation outcomes at the lesion level for 
the combination method and the deep learning model, which 
were done at a binary threshold level of 0.5. 

The high sensitivity value for each method indicates that 
the model has succeeded in segmenting true positive lesions 
quite well. On the other hand, the low precision value 
suggested a need for improvement to reduce the false positive 
lesion in the segmentation output. Table III also illustrates an 
improvement in precision score when the input resolution is 
increased, which indicates that a higher resolution value will 
produce fewer false positives on the predicted image. It also 
reveals that the combination approach has the second-highest 
sensitivity value and the highest precision score among other 
methods. 

TABLE III. LESION LEVEL SEGMENTATION RESULTS GLOBALNET 

MULTIRESOLUTION 

Methods Sensitivity Precision 

GlobalNet  

640 x 640 pixels 
0.689 ± 0.063 0.310 ± 0.054 

GlobalNet  

960 x 960 pixels 
0.659 ± 0.041 0.327 ± 0.030 

GlobalNet  

1280 x 1280 pixels 
0.647 ± 0.057 0.333 ± 0.039 

Combination method 0.672 ± 0.035 0.394 ± 0.014 

  Although there is a slight difference in the sensitivity 
values for each method, it’s necessary to see whether these 
differences are significant statistically. An ANOVA statistical 
test was carried out for a significance level of 0.05, which 
yielded a p-value for various parameters as shown in Table IV. 

TABLE IV. ANOVA STATISTICAL TEST RESULTS 

Parameter P value 

Sensitivity 0.672 

Precision 0.027 

  

Based on the statistical test, it was found that the p-value 
for precision is below the significance threshold. Meanwhile, 
the p-value of sensitivity is greater than 0.05, which implies 
that the differences in sensitivity for each method in the study 
are not statistically significant. Since precision represents the 
percentage of relevant samples among the recovered samples 
and sensitivity represents the probability of a positive result, 
the outcome of the ANOVA statistical test indicated a possible 
difference in the total number of false positive lesions from 
the predicted images of each method. This is because 
precision value is affected by the number of both true positive 
and false positive values, while sensitivity is affected by true 
positive and true negative values. Because the sensitivity 
values of all methods did not significantly differ from one 
another, it can be assumed that the combination method was 
more effective at removing false positives since it has the 
highest precision value, which is also statistically different 
from other methods.  

The number of true positive, false positive, and true 
negative lesions is also affected by the binary threshold value 
used to assess the lesion’s level. However, in this study, no 
variation of the binary threshold was used for binarization. 
Additionally, an optimal threshold might be needed for the 
combination method to eliminate false positive lesions while 
at the same time maintaining the maximum number of true 
positive lesions. In future studies, experiments with other 
threshold values can be carried out to obtain more optimal 
results from the segmentation. 

C. Comparison with similar studies 

Evaluation comparisons at pixel and lesion levels were 
also conducted between the outcomes of all methods in this 
study and other literature, as shown in Table V and Table VI. 
From Table V, it was found that the multi-resolution 
GlobalNet model gave a higher AUPR value than the literature 
[11]. However, despite the model’s ability to solve the 
drawback of Wan et al.’s [11] method in detecting small 
objects, the multi-resolution GlobalNet model also has a lower 
value of AUPR than [9].  

Although both our method and Yan et al.’s method used 
GlobalNet for microaneurysm segmentation, a dataset 
augmentation to prevent overfitting of the trained model, 
which was carried out by [9], might be one of the potential 
causes of the lower AUPR value from our studies. In addition, 
a difference in the optimal hyperparameter value used for the 
loss function can also be a potential cause of the different 
results. Furthermore, the possibility of variability in the 
downsampling and upweighting methods can also be a 
contributing factor to the differences in segmentation results 
between [9] and our results.  

TABLE V. COMPARISON AT PIXEL LEVEL 

Methods AUPR 

Yan et al. [9] 0.484 

Wan et al. [11] 0.241 

GlobalNet 640 x 640 pixels 0.391 ± 0.026 

GlobalNet 960 x 960 pixels 0.387 ± 0.035 

GlobalNet 1280 x 1280 pixels 0.394 ± 0.050 

 In our study, we utilized the bicubic interpolation method 
for upweighting and downsampling images, which can also 
affect the segmentation results. The bicubic interpolation 
method might cause ringing artifacts due to the ringing effects, 
which often happen when high-frequency signals pass through 
a low-pass filter [12]. The ringing artifacts caused distortion 
of the edges of the pixels that had been expanded or reduced, 
which caused a change in the pixel value of the predicted 
image. As a result, the outcome of the microaneurysm 
segmentation model was affected by the appearance of ringing 
artifacts in the images.  

 Table VI displays a comparison of segmentation results 
between our paper and a similar study at the lesion level. 
According to the table, our multi-resolution GlobalNet models 
and combination method generated a higher value of 
sensitivity compared to replicated U-Net [8] by Xu et al. and 
their own approaches. Xu et al. [13] used U-Net as the 
backbone architecture in their approach and proposed a model 
called FFU-Net using patches as their image input. Even 
though their method managed to reduce the number of false 
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positive lesions, it still has a lower sensitivity value than our 
GlobalNet model. Moreover, the utilization of patches on 
segmentation by [13] also has disadvantages, as FFU-Net will 
take a lot longer and need a larger RAM to perform 
microaneurysm segmentation compared to GlobalNet. 

TABLE VI. COMPARISON AT LESION LEVEL 

Methods Input resolution Sensitivity 

U-Net (Xu et al.) [8]a Global image 
572 x 572 pixels 

0.481 

Xu et al. (2021) [13] Patch 
256 x 256 pixels 

0.593 

GlobalNet 640 x 640 
pixels 

Global image 
640 x 640 pixels 

0.689 ± 0.063 

GlobalNet 960 x 960 
pixels 

Global image 
960 x 960 pixels 

0.659 ± 0.041 

GlobalNet 1280 x 
1280 pixels 

Global image 
1280 x 1280 pixels 

0.647 ± 0.057 

Combination method Global image 
3328 x 2816 pixels 

0.672 ± 0.035 

a. Replicated model by Xu et al. 

Our approach also proved to have a higher value of 

sensitivity compared to a replicated U-Net, where the 

difference in the input resolution size may also contribute 

to the different performance of microaneurysm detection. 

A lower value of input resolution in replicated U-Net by 

[13] may result in a lower number of sensitivities since a 

change in resolution value will affect the existence of 

microaneurysm lesions in input images. 

While most studies adopted U-Net as their backbone 

architecture with a few modifications in layers or pre-

processing steps like [11] and [13] to perform semantic 

segmentation to support the diagnosis of diabetic 

retinopathy, different approaches, such as Fully 

Convolutional Neural Network (FCNN), are also used by 

Chudzik et al. [14]. Unlike U-Net, FCNN consists of only 

an encoder and a decoder without any skip connections. 

However, both U-Net and FCNN share similar features, 

allowing them to perform semantic segmentation. Both U-

Net and FCNN consist of convolutional layers, which 

allow the models to learn the features from an image. In 

addition, FCNN and U-Net also generate segmentation 

maps by making a pixel-wise prediction on input images. 

Although FCNN has disadvantages in precise localization 

compared to U-Net, optimization done by [14] allows the 

model to perform microaneurysm segmentation in retinal 

fundus images.  

IV. CONCLUSION 

In this paper, a model based on the U-Net architecture is 

developed and trained using various values of resolution for 

the input. Evaluation at the pixel level provided AUPR values 

of 0.391 ± 0.026, 0.387 ± 0.035, and 0.394 ± 0.050 for the 

GlobalNet model with input resolutions of 640 x 640 pixels, 

960 x 960 pixels, and 1280 x 1280 pixels. Based on the result, 

it is concluded that the input size does not cause a significant 

change in the AUPR score, F1 score, or the total of false 

negative and true positive lesions on the output of the model. 

However, different resolution values are found to have a large 

effect on the number of false positive lesions on predicted 

images. The total number of false positive lesions will be 

lower the higher the model’s input resolution. On the other 

hand, this paper also developed a logical combination method 

to merge every output from the GlobalNet model. The 

proposed method provides a better trade-off of sensitivity at 

0.672 ± 0.035 and precision at 0.394 ± 0.014 than the 

GlobalNet segmentation model with a resolution of 640 x 640 

pixels.  

REFERENCES 

[1] World Health Organization, “World report on vision,” Geneva, 
2019. 

[2] Ferrucci Steven and Yeh Brenda, “Diabetic Retinopathy by the 
Numbers,”https://www.reviewofoptometry.com/article/diabetic-
retinopathy-by-the-
numbers#:~:text=You%20can%20categorize%20this%20versi
on,at%20least%20one%20retinal%20quadrant., Aug. 09, 
2022. 

[3] B. K. Triwijoyo, B. S. Sabarguna, W. Budiharto, and E. 
Abdurachman, “2 - Deep learning approach for classification of 
eye diseases based on color fundus images,” in Diabetes and 
Fundus OCT, A. S. El-Baz and J. S. Suri, Eds., Elsevier, 2020, 
pp. 25–57. doi:10.1016/B978-0-12-817440-1.00002-4. 

[4] R. S. Biyani and B. M. Patre, “Algorithms for red lesion 
detection in Diabetic Retinopathy: A review.,” Biomed 
Pharmacother, vol. 107, pp. 681–688, Nov. 2018, doi: 
10.1016/j.biopha.2018.07.175. 

[5] B. V, “Biomedical Image Analysis Using Semantic 
Segmentation,” Journal of Innovative Image Processing, vol. 1, 
no. 02, pp. 91–101, Dec. 2019, doi: 10.36548/jiip.2019.2.004 . 

[6] S. Long, J. Chen, A. Hu, H. Liu, Z. Chen, and D. Zheng, 
“Microaneurysms detection in color fundus images using 
machine learning based on directional local contrast,” Biomed 
Eng Online, vol. 19, no. 1, p. 21, 2020, doi: 10.1186/s12938-
020-00766-3. 

[7] P. Porwal et al., “Indian Diabetic Retinopathy Image Dataset 
(IDRiD): A Database for Diabetic Retinopathy Screening 
Research,” Data (Basel), vol. 3, no. 3, 2018, doi: 
10.3390/data3030025. 

[8] P. and B. T. Ronneberger Olaf and Fischer, “U-Net: 
Convolutional Networks for Biomedical Image Segmentation,” 
in Medical Image Computing and Computer-Assisted 
Intervention – MICCAI 2015, J. and W. W. M. and F. A. F. 
Navab Nassir and Hornegger, Ed., Cham: Springer International 
Publishing, 2015, pp. 234–241. 

[9] Z. Yan, X. Han, C. Wang, Y. Qiu, Z. Xiong, and S. Cui, 
“Learning Mutually Local-Global U-Nets For High-Resolution 
Retinal Lesion Segmentation In Fundus Images,” in 2019 IEEE 
16th International Symposium on Biomedical Imaging (ISBI 
2019), 2019, pp. 597–600. doi: 10.1109/ISBI.2019.8759579. 

[10] D. Han, “Comparison of Commonly Used Image Interpolation 
Methods,” 2013. 

[11] C. Wan et al., “EAD-Net: A Novel Lesion Segmentation 
Method in Diabetic Retinopathy Using Neural Networks.,” Dis 
Markers, vol. 2021, p. 6482665, 2021, doi: 
10.1155/2021/6482665. 

[12] I. Aganj, B. T. T. Yeo, M. R. Sabuncu, and B. Fischl, “On 
Removing Interpolation and Resampling Artifacts in Rigid 
Image Registration,” IEEE Transactions on Image Processing, 
vol. 22, no. 2, pp. 816–827, Feb. 2013, doi: 
10.1109/TIP.2012.2224356. 

[13] Y. Xu, Z. Zhou, X. Li, N. Zhang, M. Zhang, and P. Wei, “FFU-
Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic 
Retinopathy.,” Biomed Res Int, vol. 2021, p. 6644071, 2021, doi: 
10.1155/2021/6644071. 

[14]  P. Chudzik, S. Majumdar, F. Calivá, B. Al-Diri, and A. Hunter, 
“Microaneurysm detection using fully convolutional neural 
networks.,” Computer Methods and Programs in Biomedicine, 
vol. 158, pp. 185–192, 2018, doi: 10.1016/j.cmpb.2018.02.016. 

 

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 123


