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Abstract— Quality video services have already gained high
technical and commercial importance. The published work so
far in this domain proposed mathematically and computation-
ally complex algorithms, followed by the recent training-greedy
deep learning-based denoising algorithms. This work proposes
a video-denoising algorithm based on multiple UNet networks.
The proposed video-denoising algorithm uses multiple encoder-
decoder networks for video noise residual frame estimation, un-
like the single encoder-decoder used by the published denoising
algorithms. Using multiple skip connection UNets, we increase
the residual noise modeling accuracy while restricting the
signal features, which helps to improve denoising performance.
The proposed network is trained end-to-end without motion
compensation to reduce its complexity. The proposed network
outperforms all the video denoising algorithms in terms of
SSIM metric while it yields comparable performance in terms
of PSNR.

I. INTRODUCTION

While capturing a video, it frequently gets affected by
ambient and systemic noise due to poor lighting and other un-
favourable conditions. There is always a demand for quality
video services that demand good perceptual and noise-free
videos. Videos are recorded using a high ISO level camera
setting in poor light, which results in capturing of noisy
videos. Video denoising is, therefore, essential in lowering
such noise. The majority of the video-denoising techniques
published so far address denoising in presence of Gaussian
noise as it most commonly available.

Video denoising is a more complex and challenging task
than image denoising due to the third dimension i.e. temporal
of the video signal. Thus, video-denoising algorithms need
to take care of temporal information along with the spatial
information. Video denoising without considering temporal
information will introduce temporal artefacts and make the
perceptual experience very uncomfortable. In case of ma-
chine vision applications, the video noise contain may even
result in wrong decisions or activities. As temporal sequences
of frames, video denoising needs to preserve temporal co-
herence for achieving better denoising performance. Videos
frequently have moving subjects or cameras, which can
cause motion blur or misalignment between frames. Accurate
estimation and compensation for motion are essential for
preventing the motion artefacts and maintaining crisp details
during denoising.

Traditional and deep learning denoising algorithms have
been proposed to address the aforementioned challenges.
The methods that employ the non-local similarity of image
patches to denoise without explicit motion compensation
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include VBM3D[1] and VBM4D[2], which resulted from
natural extensions of BM3D[3]. The BM3D extensions re-
sulted in poorer results compared to Deep learning-based
results. The Deep learning-based algorithms for video denois-
ing have recently outperformed the conventional techniques,
producing cutting-edge results. Deep-learning patch-based
video denoising techniques Patch Craft[4] and VNLNet[5]
used 2-dimensional frame patches to implicitly model the
video noise residue. Subsequently, the residue is subtracted
from the noisy frame. Video denoising techniques based on
patches are computationally expensive because patch-based
techniques search for n similar patches from spatial search
areas and the neighbouring frames, followed by the denoising
process.

The State-of-the-art deep learning-based denoising tech-
niques FastDVDnet[6] and DVDnet[7] use UNet[8] as the
fundamental architectural block. A UNet-based architecture,
on the other hand, consists of a single encoder-decoder
structure with two skip connections for information flow,
while the residue is modelled by the CNN UNet architecture.
As a result, there are limited paths for noise residual to
be transferred from input to output. We propose multiple
cascaded UNets network with multiple skip connections for
video denoising to address this issue. Thus we improve the
noise residual flow and modelling of the residue at various
stages from input to output using the proposed modified
UNet architecture. This enhances retrieval of distorted image
content structures due to the noise content resulting in
improved denoising performance in terms of SSIM. The main
contributions of the work are as follows.

• We introduce multiple multi-level cascaded encoder-
decoder structures for video denoising.

• For the feature map to propagate from input to output,
we also provided multiple skip connections, allowing
the network to maximise the noise residual flow from
input to output.

• The proposed method is trained without motion com-
pensation to reduce its computational complexity.

II. RELATED WORK

In the early years, traditional Video denoising algorithms
mostly relied on patched-based methods. By introducing a
patch-based method that searches for non-local, self-similar
2D patches in the spatial and temporal domains, VBM3D
[1] extends the image denoising implemented in BM3D[3]
for video denoising. VBM4D[2] extends VBM3D[1] to
3D patches and follows the same block transform-based
denoising approach leading to moderate PSNR denoising
performance around 32 dB. In recent years, many deep
learning approaches [4], [5], [6], [7] for video denoising
have produced state-of-the-art results and outperformed tra-
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ditional video denoising algorithms yielding PSNR perfor-
mance around 34 dB.The denoising performance in terms of
SSIM of all the state-of-the-art algorithms could not touch
0.92. SSIM is responsible for representing preservation of
fine data structures in the denoised image compared to the
original image.

The patch-based deep learning approaches are
patchCraft[4] and VNLNet[5] . By assembling the n-
nearest neighbours of non-overlapping patches of real
frames, PatchCraft created artificial frames, which were
then given to the network for training. On the other
hand, the non-local patch search module that processes
VNLNet creates an n-dimensional non-local feature vector
that is used as the network’s input. The patch-based
strategy increased the computation cost by looking for
n similar closest-neighbour patches in both the spatial
and temporal directions. Explicit motion compensation
is used in video denoising methods in [9], [7], [10] and
[11]. The optical flow between the reference frame and
the following frames is initially determined via motion-
compensated methods. The computational complexity of
video-denoising techniques increases as a result. U-Net
has attained cutting-edge performance in video denoising
techniques like FastDVDnet[6] and DVDnet[7]. The UNet
implementations so far include single-level intra-block skip
connections for implementing multiple noise residual flow
paths and single encoder and decoder structures.

III. PROPOSED METHOD

Most video-denoising algorithms performed video denois-
ing by considering noise as an additive Gaussian. The noisy
video is represented as follows:

v(x,y, t) = f (x,y, t)+n(x,y, t) (1)

where v(x,y, t) represent noisy video, f (x,y, t) represent
clean video and n(x,y, t) represent additive gaussian noise.
(x,y) and t are the spatial and temporal coordinates, respec-
tively. The denoising algorithms assume the form of a low
pass filter h(x,y, t) such that,

f̂ (x,y, t) = h(x,y, t)∗ f (x,y, t) (2)

Where * and f̂ (x,y, t) represents convolution and a denoised
image, respectively. Noise is assumed to occupy higher
frequencies in the spectrum of noisy signal, while the original
clean signal is assumed to occupy lower frequencies.

A. Problem Definition

Deep learning-based video denoising algorithms formu-
lated as:

f̂ = F (v;θ) (3)

F and v represent the model or network with trainable
parameters and noisy video, respectively. θ and f̂ are a set
of trainable parameters and the denoised video, respectively.
Thus in deep learning, we are finding a set of optimum
network parameters θ̂ that minimizes the error,

θ̂ = argmin
θ

L
(

f̂ ,v
)

(4)

The loss function used in the proposed method is Mean
Squared Error(MSE). Where L

(
f̂ ,v

)
is the loss function.
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Fig. 1. Basic scheme of the Proposed Method

B. Proposed Architecture

The proposed method models noise in each frame using the
previous and next frames, a noise map and a trained network
for noise estimation in spatial and temporal directions. The
estimated noise is further subtracted from the noise frame
to obtain the respective denoised frame. Obviously, the de-
noising performance depends upon how accurately the noise
is modelled without any signal content of the frame. Thus,
the proposed network for video denoising aims to remove
significant details and structures while modelling noise. It
achieves this by employing multiple skip connections that
successively remove traces of fine features from earlier layers
to obtain a finer noise model and prevent the loss of fine-
scale information in denoised frame. Indirectly, these skip
connections enhance the network’s ability to handle varying
noise patterns over signal content by fusing noise features
from different levels. This enables adaptation to various
noise patterns overlying the signal content. Furthermore, skip
connections address the vanishing gradient issue by providing
a direct path for gradients to flow from deeper layers to
shallower levels, improving convergence during training. The
efficient transfer of gradients through skip connections en-
sures effective utilization of data from various network depths
during both forward and backward passes. This contributes
to the network’s denoising performance without distorting
the signal contents. The proposed architecture is derived by
combining multiple UNet proposed in FastDVDnet[6] with
added skip connection. To maximize noise residual flow, we
replace a single UNet proposed in [6] with multiple UNets.
The proposed method performs denoising in two steps, as
depicted in Fig. 1. Each stage consists of denoising blocks.
Each denoising block can consists of several cascaded UNets.

In this work, typically, we have used two cascaded de-
noising blocks. The input for a complete architecture is
five consecutive frames and their respective noise maps
containing noise standard deviation values. The input for a
denoising block is three frames and a respective noise map.
Each denoising block with three input frames and the noise
maps yields a partially denoised frame at the first step. The
three denoised frames are further given to another similar
denoising block in step two, which yields the final denoised
frame. This denoised frame corresponds to the middle frame
of the five frames. Thus five successive frames are used
to train the complete architecture to predict the denoised
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Fig. 2. Proposed Video Denoising block using multiple UNets and added skip connection

middle frame. Each denoising block contains multiple UNets
with added skip connections, as shown in Fig. 2. Thus the
proposed modified UNet has two novelties I) Cascading
UNets and II) Added skip connections. The UNet in [6]
has only one path, i.e. skip connections for noise residual
flow, while the proposed UNet-based architecture has three
skip connections, i.e. path for better noise residual flow from
input to output to preserve frame features.

C. Multiple UNets in a denoising block

We proposed multiple cascaded UNets in a noise estima-
tion block that replaces UNet in FastDVDnet[6] to preserve
more information while denoising and obtaining a more
accurate residual frame that represents noise. As shown in
Fig. 2, we cascaded two UNets connected by adding two-
point skip connections in each level for proving additional
paths to transfer more noise features. The features map of
the first module obtained using skip connections is added
in similar layers(in size) of the next UNet module. This
forms a ladder between the two cascaded UNets, providing
paths to transfer maximum noise residual map from input
to output. The proposed network accepts three consecutive
frames and a noise map as inputs the noise map is a
matrix of the same size as the input frames and contains
the noise standard deviation value. Each UNet can com-
promise several convolution layers, though we have used
typically three layers in the first and second levels and six at
the third levels. Batch normalization[12] and the ReLU[13]
activation function follows the multiple filter convolutions
in each convolutions layer. We also used a dropout layer
to avoid over-fitting during training. Each UNet block has
an encoding operation across three levels followed by a
decoding operation across two subsequent levels. Using
downsampling, the network encoder gradually reduced the
spatial resolution. We used a convolution layer with stride =
2 to accomplish downsampling, and the network’s decoder
gradually increased the spatial resolution using upsampling.
We used the PixelShuffle[14] layer to upsample.

In fact, by starting with noisy input frames and progres-
sively modelling noise via successive stages, cascaded U-

Nets in the noise modelling provide a progressive accurate
noise model. This method improves noise estimation at each
pixel because each U-Net concentrates on estimating residual
noise, if any. Furthermore, the cascaded architecture enables
hierarchical feature learning across frames, with initial U-
Net modelled noisy input frames and later stages removing
complex temporal features, improving both; the removal of
the underlying structures and the subsequent estimation of
accurate residual noise content for each frame. This residual
noise frame is subtracted from the noisy frame to obtain the
denoised frame.

IV. EXPERIMENTS AND RESULTS

A. Dataset

The Proposed model is trained and validated using the
DAVIS[15] database, consisting of 90 videos of resolution
854x480. Out of 90 videos, 72 are used for training, and 18
are used for validation. We have tested our model on the
DAVIS test set and the Set8[7] dataset. The Davis test set
consists of 30 videos of resolution 845 x 480. Set8 consists
of 4 colour sequences from the Derfs Test Media collection
and 4 colour sequences captured with a GoPro camera.

B. Training Details

The proposed model receives five noisy consecutive frames
and a noise map as input. It gives the central denoised frame
as output. We extracted spatiotemporal patches of spatial size
96x96 and temporal size 5 from the same locations of noisy
and original frames to form noisy and ground truth sample
pairs for training. There are 393582 spatiotemporal samples
of size 96x96x5, extracted for training from a training set
of the DAVIS database. Gaussian Noise of σ = [0,50] is
added in extracted samples during training to form a noisy
dataset. Out of the five consecutive patches central patch of
each clear video patch acts as a ground truth. A proposed
model is trained to predict the residual map of the central
frame. The predicted residual map is then subtracted to get
a denoised central frame.

Mean Squared Error (MSE) between the clear frame patch
and the reconstructed patch is used as a loss function for
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training. Peak Signal to Noise Ratio(PSNR), and Structural
Similarity Index(SSIM) are two metrics used to evaluate
the performance of the proposed model. PSNR is derived
from MSE and measures average overall similarity between
the two frames. The SSIM measures structural similarity
between the corresponding physical location in the original
clear frame and the denoised frame. Thus SSIM is a more
rigorous measure for representing point-to-point similarity
and reconstruction of distorted features between the original
frame and the denoised frame. The proposed methods are
implemented using popular Python library PyTorch[16]. The
ADAM [17] algorithm was employed to optimise, learning
weights and minimise the loss function. A proposed model
is trained for 100 epochs with batch size=32. The initial
learning rate is 1e-3 for the first 50 epochs and then decreases
to 1e-4 between 50 to 60 epochs. Finally, the learning rate
for the rest of the epochs is 1e-6. For the dropout layer, we
used a dropout rate of 0.01.

C. Results

To train our model, we have conducted extensive ex-
periments with various hyperparameters. On the NVIDIA
TITAN RTX GPU setup with 128 GB RAM, our model takes
about 10 days to train. Our model has been compared with
various cutting-edge video denoising techniques, including
conventional[2] and deep learning-based methods[4], [5],
[6], [7]. Two metrics—PSNR and SSIM have been used to
validate the performance of the proposed model.

On the DAVIS and Set8 datasets, Table I presents a quanti-
tative comparison of various video-denoising methods based
on PSNR and SSIM. We have validated and compared our
algorithm with various values of sigmas, such as 10,20,30,40
and 50. VNLNet[5] and FastDVDNet[6] perform well in
terms of PSNR for the lower sigma values on the DAVIS
dataset, whereas DVDNet performs well for the higher sigma
values. VNLB[18] has the highest average PSNR of any
video-denoising technique for the Set8 dataset. The SSIM is
a more robust and popular metric for assessing the perceived
similarity between two images or video frames. It determines
how similar images are structurally close to each other by
examining the images’ Luminescence, contrast, and structural
aspects of the images more realistically. In terms of, SSIM
performance of the proposed algorithm surpasses all the
state-of-the-art benchmarking algorithms on both datasets.
Thus, SSIM is more important for video denoising. A higher
SSIM indicates more fine structural similarity between the
original and denoised video. Our proposed model yielded
the highest SSIM among all the video-denoising algorithms.
Thus, the fundamental image structures, textures, and fea-
tures are preserved more by the proposed algorithm. The
PSNR best results are mainly achieved by VNLNet while the
best SSIM results are achieved consistently by the proposed
algorithm and indicated in bold as shown in Table I.

While PSNR is still widely used due to its simplicity and
computational efficiency, SSIM has become the preferred
metric for denoising evaluations[19], [20]. This is because
it provides a more accurate and perceptually meaningful
assessment of the denoising performance. In term of SSIM
we outperform all other methods.

Fig. 3 shows the MSE vs Epochs graph for training and
validation. From this, we can observe that our model is
trained without overfitting as validation loss closely follows
training loss. We used dropout as a regularisation method to
avoid overfitting with a dropout rate of 0.01. Fig. 4 shows
PSNR vs Epochs graph for training and validation. Average
training PSNR increases up to 35.30 dB, whereas validation
PSNR closely follows training PSNR.

Fig. 5 and Fig. 6 show a qualitative comparison of the
visual performance of video denoising algorithms on zoomed
blocks of Set8 and DAVIS test images with the proposed
method, respectively, for σ=30. In Fig. 6 the proposed result
appears to be slightly sharper than others. In terms of quality,
our method is comparable to state-of-the-art methods. It can
be qualitatively observed that the result of the proposed
work is slightly better for visualization compared to the
FastDVDNet.

Fig. 3. MSE Vs EPOCH

Fig. 4. PSNR Vs EPOCH

D. Running time

Comparable to FastDVDNet which takes 0.1 for each
frame our approach denoises a frame with the same 960 x
540 resolution in 0.23 seconds on the above said platform.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 234



TABLE I
COMPARISON OF PSNR / SSIM ON THE DAVIS AND SET8 TEST SET. FOR PSNR: LARGER IS BETTER; THE BEST RESULTS ARE SHOWN IN BOLD. FOR

SSIM: LARGER IS BETTER; THE BEST RESULTS ARE SHOWN IN BOLD

DAVIS Noisy VBM4D DVDNet VNLNet VNLB FastDVDNet Proposed
σ = 10 28.13 37.58/- 38.13/0.9657 39.56/0.9707 38.85/- 38.71/0.9672 38.32/0.9842
σ = 20 22.11 33.88/- 35.7/0.9422 36.53/0.9464 35.68/- 35.77/0.9405 35.09/0.9660
σ = 30 18.58 31.65/- 34.08/0.9188 - 33.73/- 34.04/0.9167 33.18/0.9480
σ = 40 16.08 30.05/- 32.86/0.8962 33.32/0.8996 32.32/- 32.82/0.8949 31.85/0.9291
σ = 50 14.15 28.8/- 31.85/0.8745 - 31.13/- 31.86/0.8747 30.80/0.9095

Average 19.81 32.39/- 34.52/0.9195 - 34.34/- 34.64/0.9188 32.73/0.9478
Set8 Noisy VBM4D DVDNet VNLNet VNLB FastDVDNet Proposed

σ = 10 28.13 36.05/- 36.08/0.9510 37.28/0.9606 37.26/- 36.44/0.9540 36.06/0.9842
σ = 20 22.11 32.19/- 33.49/0.9182 34.02/0.9273 33.72/- 33.43/0.9196 32.89/0.9631
σ = 30 18.58 30.00/- 31.79/0.8862 - 31.74/- 31.68/0.8889 31.04/0.9454
σ = 40 16.08 28.48/- 30.55/0.8564 30.72/0.8622 30.39/- 30.46/0.8608 29.73/0.9103
σ = 50 14.15 27.33/- 29.56/0.8289 - 29.24/- 29.53/0.8351 28.71/0.8969

Average 19.81 30.81/- 32.29/0.8881 - 32.47/- 32.308/0.8917 31.68/0.9394

Noisy DVDNet FastDVDNet Proposed

Ground Truth Noisy DVDNet FastDVDNet Proposed

Ground Truth

Fig. 5. Qualitative comparison on motorbike sequence from Set8 dataset for σ=30

Noisy DVDNet FastDVDNet Proposed

Ground Truth Noisy DVDNet FastDVDNet Proposed

Ground Truth

Fig. 6. Qualitative comparison on tractor sequence from DAVIS dataset for σ=30

V. CONCLUSION

This work proposes a video denoising method by residual
noise modeling for each frame and the subsequent subtraction
of the residual noise from the noisy frame to obtain a
denoised frame. The proposed network is trained for resid-
ual noise estimation rather than the conventional denoising
approach. Proposed cascaded UNet networks for noise mod-
eling minimize the signal information flow into the residual
noise model and preserve structural similarity in the denoised
image due to the added skip connection at different levels.
Using multiple paths for the noise model construction learns
more critical noise features and removes signal features from
the noise model, resulting in improved denoising perfor-
mance in terms of the more stringent denoising performance
measure; SSIM. In terms of PSNR, the performance of the
proposed method is comparable to the state-of-the-art. The
proposed work focuses on Gaussian noise and is trained using
gaussian noise added images. In reality, noise in videos may
be more complex than Gaussian. The future scope of work

can focus on more complex real noise types. More UNet
blocks can be added to the architecture by cascading. Each
UNet block can have more CNN layers. Also, more levels
can be added to the UNet architecture to obtain more accurate
residue to obtain better denoising performance.
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