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Abstract— This paper presents an self-supervised Siamese 

neural network (SNN) for identification and classification of 

fatty liver severity. SNN is used for self-supervision tasks for 

being influenced from model optimization property of 

supervised and manual annotation property of unsupervised 

learning. This technique is based on contrastive learning of the 

joint embedding network which can learn more subtle 

representations from the medical images for classification task, 

with just one or few number of labelled images required from 

each class for training. The efficiency of the proposed model is 

validated on our dataset of liver ultrasound to classify them 

into three stages of the fatty liver disease and normal liver. A 

two-class classifier (normal/grade-I, normal/grade-II and 

normal/grade-III fatty liver) and four-class classifier (normal, 

grade-I, grade-II, grade-III fatty liver disease) were trained by 

minimizing contrastive loss to obtain classification accuracy of 

98.91% and 96.84% respectively. 

Keywords— Fatty liver, Contrastive learning, Deep learning, 

Siamese neural network, ResNet, Ultrasound images. 

I. INTRODUCTION  

Liver diseases are life threatening problems when not 
cured in time. The root of the prevention lies in the early 
identification of fatty liver for which computer-aided 
diagnosis (CAD) through deep learning techniques proved to 
be a success. This is the process of gradual accumulation of 
fat on liver, which if not cured in time may leads to chronic 
liver conditions of scarring the liver and liver damage, along 
with affecting cardiovascular conditions [1]. 
Ultrasonography (USG) is most preferred imaging technique 
for scanning soft tissues like liver, kidney, etc. Also, USG is 
cheapest, non-radiative and harmless imaging technique [2-
3]. The principle behind liver identification is subjective and 
objective analysis. Subjective analysis is based on vascular 
visibility and echogenicity comparison with respect to right 
kidney. Healthy liver and kidney textures are isoechoic, 
while fatty liver tissues are hyperechoic causing blurring of 
intrahepatic veins and diaphragm [4]. Earlier objective 
analysis were based on CAD assessment for statistical 
calculations of hepatorenal sonographic index (HRI) [5-7], 
texture and morphological based features, etc. from manually 
selected ROI from the liver ultrasound images. Various 
feature extraction and classification techniques for 
characterization of liver tissues using machine learning is 
summarized in review paper of Bharti et. al. [8]. But 

observer dependent objective assessments are limited due to 
differ in the image acquisition settings and inter-observer 
variability. Also, manually selection of feature extraction 
methods were sort of setting gold standard for machine 
learning tasks and therefore classification accuracies were 
subjected to change with handling radiologists. Deep 
learning with convolutional neural network (DL-CNN) 
emerges as a tool for fully automatic approach towards 
improving diagnostic performances. Deep learning makes 
use of convolution filters to convolve with the input image 
matrix for automatic extraction of significant features and 
classification into different classes. The weights of pre-
trained CNN can also be transferred to new model in deep 
learning algorithms just to train for new problems [9]. Byra 
et al. [10] makes use of transferring the learned model and 
introduced “transfer learning” concept into liver 
characterization study which proved to be a benchmark for 
many researchers. They modify their model with Inception-
ResNet-v2 architecture and extracted hepatic features from 
liver ultrasound. Same work was extended by Reddy and his 
team in [11], where they incorporated pre-trained VGG-16 
model for classifying between normal and fatty liver. Biswas 
et al. [12] worked on developing GPU based CNN 
framework for feature extraction, where they applied 
inception algorithm for feature selection and SoftMax 
classifier. Li et al. [13] applied scalable ResNet-18 neural 
network for classification of pre-processed B-mode liver 
ultrasound images into mild, moderate and severe steatosis.  

Although CNN provides early diagnosis solutions in liver 
and other medical problems, successful training for higher 
accuracy, sensitivity and specificity always requires very 
large amount of labelled (supervised) data; which is not 
always accessible. This generally limits the practical 
applications of the deep learning model designed for medical 
applications [14]. There always been a necessity of 
generalizing the unfamiliar categories without requiring to 
retrain always. Fei-Fei et al. [15] proposed ‘one-shot’ model 
of object categories which requires just one or few images 
from each category for learning features. They developed 
variational Bayesian probabilistic framework for one-shot 
image classification. Koch et al. [16] later developed CNN 
based self-supervised SNN for one-shot classification of 
images and set a benchmark for further studies. SNN was 
first proposed by Bromley et al. [17] for signature 
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verification based on similarity distance measure from twin 
network in the same feature space. These studies motivated 
medical scientists to develop SNN to overcome data 
limitations of supervised CNN.  

Shorfuzzaman et al. [18] worked on the diagnosing of 
Covid-19 patients using n-shot SNN from chest X-ray 
images. They applied transfer learning by using pre-trained 
VGG-16 architecture for minimizing the contrastive loss. 
Mohit et al. [20] extended their work of [19] for pneumonia 
detection using transfer learned VGG-16 model to multiclass 
classification of Covid-19 cases using contrastive loss 
embedded SNN model for reducing number of false 
positives. In this proposed framework for fatty liver 
assessment, the highlights of our contributions are listed 
below. 

(i) A new texture echogenicity based structural 
similarity model has been proposed in Fig. 1. 
which makes use of deep neural network built 
in Siamese architecture for binary-class and 
multi-class classification of liver ultrasound 
images.  

(ii) Binary and multi-class classification are 
performed using same SNN. 

(iii) Optimization has been performed which is 
based on minimizing the contrastive loss by 
training the model with contrastive learning. 

(iv) Pre-trained ResNet-50 network is introduced as 
analogous networks for embedding and 
extracting the features, which helps in 
minimizing the contrastive loss.  

The organization of rest of the paper follows proposed 
model in section 2, experimental setup in section 3, results in 
section 4 and conclusion in section 5.  

II. PROPOSED MODEL 

We have used SNN for fatty liver classification into 
normal, mild as Grade-I, moderate as Grade-II and severe as 
Grade-III fatty liver. Classification has been done through 
contrastive learning which is a self-supervised strategy. It 
acts as a bridge between supervised and unsupervised 
learning, requiring only one or few labelled data (n-shot 
learning) and ground truth for training data from each class 
[20]. Ground truth or labelled data assign the labels for rest 
of the images by generating pseudo-labels based on the 
similarities. For similarity calculations; two identical encoder 
networks (twin-network), shown in Fig. 1. are employed in 
SNN which work analogous with two different input images 
or data points. We have employed pre-trained modified 
ResNet-50 architecture as twin network for extracting low-
dimensional representations in feature space and provide 
embeddings for both images. The residual network (ResNet) 
architecture uses skip connections to avoid network load and 
gradient vanishing while going deeper inside the network. 
Skipping the identity mappings boosts the training too [21]. 
Both networks in twin layout share common wights. These 
‘Siamese twins’ use shared weights to discover similarities 
and differences among liver images. The residual part of the 
network helps in exploring enough features necessary for 
accurate training of our proposed model. For that, the 
representations from ResNet-50 passed to two-layer 
multilayer perceptron to get necessary representations which 
are processed in Siamese layer for distance measurement. 

 

Fig. 1. Proposed SNN architecture for fatty liver characterization. The task 

is to maximize the similarity between representations from the same image.  

The training of the model is done to make network learn 
preciously to predict the dissimilarities between images of 
different classes, and similarities between images of same 
class. Shared weights are updated continuously through 
back-propagation during training of the contrastive loss 
function, so that feature space embeddings provided by the 
representations must have the minimum distance between 
similar pairs. The optimized weights helps in identifying the 
unknown images during downstream tasks, classification 
here, and predict the labels. Binary output is yielded to 
specify which instance pairs are similar (True or 1) and 
which are different (False or 0). In this way, model learn to 
make predictions by calculating the L1 distance between the 
corresponding output feature vectors; shown in Fig. 2. This 
figure describes parametric values of the representations at 
both end of twin network which are passed to flatten layer to 
get respective embeddings. Further L1 distance is calculated 
between both values to assign similarity score by sigmoid 
function in dense layer. Based on the probability of the 
similarity score, labels are assigned to unlabelled images in 
downstream tasks. Contrastive learning helps in enhancing 
the embedding quality of the feature extractor by contrasting 
sample pairs such that features belonging to the same 
instances are grouped together, and distance between 
instances of different class are increased. 

III. EXPERIMENTAL SETUP 

A. Data Collection 

Transabdominal USG is preferred imaging for visualizing 
hepatic echogenic pattern. We have collected a total of 749 
B-mode liver ultrasound images (376 normal, 214 grade-I, 
119 grade-II and 40 grade-III annotated by medical experts) 
recorded by scanning 112 patients of different age groups 
from Institute of Medical Sciences-Banaras Hindu 
University, Varanasi and Kriti scanning centre, Prayagraj, 
INDIA in portable network graphics (PNG).   

B. Image Pre-processing 

• image annotation: We have performed online 
cropping, shown in Fig. 3., from the video sequences 
to get rid of undesirable information from the 
ultrasound images and increase the length of dataset.  

• resizing: Images had been resized to 224X224 array 
so that larger size can be handled easily and training 
happens smoothly. We have prepared the model with 
‘python 3.0’ on ‘google colab’, so smaller size images 
are trained easily and memory is optimized. 

•  rescaling: Rescaling helps in making model 
computationally efficient by lowering the complexity 
and load of computations. In our work we have 
rescaled the distance by dividing each image pixels 
by 255 so that distance between data points is 
minimized and generalization error is avoided.  
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Fig. 2. SNN architecture for distance calculation.   

• data augmentation: We have performed data 
augmentations for creating pseudo labels which 
supervised the model training for making predictions. 
We have performed rotation, shear, zoom, flip and 
shift as shown in Fig. 4. for creating positives from 
anchor images.  

C. Training 

Our model is prepared for multi-class classification from 
three binary classification models. The dataset is divided into 
anchor (reference images), positives (similar augmented 
images) and negatives (dissimilar images) dataset for 
training. Anchor dataset are made to compare with positives 
and negatives in dense layer to provide embeddings. 
Distance between anchor and negatives is maximized which 
roots for similarity check between same instances. Extracted 
features embeddings are given as image pairs of same classes 
are labelled 1 (True) i.e. to belong to positives, otherwise 
negatives. The labelling is used in flattened layer for 
calculation of distance between two feature vectors. The 
comparison is between normal-grade1, normal-grade2 and 
normal-grade3 set for classifying liver images into normal 
and grade-I, grade-II, grade-III fatty liver as shown in Fig. 5.  

D. Hyperparameters 

Programming environment were tuned with the values 
provided in table 1 for learning the desired algorithm.  

IV. RESULTS 

We have tested the Siamese network for calculations of 
accuracy and contrastive loss values with 10-shot learning. 
‘Contrastive loss’ compares the extracted features from 
Siamese twins of two inputs for mapping vectors of similar 
inputs. These mapping helps network in contrastive learning. 

TABLE I.  HYPERPARAMETER TABLE 

optimizer Adam  

learning rate 0.0001 

activation function ReLU, Sigmoid (last layer) 

loss function Contrastive loss 

batch size 12 

iterations 20 

 

Fig. 3. Pre-processing for data annotations.  

 

Fig. 4. Data augmented images used for training SNN.  

If we consider ‘y’ to be ground truth relationship with 
image pairs, then contrastive loss we have calculated for a 
single pair using Eq. (1).  

[(y-x) +(1-y)*max(margin-x,0)]                                     (1) 

where, square root of Manhattan distance between two 
image features is measured as ‘x’ and ‘margin’ denotes lower 
bound distance between dissimilar instances. So, ‘y’ here 
will be ‘1’ for similar instances, and ‘0’ for dissimilar. Fig. 6. 
shows the validation accuracy and loss graphs for binary and 
multi-class classifications. Fig. 6. (a) & (b) are accuracy and 
loss graphs respectively for multi-class classification, 
whereas Fig. 6. (c) & (d) for binary-class classification. The 
training graph reflects the prediction power of our model 
with minimum number of iterations. Loss function converges 
quickly through back-propagation and learn the necessary 
representations for classification. Accuracy is calculated by 
taking ratio of number of correct predictions to the total 
number of predictions. As we can see accuracy graph 
obtaining it’s highest steady state within few epochs, which 
helped in predicting labels of the unlabeled liver images 
correctly in fig. 7 and 8.  

 

Fig. 5. Different classes of fatty liver based on echo discrepancy on B-

mode liver USG images.  

 

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1262



 

TABLE II.  PERFORMANCE COMPARISON TABLE 

Authors 
Diagnostic 

Outcome 
Embedding Model 

       Imaging 

Modality 
Accuracy/AUC 

Zeng et al. [25] 
Diabetic 

Retinopathy 
Inception-V3 Fundus images AUC = 0.95 (Binary-class), Kappa = 0.83 (Multi-class) 

Hou et al. [23] Covid-19 ResNet-50 CT images 98.18% (Binary-class), 96.73% (Multi-class) 

Li et al. [24] Covid-19 ResNet-50 CT images AUC = 0.96 (Multi-class) 

Chikontwe et al. [21] Covid-19 CNN (DA-CMIL) CT images 98.60% (Binary-class) 

Lu et al. [22] Breast Cancer ResNet-50 Histology images AUC= 0.968 (Binary-class) 

Mohit et al. [20] Covid-19 Inception CT images AUC = 0.97 (Binary-class) 

Proposed model Fatty liver ResNet-50 USG images 98.91% (Binary-class), 96.84% (Multi-class) 

 

Fig. 6. Resultant graph of SNN architecture for accuracy in (a) & (c) and 

loss in (b) & (d) of multi-class and binary-class classification of fatty liver 

diseases respectively. Plot is made against 20 epochs.   

We have resultant anchor and predicted images of normal 
liver, and positive, negatives for binary and multi-class 
classification in Fig. 7. & Fig. 8. respectively. This is a 
prototype of how unlabeled images are being compared with 
images of a class made anchor images, and getting labelled. 
Here normal cases are shown as ‘anchor’, similar cases as 
‘positives’ and rest cases as ‘negatives’ for binary 
classification. Similarly, multi-class classification gets 
labeled by considering one by one each class in abnormal 
cases as ‘anchor’ and rest as ‘positives-negatives’. Few 
works had been done in medical diagnostic field till date 
using self-supervised learning which we are comparing with 
our work in table 2. based on accuracy and loss calculations. 
With good amount of non-invasive dataset, our model is 
showing promising results, compared to others, with same 
encoder network as others used. However, fatty liver 
identification using SNN is less explored research area and 
we have focussed on accurately classifying the liver images, 
inspired from other studies but with better results. We 
succeeded in achieving an overall multi-class testing 
accuracy of 96.84% and binary-class accuracy of 98.91%. 
Loss parameters for multi-class was 0.0581, and 0.0517 for 
binary-class. We had also experimented our model for new 
CNN in twin architecture in place of pre-trained ResNet-50, 

but achieved only 96.82% and 84.54% testing accuracy for 
binary and multi-class respectively. 

 

 

Fig. 7. Predictions made on test data for binary-class classification.  

 

Fig. 8. Predictions made on test data for multi-class classification.  

V. CONCLUSION 

We proposed a novel method for fatty liver 
characterization from USG images using ResNet-50 
embedded self-supervised SNN, so automatic liver disease 
detections algorithms need not depends on large amount of 
annotated data. This technique was based on contrastive 
learning of the joint embedding network which could learn 
more subtle representations from the medical images for 
classification task, with just one or few number of labelled 
images required from each class for training. We validated 
the efficiency of the proposed model on our dataset of liver 
ultrasound to classify them into different classes; normal, 
grade-I, grade-II and grade-III fatty liver disease. Proposed 
model trained with contrastive loss showed a reliable 
classification accuracy for automatic early and accurate 
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detections to be used as a second opinion by the radiologists; 
however, we will optimize the model with triplet loss as a 
future work for getting more accuracy, sensitivity and 
specificity.  
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