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Abstract— Glaucoma is a vision-threatening condition 

resulting from increased intraocular pressure, leading to optic 
nerve damage and potential vision loss. Early detection is 
crucial, but in Indonesia, over half of glaucoma cases are 
diagnosed at severe stages. One of the approaches for early 
detection is by using characteristics visible in a fundus image as 
indicators. With this approach, the segmentation of optic disc 
and optic cup plays an important role to extract features such as 
cup-to-disc ratios or rim-to-disc ratios as an indication for 
glaucoma. Almustofa (2021) proposed an automated glaucoma 
detection method using these segmentations but only tested it on 
limited datasets, namely Drishti-GS and REFUGE Training Set. 
This study presents an optimized method by incorporating the 
REFUGE Validation and Test sets. Optic disc segmentation 
attains F-Scores of 0.979 ± 0.005 for Drishti-GS and 0.942 ± 
0.026 for REFUGE. Optic cup segmentation achieves F-Scores 
of 0.948 ± 0.020 in Drishti-GS and 0.843 ± 0.068 in REFUGE 
datasets. These results demonstrate the improved performance 
of the optimized method for glaucoma detection. 
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I. INTRODUCTION 
 Glaucoma is an ophthalmic disease that affects the 

optic nerve and is characterized by the progressive thinning of 
the retinal nerve layer resulting in cell death. Glaucoma ranks 
as the second most common cause of blindness globally, 
contributing to 11% of all blindness cases [1]. In 2020, there 
were 4.1 million reported cases of glaucoma worldwide, with 
more than 25% of those cases originating from East Asia, 
Southeast Asia, and Oceania. In Indonesia, a staggering 51.4% 
of glaucoma cases are only detected at an advanced stage, 
when there is already a significant ocular damage or severe 
reduction of visual acuity [2]. 

The primary cause of glaucoma is increased intraocular 
pressure resulting from the accumulation of aqueous humor 
within the eye. This buildup occurs due to the obstruction of 
the trabecular meshwork, which is responsible for the drainage 
of this fluid. As a result of this obstruction, intraocular 
pressure increases and compresses the optic nerves located in 
the optic nerve head (ONH) [3]. The ONH is comprised of the 
optic disc and the optic cup. When intraocular pressure 
increases, it causes the nerve cell layer in the ONH to thin, 
leading to the enlargement of the optic cup. This phenomenon 
is known as cupping, as seen in Figure 1, and can be quantified 
using the cup-to-disc ratio (CDR) [4]. The CDR is calculated 
by determining the ratio between the size of the optic disc and 
the optic cup. A threshold value derived from the CDR 
determines the presence of normal or glaucomatous eyes. A 
higher CDR suggest an increased likelihood glaucoma. 

 
Fig. 1. Optic Nerve Head on retinal images. (1) Normal eye and (2) 
Glaucomatous eye. 

 In practice, glaucoma detection is typically performed by 
manual measurement of the CDR by a physician. This process 
is time-consuming and subjective, as the resulting 
segmentation and CDR are subject to the physician's 
judgment. Consequently, an automated method for the 
detection of glaucoma is necessary to address these issues [5]. 

II. LITERATURE REVIEW 
Currently, convolutional neural networks (CNNs) are 

widely employed for semantic segmentation of the optic disc 
and optic cup. Among the commonly used architectures, U-
Net is particularly popular for this purpose. Several previous 
studies have undertaken modifications to the U-Net 
architecture to cater to the specific requirements of optic disc 
and optic cup segmentation. 

One example is the EfficientNet + Unet++ model by 
Kamble et al. This method replaces the U-Net encoder with 
EfficientNet B4 and adds skip pathways from the U-Net++ 
model in its decoder. This addition manages to improve model 
performance without increasing its computational burden [6]. 
Another approach is the ET-Net, which introduces an Edge 
guidance module (EGM) in its encoder to obtain constraints 
as a segmentation edge guide and a Weight Aggregation 
Module (WAM) to its decoder to emphasize the discovered 
features [7]. The POSAL method, presented by Wang et al. 
uses the DeepLabv3+ architecture and adversarial learning to 
reduce bias between training data. It provides good     
performance but requires significant computation [8]. Lastly, 
the M-Net architecture utilizes a U-Net model with multi-
scale input and side output. This model receives fundus image 
input transformed polarly with different sizes on each layer of 
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its architecture and produces output at each layer with 
different sizes. These outputs are then weighted and summed 
to obtain the desired segmentation result [9].  

Unlike the aforementioned studies, Almustofa [10] 
proposes the addition of a Region of Interest (RoI) localization 
module before semantic segmentation with U-Net. This 
method is simpler in terms of the convolutional neural 
network module, yet it can yield comparable results to other 
research findings on the Refuge and Dhristi-GS training data. 
However, it is important to note that the Almustofa model was 
solely tested on the REFUGE Train and Drishti-GS datasets. 
When applied to the REFUGE Validation dataset, it faced 
several challenges, and its performance was found to be less 
effective. 

For localization, Almustofa employed the multiple map 
algorithm, which combines super pixel brightness maps and 
normal coefficient correlation (NCC) maps. Despite it 
producing sufficient results, there were still cases where 
localization was not captured accurately which could 
significantly affect the segmentation process. Additionally, 
due to differences in image size of the REFUGE Validation 
dataset compared to the dataset used during development, the 
ratio of the captured OD area in the RoI is not well-aligned. 

In the segmentation process, Almustofa used a U-Net-
based semantic segmentation technique and post-processing 
with ellipse fitting. This model produces binary masks of OD 
and OC candidate, and then fits these candidates into an ellipse 
on the binary mask. The performance of this model is 
significantly decreased on the new datasets, especially in 
segmentation of the optic cup. This is likely due to differences 
in image size and contrast between the Refuge Validation 
dataset and the Drishti and Refuge Training datasets. 
Moreover, in some images from the Refuge Validation 
dataset, multiple candidate OC regions were produced, which 
were not accounted for by Almustofa's post-processing 
algorithm. This led to incorrect candidate selection, resulting 
in an overall performance decrease of up to 16 percent. 

 

III. METHODOLOGY 

A. Dataset 
The study used several datasets to train and evaluate the 

models developed in the study. These includes: 

1. Drishti-GS dataset which contains 50 images with a 
size of 2047 x 1760 pixels, including 32 normal and 18 
glaucomatous images [11]. 

2. REFUGE Training Set consisting of 400 images with 
a size of 2124 x 2056 pixels, including 360 normal and 
40 glaucomatous images [12]. 

3. REFUGE Validation Set with 400 images with a size 
of 1634 x 1634 pixels, including 360 normal and 40 
glaucomatous images [12]. 

4. REFUGE Test Set containing 400 images with a size 
of 1634 x 1634 pixels, including 360 normal and 40 
glaucomatous images [12]. 

B. General Methodology 
Previously, Almustofa [10] developed a segmentation 

method based on U-Net with ellipse fitting with steps as 
shown in Figure 2. However, the methodology faced 

challenges in all three steps. The localization step had issues 
with inaccurate localization and misalignment of the captured 
OD area in the region of interest (RoI). The segmentation step 
exhibited decreased performance on new datasets, especially 
in OC segmentation, due to differences in image size and 
contrast. The ellipse fitting post-processing did not consider 
multiple candidate OC regions, leading to incorrect candidate 
selection. These issues motivate the need for optimization in 
each step to enhance accuracy and generalization of the 
methodology, which will serve as the baseline for the current 
research. 

 
Fig. 2. The general method of optic disc and optic cup segmentation by 
Almustofa (2021) [10].  

 In this study, we address these challenges by proposing an 
optimization methodology for optic disc analysis in retinal 
fundus images. Firstly, we optimize the localization step by 
introducing a Region of Interest (RoI) size optimization that 
handles variations in image size within and between datasets. 
Secondly, to improve segmentation, we enhance the 
supervised learning method by incorporating an additional 
dataset, enhancing model robustness. Lastly, we address 
limitations in ellipse fitting by meticulously inspecting each 
obtained contour to select the appropriate optic cup candidate 
based on its relationship with the optic disc. 

C. Optic Disc Localization 
The preprocessing step proposed by Almustofa, prior to 

performing optic disc (OD) and optic cup (OC) segmentation, 
is the localization of the OD. This localization process serves 
to prepare the image before the segmentation process. The 
localization module in general utilizes an unsupervised 
algorithm-based localization method. This localization 
process involves several maps, including the Normalized 
Correlation Coefficient (NCC) map and the super pixel 
brightness map. From the input RGB retina image, three maps 
are generated: the red-channel NCC map, the green-channel 
NCC map, and the super pixel map. These three maps are 
weighted and summed, and the coordinate with the highest 
pixel value is taken as the center point of the RoI. The RoI is 
then extracted from the green-channel retina image that has 
undergone contrast-limited adaptive histogram equalization 
(CLAHE), with a cropping size of 550 x 550 pixel centered on 
the coordinate [10]. 

In this study, we propose an RoI size optimization using 
ratios relative to the image size to tackle variations in image 
size present within the Refuge dataset as well as between 
Drishti-GS and Refuge datasets. Due to the difference in 
image size between datasets, the initial fixed size of 550 × 550 
pixels could no longer capture the optic disc (OD) in a manner 
that maintained uniform proportions, which is essential for 
accurate segmentation, especially in the presence of class 
imbalance. To address this issue, we proposed the use of ratios 
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relative to the image size, rather than a fixed pixel size. We 
then compare the segmentation performance under various 
RoI dimensions to evaluate the effectiveness of our proposed 
approach. 

D. Segmentation 
 The semantic segmentation of OD and OC utilizes a 
supervised learning method based on U-Net with a workflow 
depicted in [13]. The evaluation metric used for assessing the 
performance of the segmentation model is F-Score. F-Score is 
particularly useful in situations where there is an imbalance 
between the classes, which is often the case in semantic 
segmentation tasks. The F-Score is calculated using equation 
(1). 

 𝐹 − 𝑆𝑐𝑜𝑟𝑒 =  2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

 (�) 

 Where: 

• True Positive (TP) represents correctly predicted 
positive samples. 

• False Positive (FP) represents incorrectly predicted 
positive samples. 

• False Negative (FN) represents incorrectly predicted 
negative samples. 

 Currently, the training data for this research consists of 
450 images from the REFUGE Train and Drishti datasets, and 
the validation data consists of 400 images. These two datasets 
exhibit significantly different characteristics.  In terms of 
image resolution, the Refuge validation data properly 
represent the Refuge test set but are much smaller than the 
resolution of the Refuge Training set. To fairly represents 
these variations, we choose to train the segmentation with a 
training to validation data ratio of 3:1. 

E. Ellipse Fitting 
After the segmentation process, post-processing is 

performed using ellipses fitting. The ellipses fitting process in 
[10] has not accounted for the possibility of multiple 
candidates. Thus, while searching for an OC candidate among 
detected ellipses, only the ellipse with the largest size is 
selected. Consequently, there is a possibility of OC entirely 
not detected in the fundus image. 

 
Fig. 3. The optimized ellips fitting workflow with the addition of multiple 
candidate handling (in blue). 

With this optimization, each obtained contour will be 
inspected. Using the knowledge that the OC is always located 
inside the OD, each OC contour will be examined to determine 
whether most of its area is located within the OD. Contours 
that meet this specification will then be selected as the OC 
candidate, resulting in the detection of the appropriate 
contour. The optimized ellipse fitting workflow is illustrated 
in Figure 3. 

IV. RESULTS AND DISCUSSION 

A. Optimized Localization 
The proposed methodology involved experimenting with 

ratios calculated based on the size of the optic disc and the 
room for error in the gap between the brightest spot in the 
image and the actual center of the OD. This approach allowed 
us to consider the inherent variations in optic disc sizes and 
their positions within the images, enabling a more flexible and 
adaptive segmentation process. 

We evaluated various ratios between 20% and 40% to 
determine the most appropriate one. The results of the 
experiment revealed that using a ratio of 30% was the best 
candidate for achieving optimal segmentation outcomes.  By 
selecting the 30% ratio, we ensured a good balance between 
capturing sufficient information about the optic disc and 
leaving enough room for error in the gap between the brightest 
spot and the true center of the OD. This balance played a 
crucial role in achieving accurate and robust semantic 
segmentation results across different datasets, despite 
variations in image resolutions and other characteristics. 

TABLE I.  SEGMENTATION RESULT WITH NEW ROI 

Model 
No. 

RoI of Model Data OD F-Score OC F-Score Training Validation 
Baseline 550×550 550×550 0.913 ± 0.049 0.748 ± 0.154 

1 550×550 30% 0.912 ± 0.051 0.720 ± 0.166 
2 30% 30% 0.917 ± 0.046 0.784 ± 0.122 

  

 Initially, the RoI size was tested using the base as to test 
the new Region of Interest (RoI) size, the modified RoI size 
was evaluated using the baseline model trained with 550 × 550 
data. However, in comparison to the baseline, the 
segmentation performance experienced a significant 
reduction. In response to the observed decrease in 
segmentation performance, we took proactive measures to 
address this issue. The model was retrained using the training 
data that incorporated the latest cropping specification based 
on the 30% image size ratio. This revision enabled the model 
to better accommodate the new RoI size and exploit the 
advantages of the ratio-based approach, leading to a more 
precise and accurate segmentation of the optic disc (OD) and 
optic cup (OC) regions. 

Notably, the retraining process demonstrated a substantial 
improvement in OD and OC segmentation performance 
compared to the baseline model. The adoption of the 30% of 
the original image size as the superior image size alignment 
method proved to be an effective strategy, yielding superior 
results in terms of segmentation accuracy and generalization 
capability. 

B. Optimized Segmentation 
To begin optimization of the segmentation process for the 

additional datasets, a training and validation ratio first needed 
to be established. Due to limited number of data in the Drishti-
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GS dataset and its resemblance in resolution with those of the 
Refuge Training set, we use all images of Drishti-GS dataset 
as training data and maintain the overall training:validation 
data ratio of approximately 3:1. With such proportion, our 4-
fold stratified cross validations gives the average F-Score of 
0.945 ± 0.004 and 0.873 ± 0.011  for OD and OC, respectively.     

C. Optimized Ellipse Fitting 
To further improve the segmentation result of the 

optimized model, a post-processing algorithm using ellipse 
fitting will be utilized. The optimization of the ellipse fitting 
method involves checking each of the detected contour as 
candidates for the optic cup. The effect of this is demonstrated 
in an example in Figure 4. 

Top 

 

Bottom 

 Left Middle Right 

Fig. 4. The distribution of the segmentation results with the best model and 
optimized ellipse-fitting algorithm is shown in Figure 5, where OC F-Score 
(right) is shown to contain more variations compared to OD (left), both 
within and between each data origin. Problems in OC segmentation include 
subtle boundaries with surrounding OD and intricate blood vessel pattern 
that sometimes reside within OC.   

 
Fig. 5. Distribution of F-Score of optic disc (left) and optic cup (right) 
segmentation results. 

The images affected by the ellipse fitting algorithm are 
those with OC segmentation results forming more than one 
area. In the previous algorithm, the contour with the largest 
area was taken, resulting in the detection of an area other than 
OC in some images, as shown in Figure 4. The optimization 
of the ellipse fitting successfully detected the correct OC 
contour compared to the previous method, thereby enabling 
the model to detect the location of the OC and avoid images 
with an OC F-Score close to zero. The distribution of the 
segmentation results with the best model and optimized 
ellipse-fitting algorithm is shown in Figure 5. 

Table II presents a comparison of our results with those of 
other studies. All results for the Refuge dataset in Table II are 
exclusively from the test set, unless stated otherwise. In 
comparison to the method proposed in [10], our approach 
yields improvements of 0.04 and 0.13 in the segmentation F-

Scores for the optic disc (OD) and optic cup (OC), 
respectively, on the Refuge validation dataset. 

TABLE II.  COMPARISON OF SEGMENTATION RESULTS BETWEEN 
DIFFERENT MODELS 

Reference 
Model Method Drishti-GS REFUGE 

OD OC OD OC 

EfficienNet + 
U-Net++ [6] 

Modified U-
Net ++, 

EfficientNet 
B4 encoder 

0.978 0.938 0.957 0.876 

ET-Net [7] ResNet-50, 
EGM, WAM 0.975 0.931 0.953 0.891 

pOSAL [8] 
DeepLabv3+ 

and adversarial 
learning 

0.974 0.901 0.946 0.875 

M-Net [9] 

U-net with 
Multi Scale 
Input Layer 

and Side 
Output, Polar 

Transform 

0.966 0.886 0.936 0.865 

Multimap 
Localization 
+ U-Net[10] 

Multimap 
Localization + 

U-Net + 
Ellipse Fitting 

0.957a 0.929a 0.968 a 
0.913 b 

0.913a 
0.748 b 

Our study 
Multimap 

Localization + 
U-Net + 

Ellipse Fitting 
0.979a 0.948a 

0.973 a 
0.957 b 
0.942 c 

0.903 a 
0.882 b 
0.843 c 

a. Calculated with Training Set 
b. calculated with validation Set 

c. calculated with test set 

 Moreover, despite the simplicity of our method, we 
achieve differences of less than 0.02 and 0.05 in the F-Scores 
of OD and OC, respectively, on the Refuge test dataset when 
compared to other studies. For the Drishti-GS dataset, our F-
Scores surpass those reported in other studies. However, it is 
essential to note that, in our study, the Drishti-GS dataset was 
solely used as a training set. Other studies did not provide a 
detailed explanation of their exact utilization of the Drishti-
GS dataset. 

D. Limitations 
While our optimization methodology for optic disc 

analysis demonstrates significant advancements, it also has 
certain limitations that warrant consideration. Firstly, the RoI 
size optimization, aimed at addressing variations in image size 
across datasets, may not fully account for extreme variations 
in image resolutions, which could potentially affect 
segmentation performance on challenging images. To ensure 
broader applicability, future research could explore more 
robust approaches to handle extreme variations in image sizes 
and resolutions. 

Secondly, despite enhancing the segmentation method by 
incorporating an additional dataset and adjusting the training 
to validation data ratio, the model's performance could still be 
influenced by dataset-specific biases or limited diversity in the 
training data. Further increasing the size and diversity of the 
training dataset, including images with rare pathological 
cases, may help in improving the model's generalization 
capabilities and robustness. 

Additionally, the optimization methodology has been 
evaluated on specific datasets, and its performance may vary 
when applied to other datasets or clinical settings. Therefore, 
it is crucial to validate and fine-tune the methodology on 
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diverse and independent datasets to assess its generalizability 
and applicability in real-world scenarios. 

 

V. CONCLUSION 
In this study, we developed an optimization method for an 

optic disc and optic cup segmentation algorithm used for 
glaucoma detection in a previous study. We concluded that the 
best image preprocessing strategy is to align the RoI at the 
proposed center of OD with the crop size of 30% times of the 
original image. This method has been found to improve the 
segmentation F-Score of OD and OC to 0.917 ± 0.046 and 
0.784 ± 0.122 for Refuge Validation compared to the previous 
study. 

Furthermore, we have concluded that the best optimization 
strategy for OD and OC segmentation is to improve the ellipse 
fitting algorithm by checking the contour and using a 3:1 ratio 
for training data division. This strategy has been found to 
achieve an OD segmentation F-Score of 0.979 ± 0.005 in the 
training set of Drishti-GS and 0.942 ± 0.026 in REFUGE 
dataset. The optic cup segmentation has been found to achieve 
an F-Score of 0.948 ± 0.020 for Drishti-GS training set and an 
F-Score of 0.843 ± 0.055 for the REFUGE dataset. 
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