
Offline Collaboration Tool utilizing WebRTC in Ad

Hoc Peer-to-Peer Networks

Kiefer Micco J. Victoriano, Juan Carlo M. Santos, Tingcap B. Mortaba II, Md. Jassim Caballes, and Jaybie A. de Guzman

Smart Systems Laboratory, Electrical and Electronics Engineering Institute, University of the Philippines

Abstract—Advancement in technology introduced us to var-
ious platforms that changed our way of communicating and
collaborating. With the sudden demand for technological de-
pendence, the COVID-19 situation exposed the limited internet
infrastructure and costly internet service of countries like the
Philippines. In this study, the researchers explored the option
of real-time offline collaboration in an ad hoc network as a
solution to unimpeded collaboration in low bandwidth and
poor connectivity environments. The researchers developed on
top of CONCLAVE, an open-source collaborative text editor
that utilizes WebRTC. Offline functionality was enabled in this
collaborative platform along with the implementation of offline
peer discovery using Websockets and a peer handling technique
inspired by Scalable Content Addressable Networks (CAN).
These modifications were evaluated on an ad hoc network
using different metrics such as packet delay, jitter, data rate,
and peer disconnection resolution time. Results of the testing
was favorable to the modified version of CONCLAVE in an ad
hoc network. With these results, the project has successfully
enabled offline use and continued operation in the event of
a disconnected peer, and has successfully implemented a peer
handling technique that has improved the P2P operation of the
original application.

I. INTRODUCTION

Technology has changed the way we communicate and

interact with each other: enabling us to connect with anybody

around the world. Specifically, numerous organizations have

transition towards a fully digital and online set-up. And with

the emergence of the COVID-19 global pandemic in the past

years, the reliance on digitalization has become more salient.

It signaled the increased popularity of different collaboration

tools, especially now in the pandemic era where we were

and still are forced to socially distance ourselves from one

another. This sudden demand for technological dependence

has exposed the limited internet infrastructure and costly

internet service of countries like the Philippines.

Thus, in this work, we enabled offline functionality of

CONCLAVE, a collaborative web application built utilizing

WebRTC [1], and improved its overall performance by mod-

ifying its existing peer handling. Our specific contributions

are as follows:

1) Enabled offline mode to Conclave’s real-time collabo-

ration;

2) Demonstrated peer-to-peer handling characterized by a

balanced topology that can scale efficiently;

3) Allowed for continuous operation in the event of a

crashed/disconnected host; and

4) Evaluate the P2P implementation based on the follow-

ing performance metrics: a) delay, b) data rate, c) jitter,

and d) peer disconnection resolution time.

II. RELATED WORK

A. Collaboration Tools

Collaborative tools have gained popularity especially dur-

ing the COVID-19 pandemic [2]. Google Docs and MS

Office Online offer a platform for real-time document editing

for multiple authors. These, however, are limited by the

availability of an internet connection. [3]. Wooki enables P2P

collaborative writing. However, it is also reliant on a constant

internet connection to function [4]. Collabio is a collaboration

tool that has offline functionality, making use of an ad hoc

P2P network. Accessibility is a problem for this application

since it is only available in Apple operating systems, requires

a paid subscription, and is not open-source [5].

B. Peer-to-Peer Overlay Network

CONCLAVE operates in a decentralized manner where each

peer maintains an up-to-date local copy of a document. And

with every change, each peer is responsible for relaying these

changes to all other peers in order to maintain consistency

between the local copies. Topology and peer management

of the network threaten the reliability and quality of service

that CONCLAVE can deliver [6]. In the subsequent sections,

various related work on the approaches to enabling P2P

connectivity is discussed.

1) Peer-to-Peer Architectures: P2P overlay networks,

which can be classified as either structured or unstructured

P2P networks, are decentralized networks of peers where

each serve as both a router and a host device. Unstructured

networks lack a defined process for building and main-

taining the network, which makes fault tolerance uncertain.

Structured networks, however, have specialized nodes that

make queries more efficient. Dynamic Hash Tables (DHTs)

offer a structured mapping of peer IDs to values and store

location data of peers in the network for routing and ad-

dress purposes which addresses specific challenges in P2P

networks [7]. Example topologies of various structured P2P

networks include Chord, Kademlia, Tapestry, Pastry, Content

Addressable Networks (or CAN), and Viceroy. Out of all

these approaches, CAN is the simplest to implement.

2) Mobile Ad Hoc Networks: Mobile Ad Hoc Networks

(MANETs) are wireless networks that do not rely on any

infrastructure, and instead, each device in the network acts

as both a router and an end device [8]. Some of the commonly

used routing protocols in MANETs are DSDV, CGSR, and

WRP [9]. MANETs are wireless, infrastructure-free, and

dynamic networks that offers resistance to abrupt changes in

the network’s topology. Techniques and topologies found in

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA2XP.1

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 248

(a) Express Server

(b) WebSocket Server

(c) PeerJS Server

Fig. 1. Services enabling offline collaboration

MANETs can be considered for improving the peer-to-peer

topology management of CONCLAVE. While CONCLAVE’s

peer-to-peer topology is a logical overlay network on top

of an infrastructure-based network, MANETs are physical

networks.

III. ENABLING OFFLINE COLLABORATION IN CONCLAVE

CONCLAVE is an open-source web application built mainly

on JAVASCRIPT/NODE.JS, and serves as the main foundation

for building the offline collaboration tool. It uses WebRTC for

real-time communication. With its original implementation,

the host-peer acts as a temporary central server until there

are five peer connections, at which point it directs new

connections to other peers in the network. This achieves the

majority of the desired goals except for offline functionality

and better peer-to-peer network handling[1]. To handle col-

laborative editing, CONCLAVE uses conflict-free replicated

data type (CRDT). CRDT assigns a global unique identifier

to every character and utilizes a counter to track the number

of operations performed to ensure matching between replicas

[10].

The modified application architecture took advantage of

two layers, the connecting layer and the application

layer. The connecting layer is where all the prerequisite

services are established to enable the collaboration. An initial

client-server model in the form of the connecting layer is

necessary as one peer was designated a the host or bootstrap

peer. Beyond the connecting layer, the application

layer operates fully peer-to-peer. At the application

layer, all peers in the overlay network bear identical re-

sponsibilities and abilities, making the collaboration and

administration of the network completely peer-to-peer.

A. Peer Discovery

1) Hosting: As a web application, CONCLAVE relies on a

server that hosts the assets necessary to build the application

on the client side. For this to work in an offline environment,

Express, a NODE.JS framework was used. As shown in Fig.

1.a, an Express server handles HTTP requests and responses.

It simplifies the process of handling HTTP requests and

responses by providing a high-level API for defining routes,

handling requests, and sending responses. Once the server

is up, other users can now request the offline CONCLAVE

application using the IP address of the host peer and the

respective port.

2) Connecting: Originally, CONCLAVE facilitates peer

discovery by generating an invite link that a user can send to

other users. Sharing the invite link is usually convenient in

an online environment where you can easily use applications

like Messenger or Discord. In an offline environment, this

method is not a practical option anymore.

To address this, as shown in Fig. 1.b, the WebSocket

protocol is utilized using NODE.JS. A local WebSocket server

is initialized on port 8886 on the host peer. This is instantiated

along with the Express server that the offline CONCLAVE runs

on. Once a CONCLAVE instance is opened, it will automati-

cally connect to this server. This connecting functionality was

inspired from the open-source project, Snapdrop [11].

3) Establishing WebRTC Connection: CONCLAVE uses

PeerJS, a WebRTC framework. Signaling is a requirement

in connecting two WebRTC agents. Signaling is done to

exchange session description protocol (SDP) of two different

peers, necessary for peers to know each other’s location in a

network to initiate data exchange.

The original CONCLAVE application uses an online PeerJS

server as a signaling server. For CONCLAVE to work in an

offline environment, as shown in Fig. 1.c, a local PeerJS

server was used instead using the peer package, the PeerJS

server component offered by NODE.JS. The local PeerJS

server was instantiated and binded on the same port as the

Express server mentioned in Section III-A1.

B. Peer-to-Peer Handling

The modified P2P handling integrates CAN functionalities

[12] [13] into the modified CONCLAVE implementation.

1) Bootstrapping: Bootstrapping is responsible for the

initiation of new peers into the CONCLAVE application, and

enables the functionalities necessary for connecting them to

the application. Bootstrapping here, in particular, refers to

bootstrapping into the application layer network which is

separate from the bootstrapping of peers in the connecting

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 249

(a) Zone Splitting Convention (b) Six Peer Network (c) Four Peer Network With and Without Rerouting

Fig. 2. Zones and rerouting in the Peer Network

layer. It follows that the term ‘network’ in the succeeding

parts refer to the CAN.

Bootstrapping into an existing CAN would require a peer

to connect to a specific peer’s instance, and effectively its

network, done through the utilization of an assigned PeerJS

peerID. CONCLAVE instances are run on each end device

and do not require a central host to operate. Likewise, the

network is, necessarily, not reliant on a central peer to

facilitate the collaboration.

In the original CONCLAVE application, a sharing link is

used to invite peers into a network. This would not be

viable for an offline implementation. In the modified version,

every instance within the ad hoc network can discover other

instances in the network and are given the option to connect

to any instance in the network.

2) Zone Splitting: Zone splitting involves the construction

of the CAN and allocation of ‘zones’ to connecting peers.

Upon joining a CONCLAVE network, the connecting peer

is assigned half of the target peer’s original zone. A zone

is a set of characteristics that describe the area that a peer

occupies in a theoretical cartesian space. These characteristics

are the region, generation value, neighbors, and etc. These

are modified when a zone split occurs. The zone splitting

convention is illustrated in Fig. 2.a.

3) Connecting: Connecting is responsible for establishing

connections to other peers in the network and reorganizing

connections with respect to the network architecture. Each

peer has a specific zone within the Cartesian space, and

peers with zones that are abut each other are considered

neighboring zones. In the network, only neighbor zones will

form P2P connections with each other in order to maintain

the CAN architecture. For example, in Figure 2.b, peer 5 only

has knowledge of peers 1, 2, and 6, and will only form P2P

connections with these peers.

4) Rerouting: Rerouting is a process primarily focused

on balancing the network by forwarding peers to neighbors

with a larger zone to redistribute zone allocation. Since peers

can freely connect to any instance, rerouting is implemented

to reduce oversaturation of peers in an area of the carte-

sian space. Essentially, the connection request made by the

connecting peer to the target peer is forwarded its neighbor

with a larger zone. If the target peer fails to find a larger

zone, it accepts the connection request and continues with

the connecting process. An example is seen in Fig. 2.c.

5) Disconnecting: Disconnecting is responsible for seam-

less and proper zone/resource reallocation in the network

when a peer disconnects from the network. CONCLAVE’s

original implementation has a branching star topology, giving

rise to significant issues. Particularly, in these applications,

version consistency is important. One of the identified prob-

lems with the current P2P handling mechanism is partitioning

and network recovery. That is, a disconnecting peer can cause

a portion of the network to be partitioned from the rest of

the network.

Additionally, without a central list of existing peers in

the network, network changes are not streamlined. This is

due to each peer having different views of the network, and

could only operate within that localized view. To keep track

of alive peers in the network, the concept of a heartbeat

message is used. A heartbeat protocol is a method used to

determine the state of machines in a decentralized network

[14]. This is done by periodically sending a control message,

also known as a heartbeat message, to a peer in the network.

The recipient peer then replies to the sender to verify its

state and initiates the recovery when a neighbor fails to send

a heartbeat message.

When a peer disconnects, it leaves behind its zone. Without

a recovery process in place, this resource is left unusable to

any peer in the network. In CAN, the cartesian space becomes

fragmented, disrupting the topology of the network rendering

it practically unusable. Hence, there is a need to recover these

lost resources to be able to maintain a proper functioning

network.

In the event of a disconnected peer, a takeover peer among

the neighbors is tasked to recover these abandoned resources

while the rest are tasked with recovering the connection. If

the neighbor of the leaving peer is not a takeover peer, the

peer will begin the process of connection recovery; routing

a request message through the network to connect to the

assigned takeover peer. The search algorithm used to find the

takeover peer is loosely based on breadth-first search.

To aid in the recovery process of the network, the concept

of a predecessor tree is used along with the network recovery

process detailed in [15] is borrowed. The predecessor tree is

essentially a binary tree whose primary function is to record

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 250

(a) Original Online Setup (b) Modified Adhoc Setup

Fig. 3. Evaluation Setups

how the zones of the Cartesian space were split. Certain

conventions were employed to provide predictability.

IV. EVALUATION

A. Setup

We compare the following setups: 1) original CONCLAVE

in an online environment; and 2) modified CONCLAVE in

an offline ad hoc environment. Five physical devices were

used to act as separate peers in the network, an estimation

of the usual number of people collaborating on a document

based from observation. It should be enough to evaluate the

modification done on the peer-to-peer handling side of the

CONCLAVE application. All devices run on the Ubuntu Linux

distribution OS.

1) Original Online Setup: In this setup, as shown in Fig.

3.a, no modifications were made to the original application

and an internet connection is available to all collaborating

peers. This setup serves as the baseline for the modifications

made in this project. The web hosting service GITPOD was

used for deployment.

In the original client, a sharing link is necessary as a means

for discovery. We use the web application Pastebin which

allows the pasting of text and sharing this to other users on

the web. This was utilized because it has a relatively shorter

link that can be manually copy-pasted. It also minimizes the

bandwidth necessary to send the link compared to the usual

messaging apps.

2) Modified Ad Hoc Setup: For this setup, as shown in

Fig. 3.b, the application is tested with the modifications made

to peer handling and peer discovery in an ad hoc network.

The ad hoc network is created by means of a mobile phone

hotspot (Google Pixel 6A). The hotspot solely serves as a

bridge for the collaborating peers and does not have access

to the internet.

B. Metrics

Four main metrics were measured in evaluating each

configuration: a) packet delay, b) jitter, c) data rate, and

d) peer disconnection resolution time (PDRT). Wireshark, a

packet analysis software, was used to obtain these metrics.

Measuring delay, jitter, and data rate can be done in a

straightforward manner using Wireshark.

For packet delay, Wireshark can plot the graph of the

round-trip-time (RTT) of the packets. From which, the packet

delay can be extracted. Packets sent from one peer will

have a corresponding timestamp on the source device and a

receiving timestamp on the destination device which allows

time difference calculation to record packet delay and jitter.

For data rate, Wireshark shows the data rate of the live

capture from start to end. By setting time intervals between

live captures and setting them to have specific time lengths,

we can measure the data rate of each instance. The type of

protocol used for transport was considered, namely UDP,

and whether the method for measuring the following can

be done for both local and ad hoc networks. For TCP, we

can easily measure the RTT of a packet because there is

a response to every sent packet. For UDP, this reply needs

to be forced such that an acknowledgement of the received

packet is obtained. The capture file from each peer is required

for the measurement of the packet information. A traditional

approach to measuring UDP packet information was used

[16]. This is a taxing approach if it is to be done to all the

data packets. Only five packets from each P2P conversation

are randomly chosen to estimate the metrics for each setup,

due to time constraints.

PDRT is a newly introduced feature in the modified

CONCLAVE application, hence there is no comparison to be

made with the original CONCLAVE application. That being

said, PDRT is still measured to gauge the performance of

the adopted implementation. This is the time it takes for

the whole network to reach a stable state when a peer

disconnects.

The PDRT is measured through the web console. Print

commands were set in place within the code to keep track

of the state of each peer in the overlay network. The starting

point and end points of a disconnection process is identified

manually. Then, the time difference between the two events

measure the PDRT of the specific peer in the network. The

end of a recovery process within a specific peer is the point

at which its state becomes static. Since this is a distributed

network, the actual PDRT of the entire network is effectively

the peer with the longest PDRT.

As a benchmark, Cisco’s recommendation on the desirable

metrics for VoIP implementations was used [17]:

• Maximum one-way latency of 150 ms

• Average one-way jitter under 30 ms

• Loss no greater than 1 percent

• A range of 21 to 320 kbps of priority data rate must be

allocated for the conversation.

The Cisco metrics might be too stringent since CONCLAVE is

not a VoIP application, but a text collaboration application.

These recommendations were the closest available recom-

mendations especially for real-time applications. Quality of

service standards for text messaging do exist but have lenient

requirements that are not applicable for this type of real-time

application [18].

C. Evaluation Phases

Since the approach for measuring UDP packets is done

manually, or without the use of a third party application,

some organization in the message exchange methodology is

also required. Measurement of the necessary data is split

into two phases, the connecting phase and the collaborating

phase, with the intention to segregate packet contents to their

respective phase. For the collaborating phase, it is further

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 251

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Peer 2 Connects Peer 3 Connects Peer 4 Connects Peer 5 Connects

Packet Delay - Connecting Phase

Online Ad-Hoc CISCO

(a) Packet Delay

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Peer 2 Connects Peer 3 Connects Peer 4 Connects Peer 5 Connects

Jitter- Connecting Phase

Online Ad-Hoc CISCO

(b) Jitter

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Peer 2 Connects Peer 3 Connects Peer 4 Connects Peer 5 Connects

Data Rate - Connecting Phase

Online Ad-Hoc

(c) Data Rate

Fig. 4. Connecting Phase

subdivided into idle and active phases. This is to provide

insights on the baseline metrics during low traffic scenarios,

particularly data rate, as compared to high traffic scenarios.

Evaluation was also done on the PDRT of the modified

CONCLAVE implementation.

V. RESULTS AND ANALYSIS

The measurements for the connecting phase and the col-

laboration phase are shown in Fig. 4 and Fig. 5 respectively.

1) Connecting Phase: In terms of packet delay, as shown

in Fig. 4.a, the ad hoc setup performed well below the

maximally defined measurement recommendation by Cisco.

The routing path of the packets may affect the packet delay

as observed in the difference of the third peer connection

behavior in the online vs modified setup.

As shown in Fig. 4.b, the jitter of the ad hoc setup shows

a steep rise after more peers are connecting. Compared to

the online setup, where there is not much variation at higher

peer counts, the online setup provides a better performance.

The ad hoc setup has a steadily increasing data rate (as

shown in Fig. 4.c) with each addition of a peer. It can be

observed that, with the addition of peer 4, there is no increase

in data rate since no extra addition is needed with peers that

are not neighbors. In the online setup, the trend is in the

opposite direction. The data rate decreases as more peers are

included.

2) Collaborating Phase: In the collaborating phase, the

entire sample of packets are comprised of the packet ex-

changes between each peer conversation in the network.

In this phase, both setups are now a peer-to-peer network

without the data transfer to an online server.

As shown in Fig. 5.a, the ad hoc setup displays a perfor-

mance at par with the online setup. The online setup seems

to have relatively good performance at smaller network sizes.

It is expected that, beyond the 5-peer mark, the performance

should worsen significantly due to the original CONCLAVE’s

branching star topology which does not scale well.

For the jitter plots, as shown in Fig. 5.b, the ad hoc setup

performed outstandingly well in comparison to the online

setup, having relatively more consistent and lower variation

in the measurements at all network sizes.

The plots for the data rate shown in Fig. 5.c are as

expected. Both setups follow a similar trend, although, it can

be observed that the ad hoc setup has an overall higher base

data rate compared to the original online setup. This is due to

the distributed nature of the modified implementation where

additional background process, otherwise handled by online

TABLE I
LOCAL NETWORK CONFIGURATION - PDRT

Case
Peer Disconnect Resolution Time (s)

Peer 1 Peer 2 Peer 3 Peer 4 Peer 5

P1 Leaves - 8.846 8.811 0 8.807
P2 Leaves 31.662 - 7.511 31.43 25.578
P3 Leaves 12.116 20.99 - 33.246 33.127
P4 Leaves 13.256 31.398 31.7 - 13.202
P5 Leaves 6.267 6.21 6.209 0 -

servers and other existing infrastructure in the online setup,

are necessary to maintain a distributed network.

A. Overall Analysis

The quality of service metrics do not fully represent the

user experience, as other factors such as processing delays

and external influences could also impact the application’s

performance, which is discussed in this section to help with

future development decisions.

1) Performance of Modified Ad Hoc Setup vs. original

Online Setup: The ad hoc setup shows the best performance

in the tests in terms of minimal delays and scalability

while being in accordance to the established recommended

performance range. While it cannot be seen in the result, due

to the constraint of a 5-peer-maximum network, it is expected

that the modified set-up will out perform the original setup

dramatically beyond the 5-peer mark due to the nature of the

peer handling used.

In terms of user experience, the ad hoc setup also had the

best performance. The online original setup displayed some

visible delays, relative to the responsiveness experienced in

the ad hoc setup. Although, the difference in the delays are

practically insignificant in a normal setting. The online setup

metrics is comparable to the ad hoc setup, this difference in

user experience is attributed to the difference in peer handling

used.

2) Peer Disconnection Resolution Time: The results

shown in Table I is heavily dependent on the network

structure and position of the leaving peer in that network.

The implemented delays in the processing is necessary to

ensure organization and ordering in the processes for network

stability in distributed networks. However, some optimization

in this part is still possible. It should also be noted that,

during disconnection resolution, the collaboration of the peers

in the network are unimpeded. The important part of the

disconnection resolution is the fast recovery process which

handles recovery of abandoned resources in the network,

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 252

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

2 Peer Network 3 Peer Network 4 Peer Network 5 Peer Network

Packet Delay - Collaborating Phase

Online Ad-Hoc CISCO

(a) Packet Delay

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

2 Peer Network 3 Peer Network 4 Peer Network 5 Peer Network

Jitter - Collaborating Phase

Online Ad-Hoc CISCO

(b) Jitter

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

2 Peer Network 3 Peer Network 4 Peer Network 5 Peer Network

Data Rate - Collaborating Phase

Online Ad-Hoc

(c) Data Rate

Fig. 5. Collaborating Phase

which happens almost instantaneously after a peer leaves. The

remaining connection resolution, which is being measured,

is not as crucial. In the event of multiple simultaneous

disconnections, a network failure is observed and is outside

the scope of the project.

VI. CONCLUSION AND FUTURE WORK

In conclusion, offline real-time collaboration was achieved

in this project by modifying certain properties of the CON-

CLAVE web application. This included a new peer discovery

system that simplified the whole process by abstracting

the sending of invite links through WebSocket messaging.

Also, a new peer handling was successfully implemented

that presented a peer disconnect resolution process using

a version of a Content Addressable Network (CAN). This

modified version of CONCLAVE was tested in an offline ad

hoc network and was fully functional in this set up. Moreover,

the modified ad hoc setup performed marginally better than

the online original setup which primarily can be attributed to

the implemented peer handling.

Recommendations and Future Work

To improve this web-based implementation, it is recom-

mended that the PeerJS abstractions are replaced by the

standard WebRTC API to allow for more precision when

modifying the code. This may open potential for optimization

of the code. Alteroriginally, the application can be converted

and developed into a standalone application where all the

necessary services such as the express server can be built

into. In a standalone implementation, other means of peer

discovery might be needed to support this. Additionally,

in doing so, the use of WebRTC may also require some

alteroriginal substitution. Not to mention, it may also resolve

possible browser related limitations on ad hoc support.

Lastly, the current testing methodology may not have

yielded the most precise data to properly estimate the per-

formance of the application. In that, the current data is based

on a relatively small sample size. This is primarily due to the

time consuming nature of the data extraction process which

was not in the favor of the proponents. Perhaps, with the

use of more better evaluation tools, to automate this process,

it may be favorable to increase the sample size and better

estimate the performance of the application. Additionally,

further testing the applications with a higher network size for

stress-testing and scalability testing could also be beneficial

to better understanding the full capacity of the application.

ACKNOWLEDGEMENT

The authors acknowledge the Office of the Chancellor of

the University of the Philippines Diliman, through the Office

of the Vice Chancellor for Research and Development, for

funding support through the PhD Incentive Award.

REFERENCES

[1] N. Savant, E. Olivares, and S.-L. Beatteay, Conclave, 2018.
[2] A. Merritt, Promoting student collaboration in the age of covid-19,

Dec. 2015.
[3] N. L, Google Docs System design — Part 2— System components

explanation micro services arcitecture. Tech Dummies, Jan. 2019.
[4] S. Weiss, P. Urso, and P. Molli, “Wooki: A P2P wiki-based col-

laborative writing tool,” in Web Information Systems Engineering –

WISE 2007, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 503–512.

[5] N. Lomas, Collabio lets you co-edit documents without the cloud, Apr.
2021.

[6] Building a collaborative text editor with WebRTC and CRDTs.
JavaScriptMN, Feb. 2018.

[7] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Commun.

Surv. Tutor., vol. 7, no. 2, pp. 72–93, 2005.
[8] V. Sharma and A. Vij, “Broadcasting methods in mobile ad-hoc

networks,” in 2017 International Conference on Computing, Commu-

nication and Automation (ICCCA), Greater Noida: IEEE, May 2017.
[9] D. P. I. I. Ismail and M. H. F. Ja’afar, “Mobile ad hoc network

overview,” in 2007 Asia-Pacific Conference on Applied Electromag-

netics, Melaka, Malaysia: IEEE, Dec. 2007.
[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-

free replicated data types,” in Stabilization, Safety, and Security of

Distributed Systems, X. Défago, F. Petit, and V. Villain, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–400, ISBN: 978-
3-642-24550-3.

[11] R. Linus, Snapdrop, 2022.
[12] A. Popescu, D. Ilie, and D. Kouvatsos, On the Implementation of a

Content-Addressable Network.
[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content-addressable network,” SIGCOMM Comput. Commun.

Rev., vol. 31, no. 4, pp. 161–172, Aug. 2001, ISSN: 0146-4833. DOI:
10.1145/964723.383072.

[14] M. Gouda and T. McGuire, “Accelerated heartbeat protocols,” in
Proceedings. 18th International Conference on Distributed Computing

Systems (Cat. No.98CB36183), 1998, pp. 202–209. DOI: 10 . 1109 /
ICDCS.1998.679503.

[15] S. Ratnasamy, A scalable content-addressable network, Berkeley, CA,
USA, 2002.

[16] K. Knochner, Udp packets’ jitter and delay, Jul. 2012.
[17] Cisco, Quality of service design overview, 2020.
[18] J. Babiarz, K. Chan, and F. Baker, “Configuration guidelines for

diffserv service classes,” Aug. 2006. DOI: https://doi.org/10.17487/
rfc4594.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 253

