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Abstract—In n-party Computation, data from different
sources are integrated to achieve a common goal, which can
be beneficial for different applications. However, this goal may
be at risk due to the fact that this corresponding data can be
the target of attacks from outside attackers as well as inside
ones. On the other hand, in Secure n-party Computation, the
data can be processed by preserving security and privacy in
such a way that no party can know the data of the others.
Several schemes have been proposed to address the issues
regarding n-party computation. However, some of them are not
efficient in terms of computation and communication, or some
of them have used a Trusted Initializer (TI), a third party,
which is considered as trusted, for communicating between
different parties. Therefore, to address these issues, we propose
an n-party secure computation protocol without using any
Trusted Initializer (TI). We formally simulate our protocol
using Automated Verification of Internet Security Protocols
and Applications (AVISPA) as well as we elaborate on the
formal and informal security analysis of our proposed protocol.
Performance analysis of our proposed protocol is also carried
out and it is observed our proposed protocol is secure and
protects the privacy of the system.

Index Terms—n-party computation, secure n-party computa-
tion, trusted initializer

I. INTRODUCTION

Secure n-party Computation also known as Secure Multi-
party Computation, Secure Computation, Multi-Party Com-
putation (MPC), or privacy-preserving computation [1], [2] is
one of the most active research areas in both theoretical and
applied cryptography [3]. The aim is to correctly compute
some information using the information of two or more
parties while keeping all the information of a party secret
from the other parties. There are many applications of n-
party computation (MPC) such as secure machine learning,
Brain Computer Interface (BCI), and others.

The parties involved in the computation are never ac-
quainted with the sensitive input of the other party, which is
crucial. The idea of MPC was first introduced in the early
1980s by Andrew Yao [4] with the millionaires’ problem
and was intensively studied for decades. Recently, MPC has
become efficient enough to be used in practice and has made
the transition from being studied theoretically to a technology
being used in industry [5]. Secure voting [6], [7] secure
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machine learning [8], brain-computer interfaces [9], privacy-
preserving network security monitoring [10], etc. are only a
few of the many applications of Secure n-party Computation.
Despite these significant facts, secure n-party computation is
still not considered feasible enough for use in the bulk of
applications that require (near) real-time performance [11],
[12].

Numerous works [4], [13]–[18] in the area of MPC
have been performed over the decades. These works, on
the other hand, contain different forms of limits in terms
of computation to different powerful attacks, including a
third party, which they have assumed as a trusted entity,
sometimes referred to as a ”trusted initializer” (that can be
compromised at any time), or has been limited between two
parties, and so on. Suppose, Alice and Bob have the shares of
X and Y and their aim is to compute XY in a way that their
shares can be hidden from each other. Here, XY=(XAlice+
XBob)(YAlice + YBob)=XAliceYAlice+XAliceYBob +
XBobYAlice + XBobYBob. The expressions XAliceYAlice

and XBobYBob can be locally computed by Alice and Bob
themselves. However, the computation of XAliceYBob and
XBobYAlice are more complicated due to the fact that no
party wants to share their parts with the other party. To
address this issue, authors of [27] have presented a protocol
for matrix multiplication between two parties. However,
in their protocol, they have used a third party or in other
words, an initializer for the communication between the two
parties, which they have assumed to be trusted. Relying
on a trusted initializer has the disadvantage that while it is
considered to be trustworthy, it may also be curious, which
might result in undesirable or unexpected consequences.
As it strictly follows predefined protocols, it may have
a direct interest in inferring sensitive information from
interactions between various parties. In another work, to
address the aforementioned issue, authors of [19] have
proposed a protocol for secure multiplication between two
parties without a trusted initializer. Their protocol has been
restricted to only two parties. In addition to that, they have
not addressed the most important attacks like man-in-the-
middle, replay, impersonation attacks, etc., which can make
the system computationally vulnerable. For instance, in the
case of applications involving brain-computer interfaces,
data from a large number of parties are needed for training,
however, no party wants their sensitive data to be made
public to the other parties. Because a malicious party may
have harmful effects on the data owner if they gained access
to those sensitive data. In order to address this issue, we
develop a generalized communication protocol for n parties
without a trusted initializer in this paper. In our proposed
protocol, we use different methods to make our protocol
secure against some well-known attacks such as replay
attack, man-in-the-middle attack, impersonation attack and
our protocol also preserves the integrity of the data. This
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paper has the following contributions:

I. Through Secure n-party Computation, data from two
or more parties need to be incorporated to generate
an output without revealing their data to each other.
Here, we consider a scenario where n-parties (each
with their own data) want to perform a computation
by integrating all data by directly interacting among
themselves without involving any third party (such as
TI), and without exposing their data to each other.
Our proposed protocol is capable of maintaining data
integrity and confidentiality while also being resistant to
impersonation attacks, replay attacks, man-in-the-middle
attacks, etc., which as per our knowledge, the existing
works on this domain have been failing to address.

II. We propose homomorphic encryption based n-party
secure computation protocol, as it allows the system to
do computation over encrypted data without decrypting
it. The main purpose of using homomorphic encryption
is to make it possible to compute on encrypted data.
As a result, data can stay private while being analyzed,
allowing beneficial tasks to be completed with data
stored in an untrustworthy environment.

III. Security of our proposed protocol has been formally
and informally analyzed and our protocol has been
simulated using the well-known formal verification tool
Automated Verification of Internet Security Protocols
and Application (AVISPA) [34]. We also carry out the
performance analysis of our proposed protocol in terms
of computation, security, etc.

The outline of the paper is as follows: Section II summa-
rizes the related works related to secure n-party computation.
Section III presents the preliminaries related to the proposed
work, followed by the proposed work in Section IV. The
security and privacy analysis have been presented in Section
V and the performance analysis has been presented in Section
VI, followed by the conclusion in Section VII.

II. RELATED WORKS

Secure n-party Computation was first proposed by A. Yao
[4] in 1982 and then it was extended by Goldreich et al.
[13]. The growing fields of MPC are based on Oblivious
Transfer [14] and retrieval of private information from cloud
[15]. Oblivious Transfer is a cryptographic protocol, which
allows a sender to communicate a portion of its inputs to a
chooser in such a way that the chooser does not acquire more
information than it is authorized to and the sender does not
know which part of the inputs, the chooser obtained. In [16],
Shamir has proposed a method where a set of data D can be
divided in n parts in such a way that D can be reconstructed
using at least k pieces, however, no information about D
can be revealed by k − 1 pieces or less. Authors of [17]
had presented a new construction of a highly efficient 1-out-
of-N Oblivious Transfer where only O(Log N ) execution
time is needed for 1-out-of-2 Oblivious Transfer Protocol.
They also presented k-out-of-N Oblivious Transfer in the
same paper, which is more efficient than k folds of 1-out-
of-N Oblivious Transfer, where the receiver obtains only
one element out of N elements without the sender knowing
which element was queried as well as the receiver didn’t get

to know about the other elements that were not queried. In
an Oblivious Transfer, the chooser obtains the one object he
has chosen while the sender maintains n items. The object
that was transferred is unknown to the sender. This could
be a problem if each party’s data is completely required
for computation and obtaining the best result. Nielsen et
al. [18] have presented a practical approach for two-party
computation that was secure against an active adversary. In
this paper, an Oblivious Transfer-based approach using a
random oracle model had been introduced by them along
with a number of new techniques for related inputs and
outputs in an Oblivious Transfer for larger constructions. The
authors in [19] have also presented a secure multiplication
protocol where one party doesn’t want to share their data
with another party. However, their proposal is limited to two
parties only, and they didn’t provide any formal or informal
security analysis of their proposed protocol. Moreover, they
have not addressed some of the well-known attacks like man-
in-the-middle, replay, impersonation, etc.

The two-party secret sharing protocol based on additive
secret sharing has been introduced by Pullonen et al. [20],
where they have implemented multiplication protocol using
secret sharing. T. Geng et al. [21] have also employed a secret
sharing mechanism in blockchain technology to address the
issue of low-efficiency and high-cost consensus protocol.
Author in [23] has also mentioned the use of secret sharing
for their cheater detection protocol. In [22], authors have used
additive secret sharing-based secure n-party computation for
implementing their optimized CNN. However, these secret
sharing mechanisms may fail due to reasons that there is a
third party involved, who gathers the shares from both parties,
recovers the secret value, and then provides new shares of the
value to both parties in an evenly divided manner for their
resharing process. They have made the supposition that all
conversations have taken place via a secure channel in their
multiplication protocol.

The scheme, presented by Atallah et al. [24], has been
beneficial for small organizations. By using this scheme,
they can cooperatively work without revealing their data to
others, as by sharing with each party their desired queried
answers without revealing the data of the other partici-
pant. However, they have not mentioned any mechanism to
address the MITM, replay, or impersonation attack which
can compromise the whole system. Authors of [25] have
proposed a method for n-party secure computation by secret
sharing that has been used for secure integer and fixed-point
operations. The authors in [26] have presented the same for
rational numbers. The author in [27] presented a one-time
table for two-party secure computation, where a third party
or trusted initializer was also involved in the system. The
authors in [28] have utilized a Secure Multiplication Protocol,
SMul, in which, they have used a third server, which is
considered as a trusted party. In their protocol, from the
data processed through communication, trusted third server
may know the inputs of the participants of the protocol. The
proposed work in [29] can suffer from man-in-the-middle
attack, replay attack, etc. In [30], authors have proposed
an anonymous authentication protocol for privacy-preserving
distributed learning, where they have also used a third party,
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TABLE I
DESCRIPTION OF NOTATIONS

Symbol Definition
Xi, Yi X and Y ’s share of ith party
E() Encryption Function
D() Decryption Function
CXi

Encrypted Xi of ith party
CYi

Encrypted Yi of ith party
H() Hash Function
Ti Time generated by ith party
Tk Time generated by kth party
|| Concatenation Function
Si, Sk Signature generated by ith and kth party

which they assume to be trusted.
To address the aforementioned issues, we propose a pro-

tocol for n-party computation where no party has to share
or reveal their share to another party. Our protocol can be
applied in any system involving n number of parties.

III. PRELIMINARIES

This section provides a quick overview of the homomor-
phic encryption and adversary model.

A. Homomorphic Encryption

Secure n-party computation distributes computation among
multiple parties when none of the participants desire to share
their own data. Without ever moving or exposing the data, it
can allow analysts and data scientists to compliantly and se-
curely compute on remote data. The homomorphic encryption
technology, which enables computation on encrypted data
without any type of decryption, can be used in this case.
The data has always been encrypted once until the entire
computation is finished, and the associated private key is
the only way to decrypt it. In our proposed protocol, each
party does not want their share to be discernible to another
party. Hence, in our proposed protocol, we leverage the
homomorphic encryption properties in Paillier’s encryption
scheme [31], [32]. For our work, the following homomorphic
encryption (here, PK is the corresponding public key used
for encryption) properties have been used.

EPK(x).EPK(y) = EPK(x+ y) (1)

(EPK(x))y = EPK(xy) (2)

B. Element-wise Homomorphic Encryption

In this subsection, we discuss the procedure of homomor-
phic encryption on a matrix where each element of the matrix
is encrypted individually [19]. Here, for a matrix B, b[p, q]
denotes the element of pth row, qth column and C is the
product of the multiplication.

C[p, r] =

d1∏
p=1

d3∏
r=1

d2∏
q=1

(
aA[p,q]

EPKbB[q,r] .EPKaB[p,q]
bA[q,r]

)
(3)
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Here, 1 ≤ k ≤ i− 1 and i+ 1 ≤ j ≤ n

Pi outputs (XiYi +
∑n

j=i+1
(XiYj + YiXj))

Has shares Xk and Yk

Has shares Xi and Yi

Has shares Xj and Yj

Encrypted Shares Sending Phase is denoted by label 1.

Generates Si ← HSKPi
(CXi

, CYi
)

Computes CXi
← EPKPi

(Xi) and

CYi
← EPKPi

(Yi)

Computes EPKPk
(XiYk +XkYi)

Decrypts EPKPi
(XiYj +XjYi)

Computes CXk
← EPKPk

(Xk) and

CYi
← EPKPi

(Yi)

Generates Sk ← HSKPk
(CXk

, CYk
)

Generates Sj ← HSKPj
(CXj

, CYj
)

Computes CXj
← EPKPj

(Xj) and

CYj
← EPKPj

(Yj)

Encrypted XiYj + YiXj Sending Phase denoted by label 2.

Fig. 1. Secure Multi-party Computation for P th
i Party

IV. PROPOSED WORK

In this section, we present our proposed protocol along
with the system model and threat model.

A. System Model

In our proposed model, there exist n parties such as P1, P2,
P3, ..., Pn, who are responsible for communication among
each other. Each party has its shares of X and Y . We
assume that all the participating parties are honest but curious
throughout the computation.

B. Adversary Model

To define the capability of the adversary, we use the widely
known Dolev-Yao threat model. An adversary A in a ”Dolev-
Yao (DY) adversary model” [33] is allowed to intercept all
transmitted information between the parties and can alter
or destroy the messages. Each partner Pi in our model is
supposed to be an untrustworthy and curious entity. As a
result, each party may desire to know the shares of the other
parties, which could pose a privacy and security risk to our
protocol.

C. Overview of the Proposed Protocol

Suppose there are n parties who want to distributively
compute XY where (Xi, Yi) are the shares of party Pi

[1 ≤ i ≤ n]. XY has to be computed distributively which is
equal to (X1+X2+X3+...+Xn)×(Y1+Y2+Y3+...+Yn).
All the public keys, PKPi

are distributed through secure
channels. Let X and Y are the matrices of size d1 × d2
and d2×d3, respectively. Two parties compute multiplication
operation on their shares of matrices using Equation 3. In this
protocol, one party A encrypts its matrix element-wise and
send that to another party B. Then B merges its shares using
Equation 1, Equation 2, and Equation 3.

D. Proposed Protocol in Detail

There are two phases in our protocol namely Initialization
Phase and Distributed Multiplication Phase. In the initializa-
tion phase, each participating party generates their public-
secret key pair and distributes their public keys. In the
distributed multiplication phase, all the parties send their
encrypted shares to all the parties and distributively complete
the task of multiplication.
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Algorithm 1 Initialization Phase for Party Pi

1) Party Pi generates its public and secret key pair
(PKPi , SKPi ).

2) Pi distributes its public key PKPi to other parties
through secure channels.

Algorithm 2 Multiplication Phase for ith Party
Input: Shares of X and Y , say (X1, Y1),
(X2, Y2),...,(Xn, Yn) Output: The value of XY

1) Pi encrypts its shares Xi and Yi using its public
key PKPi

and generates two ciphertexts CXi
←

EPKPi
(Xi) and CYi ← EPKPi

(Yi).
2) Pi generates its signature Si ←

HSKPi
((CXi

, CYi
)||Ti), and sends CXi

, CYi
along

with Si to Pi+1, Pi+2, ..., Pn.
3) Pi obtains CXk

, CYk
, Sk and Tk from Pk, [where,

1 ≤ k ≤ i− 1] and verifies
If Tk−Ti<∆t and Sk=H ′

PKPi
((CXk

, CYk
)||Tk) Then

Pi computes EPKPj
(XiYk +XkYi) using Equation

1 and Equation 2 and computes signature Si2

← HSKPi
((EPKPj

(XiYk + XkYi))||Ti2) on it and
sends signature along with EPKPj

(XiYk + XkYi),
Ti2 to Pk, [where 1 ≤ k ≤ i− 1].

Pi verifies the signature Sj2 ←
H ′

PKPj
((EPKPj

(XiYk + XkYi))||Ti2), checks
Ti2 and decrypts XjYi+XiYj upon successful

verification [where i + 1 ≤ j ≤n] using its
private key upon successful verification and
outputs (XiYi+

∑n
j=i+1(XiYj +XjYi)).

1) Initialization Phase: Algorithm 1 initializes the system
for party Pi. In the first step of this phase, party Pi generates
its public and secret key pair (PKPi

, SKPi
). Then, in Step

2, Pi distributes its public key PKPi
to other parties in the

system through secure channels.
2) Distributed Multiplication Phase for ith Party: This

phase describes how Party Pi communicates with other
parties. At first step, Pi encrypts its shares Xi and Yi

using its public key PKPi and generates two ciphertexts
CXi

← EPKPi
(Xi) and CYi

← EPKPi
(Yi). Then in Step 2,

Pi generates its signatures Si ← HSKPi
((CXi

, CYi
)||Ti), and

sends CXi
, CYi

along with Si to Pj [where, i+1 ≤ j ≤ n].
In Step 3, Pi first obtains CXk

, CYk
, Sk from Pk [where

1 ≤ k ≤ i − 1] and then checks whether Sk is equal
to H ′

PKPi
, ((CXk

, CYk
)||Tk) and Tk − Ti < ∆t [Where,

Tk, Ti and ∆t are the timestamps of the message received,
timestamp of the sent message and a predefined thresh-
old value, respectively]. If both conditions, Tk−Ti<∆t and
Sk=H ′

PKPi
((CXk

, CYk
)||Tk) are satisfied, then Pi computes

EPKPj
(XiYk+YiXk) using Equation 1 and Equation 2, com-

putes signature Si2← HSKPi
((EPKPj

(XiYk +XkYi))||Ti2)
on it and sends signature along with EPKPj

(XiYk +XkYi),
Ti2 to Pk, [where 1 ≤ k ≤ i − 1]. Then, Pi verifies
the signature Sj2 ← H ′

PKPj
((EPKPj

(XiYk +XkYi))||Ti2),
checks Ti2 and decrypts XjYi + YjXi [where i + 1 ≤j≤

Fig. 2. Avispa Simulation Result using OFMC Backend

n] using its private key SKPi . For example, party Pi

obtains encrypted values of XiYi+1 + Xi+1Yi, XiYi+2 +
Xi+2Yi, XiYi+3+Xi+3Yi,..., XiYn+XnYi from party Pi+1,
Pi+2, Pi+3,..., Pn, respectively. Therefore, party Pi outputs
(XiYi)+

∑n
j=i+1(XiYj +YiXj). The communication of our

proposed protocol is illustrated in Fig. 1.

V. SECURITY AND PRIVACY ANALYSIS

The robustness of our proposed protocol has been analyzed
in terms of privacy and security here.

A. Protocol Simulation using AVISPA

Automated Verification of Internet Security Protocols and
Applications (AVISPA) [34] is a well-known verification
tool that is used to perform the simulations of the security
protocols using High Level Protocol Specification Language
(HLPSL). We simulate our proposed protocol using AVISPA
tool. Five roles are involved in this simulation such as A,
B, C, D, and E, which are the parties involved in distributed
communication and they own (X A, Y A), (X B, Y B), (X C,
Y C), (X D, Y D), and (X E, Y E), respectively. The security
and privacy goals that we define in our simulation are as
follows, i) the preservation of the privacy of the data, ii) the
authentication of the transmitted data. Additionally, in role
environment, we set sha256 as a hash func; sec 1, auth 1
as protocol id; a, b, c, d, e, ka, kb, kc, kd, ke, ki, inv(ki) as
intruder knowledge, where a, b, c, d, e are five parties; ka, kb,
kc, kd, ke are the public keys of a, b, c, d, e, respectively; and
ki, inv(ki) are the public and private keys of intruder i. Fig.
2 shows the result of our analysis that our proposed protocol
is ‘SAFE’ in On-the-fly Model-Checker (OFMC).

B. Informal Security Analysis of the Proposed Protocol

This subsection provides the informal security analysis of
our proposed protocol.
Claim 1: The proposed protocol preserves confidentiality.
Proof : This proof demonstrates that the secrecy of each
party’s data is being reserved. The public key EPKi is used
to encrypt the shares of party Pi, Xi, and Yi as EPKPi

(Xi)
and EPKPi

(Yi). Because adversary A lacks knowledge of
Pi’s private key, it is unable to gain information about Xi and
Yi. As a result, the confidentiality of our proposed protocol
is preserved.
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Claim 2: The proposed protocol preserves the integrity of
the data and it is secure against man-in-the-middle attack.
Proof : Party Pi generates CXi

←EPKPi
(Xi),

CYi
← EPKPi

(Yi) and then generates signature
Si←HSKPi

((CXi
, CYi

)||Ti). An adversary A tries to
capture the ciphertexts and alter the data and then sends it to
another party. However, this is impossible due to the fact that
the public key of a party is distributed to the other parties.
Any party other than Pi upon receiving the messages CXk

,
CYk

, Sk, first verifies Sk=?H ′
PKPi

((CXk
, CYk

)||Tk). If they
are equal, the process will be further progressed to the next
step otherwise not. Therefore, the protocol preserves the
integrity of data.
Similarly, we can say that the proposed protocol is secure
against man-in-the-middle attack.
Claim 3: The proposed protocol provides security against
Impersonation Attack.
Proof : In impersonation attack, A may try to represent itself
as a trusted party Pi and may send its shares CXA , CYA and
signature SA to party Pk on behalf of a valid party. However,
the adversary becomes unsuccessful as party Pk will verify
the signature using Pi’s public key. Therefore, the proposed
protocol provides security against impersonation attack.
Claim 4: The proposed protocol is secure against replay
attack.
Proof : In replay attack, an adversary A tries to replay a
message captured from a past session Session1 in a current
session Sesson2. However, this replay attack is impossible
due to verification of Tk − Ti<∆t condition [Where, Tk, Ti

and ∆t are the timestamp of message receiver, timestamp of
the sender, and a predefined threshold value]. Therefore, the
proposed protocol is secure against replay attack.

VI. PERFORMANCE ANALYSIS

We perform the performance analysis of our proposed
protocol in terms of Communication and Computation here.

A. Experimental Setup

For evaluating our proposed protocol, we implement each
function using the Crypto++ library [35]. For implementation,
we use Intel Core i5 2.4GHz processor.

B. Analysis of Computation and Communication of Our
Proposed Protocol

In this subsection, we compare our proposed protocol to
the proposed works in [16], [17], [19], [22], [24], [28]. The
comparison of total computation time between the works
proposed in [16], [17], [19], [22], [24], [28] and our proposed
protocol is illustrated in Table II. From Table II, we can
see that our proposed protocol requires less time than most
of the existing works while preserving the security and
privacy of the data of each party. The comparison of the
total number of operations between the work proposed in
[19] and our proposed protocol is shown in Table III, where
the total number of encryption, multiplication, addition, and
decryption operations is denoted by TE , TM , TA and TD,
respectively. We compare the total number of operations of
our proposed protocol with the work proposed in [19], as they
are closely related. In our proposed protocol, there are a total
of n(n− 1) communications between the parties for every n

TABLE II
COMPARISON OF COMPUTATION TIME

Schemes Total Computation Time (ms)
Shamir et al. [16] 1189.17
Naor et al. [17] 101.23
Cock et al. [19] (Without TI) 119.76
Cock et al. [19] (With TI) 387.33
Berry et al. [22] 1231.67
Atallah et al. [24] 875.65
Liu et al. [28] 1123.45
Our Proposed Protocol 136.54

TABLE III
COMPARISON OF NUMBER OF COMMUNICATIONS

Work Cock et al. (without TI)
[19]

Our Proposed Protocol

TE 2(n− 1) 2(n− 1)
TM n2 n2

TA 2n(n− 1) n(n− 1)
TD 2n 2n

TABLE IV
SECURITY COMPARISONS WITH SOME EXISTING WORKS

Work DI DC RA IA MITM
Shamir [16] ✓ ✓ × × ×
Naor et al. [17] ✓ ✓ × × ×
Cock et al. [19] × ✓ × × ×
Berry et al. [22] × ✓ × × ×
Atallah et al. [24] × ✓ × × ×
Liu et al. [28] × ✓ × × ×
Our Protocol ✓ ✓ ✓ ✓ ✓
DI: Preserves Data Integrity, DC: Preserves Data Confidentiality,
RA: Resistant to Replay Attack, IA: Resistant to Impersonation Attack,
MITM: Resistant to Man-in-the-middle attack

participant in an ongoing session, as party P1, P2, P3,...,Pn

need n − 1, n − 2, n − 3,...,0 number of communications,
respectively for sending their encrypted share to other parties.
Hence, in this way, (n − 1)n/2 communication is needed
for this procedure. In the same procedure, after element-
wise encryption, (n − 1)n/2 communication is needed for
sending the result to other parties. It is shown in Table II
that our proposed protocol takes more time than two existing
works although it is more efficient than the other five works.
However, this consumption of time is justified as this is due
to the fact that it ensures the integrity of the passing data.

C. Security Analysis

The comparison between the proposed work and the exist-
ing works in [16], [17], [19], [22], [24], [28] is illustrated in
Table IV. × and ✓ denote ’Not-satisfy’ and ’Satisfy’, respec-
tively. It can be concluded from Table IV that the protocol
proposed in [19] is unable to address the most important
attacks like man-in-the-middle, replay, impersonation attacks,
etc., whereas our proposed protocol is able to address the
aforementioned attacks.

VII. CONCLUSION

The main goal of our proposed protocol is to remove the
role of the Trusted Initializer (TI) and to propose a secure
n-party computation between n parties. We formally verify
our proposed protocol with a well-known verification tool
Automated Verification of Internet Security Protocols and
Applications (AVISPA). We also carry out the performance
analysis of our proposed protocol which shows the effective-
ness of our proposed protocol in Secure n-party Computation.
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