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Abstract—This paper presents the design and 
implementation of a pipelined Lessen Extrinsic Garrulity 
(LEGv8) architecture simulator, subset of ARMv8 architecture. 
The simulator is developed as a web application that can 
simulate the assembly of instructions in the LEGv8 assembly 
language, the execution of the instructions, and the visualisation 
of data path during execution. The simulator supports both 
single cycle and pipelined execution, with the option to select the 
control and data hazard handling methods to use. Users will be 
able to analyse the changes in the registers and memory, 
branching behaviour, hazard detection and elimination, as well 
as visualise data flow when stepping through instructions. This 
gives users the freedom to comprehend computer architecture 
more easily at their own pace by making use of the user-friendly 
and interactive educational simulator to enhance their 
understanding beyond what can be taught in the classroom. 
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I. INTRODUCTION 
The LEGv8 architecture is a constrained subset of the 

Advanced RISC Machines (ARM) v8 architecture, which is 
used for teaching purposes, such as in the Computer 
Architecture module offered at various universities. The 
architecture employs 32-bit instructions, a 64-bit address bus, 
64-bit data, and 32 registers with 64 bits each [1]. According 
to their functionality, the LEGv8 instruction set can be split 
into three categories: data-processing instructions, load and 
store instructions, and branch instructions [1].  

Understanding the inner workings of computer 
architecture and computer hardware, such as the CPU and 
memory, can be challenging due to the inability to physically 
observe data flow and changes. This poses a barrier for 
students from diverse educational backgrounds who may find 
these concepts intimidating and challenging to visualise. 
Additionally, when learning assembly language, students 
often lack direct feedback on their code's correctness or any 
misconceptions they may have when simply learning 
assembly instruction execution, pipelining, and data flow 
using the traditional pencil-and-paper method. While static 
graphical diagrams and examples are often used during 
lessons, simulators are more beneficial as they allow students 
to insert their own code, manipulate memory values, and then 
explore and visualise the code execution simulation. 
Unfortunately, contrary to the abundance of simulators for 
other ISAs, such as the MARS, which is a well-liked 
interactive development environment for the Microprocessor 
without Interlocked Pipelined Stages (MIPS) architecture [2], 
there are no comparable simulators available specifically for 
the LEGv8 (subset of ARMv8) architecture, making it 

necessary to develop a tool to support students' learning in 
education settings. 

The main objective of the work presented in this paper was 
to create a web-based educational simulator that can be used 
to enhance students' understanding of computer architecture 
by providing them with a user-friendly and interactive 
medium to learn and analyse the execution of the basic set of 
instructions that the LEGv8 architecture supports. The scope 
of the simulator includes:  

• Assembly of LEGv8 instructions with support for 
syntax highlighting and code linting in the code editor. 

• Single cycle and pipelined execution with registers and 
memory values that can be initialised before execution. 

• Data and control hazard detection and configurable 
hazard handling methods for hazard elimination. 

• Data path visualisation during step-by-step execution. 

• Error logging and execution statistics results. 

• User-friendly and intuitive web-based visual interface. 

II. RELATED WORKS 
Although there is a lack of comprehensive and functional 

simulators created for the LEGv8 architecture, there are a 
variety of educational simulators available for other 
architectures. The following section will discuss and compare 
the features and limitations of some of these existing 
simulators.  

A. MARS  
MARS (MIPS Assembler and Runtime Simulator) is an 

educational tool designed for MIPS assembly language 
programming [2]. It serves as an integrated editor, assembler, 
simulator, and debugger for the MIPS processor. Its major 
strength lies in its interactive debugging capabilities, allowing 
users to modify registers and memory, set breakpoints, and 
step through execution as well as a user-friendly graphical 
interface. However, a limitation of MARS is its support for 
single cycle execution only, which can be overcome by using 
a plugin for pipelined execution with features like Data 
Forwarding and branch prediction [3]. 

B. DrMIPS 
DrMIPS is a free and open-source graphical simulator of 

the MIPS processor designed for teaching and learning 
computer architecture [4]. It visually represents data path and 
supports the step-by-step execution of assembly programs. 
The simulator offers flexibility with different unicycle and 
pipeline data paths, allowing the configuration of jump or 
branch instructions, hazard detection, and data forwarding. It 
also allows the creation of CPUs with custom instruction sets 
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and provides relevant statistics such as clock period, CPI, and 
CPU cycles. However, its accessibility is limited, as it is only 
available as a desktop or Android application. 

C. WebMIPS 
The WebMIPS simulator is a web-based MIPS simulation 

environment that allows users to upload and assemble MIPS 
code, simulate a partially or fully five-stage pipeline, and view 
register and memory values, input/output data from pipeline 
elements  and both the data path and control path on the 
diagram [5]. It only focuses on the fundamental set of 
instructions covered in an introductory computer architecture 
course. However, WebMIPS has limitations such as the 
absence of support for single cycle execution and an 
unintuitive and difficult-to-navigate web interface. 

D. RIPES 
RIPES is a comprehensive visual computer architecture 

simulator and assembly code editor designed for the RISC-V 
Instruction Set Architecture [6]. It stands out for its seamless 
integration of a built-in assembler, compiler support, and 
cache simulator centred around its visual microarchitecture 
simulator, enabling users to develop and test RISC-V 
programs and also provides a clear understanding of the inner 
workings of the RISC (Reduced Instruction Set Computer).  

E. WebRISC-V 
WebRISC-V is a web-based educational tool designed for 

exploring the pipelined execution of assembly programs based 
on the RV32IM and RV64IM specifications [7]. It focuses on 
enabling users to analyse and comprehend the impact of 
pipeline stalls on program execution as well as investigate the 
internal state of the pipeline components in the RISC-V 
architecture during step-by-step execution. 

F. Comparison and Evaluation 

TABLE I.  EVALUTAION OF EXISTING WORKS 

 MARS DrMIPS Web
MIPS RIPES Web 

RISC-V 

Platform Desktop Desktop, 
Android Web Desktop Web 

Single Cycle 
Execution Yes Yes No Yes No 

Pipeline 
Execution 

Yes 
(Plugin) Yes Yes Yes Yes 

Hazard 
Detection 

Yes 
(Plugin) Yes Yes Yes Yes 

Visual Data 
Path Yes Yes Yes Yes Yes 

Code Editor Yes Yes Yes Yes Yes 

Error 
Message 
Console 

Yes Yes No No Yes 

Effective and 
Attractive 
GUI 

Yes Yes No No No 

 From Table 1, it can be seen that the simulators that 
offer the most comprehensive features for analysing 
execution are DrMIPS and MARS for understanding the 
MIPS architecture and RIPES for the RISC architecture. 
MARS has a user-friendly GUI with extensive use of tooltips 
and popups, while DrMIPS has a clear and organized 
interface. On the other hand, only WebMIPS and WebRSIC-

V are fully web-based and easily accessible. They effectively 
make use of pop-ups to provide a lot of information about the 
data flow at every component in the architecture diagram but 
it also makes the interface relatively complex and difficult to 
navigate. It can also be observed that simulators supporting 
both single and pipelined execution are limited. By 
combining the strengths and functionalities of existing 
simulators, a user-friendly LEGv8 simulator for ARMv8 
architecture, which integrates the most essential features in 
design and development from literature. 

III. PROPOSED FEATURES AND IMPLEMENTATION 
A web application is selected as the platform for the 

simulator to ensure maximum accessibility for users. It 
eliminates the need for downloading software and can be 
accessed through any browser on a computer with an internet 
connection, regardless of the operating system. The simulator 
is built using React.js, a front-end JavaScript UI library, along 
with third-party React components to enhance functionality 
and minimize development time. 

A. Instruction Assembly 
An assembler performs the role of converting assembly 

language to machine code that is stored in the text memory of 
the processor and can then be directly executed by the 
processor. During the assembly process, each line of 
instruction string is first parsed to break the line down into its 
constituent tokens, such as the instruction opcode, registers, 
and immediate values, and then analysed. This allows syntax 
errors to be identified when the source instruction does not 
match the grammar of the LEGv8 instructions. Additionally, 
name checking is also carried out to ensure that there is no 
duplicate use of label names and the labels referenced by 
branching instructions have been declared in the code. These 
syntax and semantic errors that are identified are passed to the 
code editor to be displayed with relevant error messages for 
easier debugging. 

All LEGv8 instructions are thirty-two bits long, but 
instructions of different types are made up of a different 
combination of fields, which include the opcode, destination 
and source registers, and address of the destination, each field 
being of different lengths [8]. After each line of instruction is 
parsed into its constituent tokens, if no errors are identified, 
the value of each field is derived by converting the token to its 
binary value, which is then appended together to form the full 
32-bit instruction, which is then allocated a memory address 
and stored in the text memory. 

B. Single-Cycle Execution 
During single cycle execution, only one instruction is 

being executed at any one time hence, the critical path with 
the longest delay determines the clock period. LEGv8 
instructions can be classified into five main types according to 
their format: Register,  Immediate, Data Transfer, 
Unconditional Branch and Conditional Branch [8]. 

The simulator in this paper only focuses on a small set of 
the most fundamental instructions from the extensive LEGv8 
architecture, consisting of over fifty instructions. This 
selection effectively demonstrates the functionality of 
instructions from each instruction type, providing a basic 
understanding of computer architecture operations. The core 
set of instructions of each type that are supported by the 
simulator are shown in Table 2 below. 
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TABLE II.  SUPPORTED INSTRUCTION SET 

Instruction 
Type 

Instruction Names & Mnemonics 

Register 
(R) Type 

Add (ADD),  Add & Set flags (ADDS), Subtract (SUB),  
Subtract & Set flags (SUBS),  And (AND), Or (ORR), 
Exclusive Or (EOR) 

Immediate 
(I) Type 

Add Immediate (ADDI), Add Immediate & Set flags 
(ADDIS), Subtract Immediate (SUBI), Subtract 
Immediate & Set flags (SUBIS), And Immediate (ANDI), 
Or Immediate (ORRI), Exclusive Or Immediate (EORI), 
Logical Shift Left (LSL), Logical Shift Right (LSR) 

Data 
Transfer 
(D) Type 

Load Register Unscaled offset (LDUR), Store Register 
Unscaled offset (STUR) 

Branch (B) 
Type 

Branch (B), Branch with Link (BL), Branch to Register 
(BR) 

Conditional 
Branch 
(CB) Type 

Compare & Branch if Not Zero (CBNZ), Compare & 
Branch if Zero (CBZ) 

  
Instructions can be executed line by line by stepping forward 
and backward or entirely at once using the Run function by 
clicking the buttons in the top nav bar, as seen in Fig. 1. The 
next instruction to be executed will be the next instruction in 
the table unless the latest executed instruction is a B type 
instruction or the branch condition is met for a CB type 
instruction, whereby the next instruction will instead depend 
on the PC-relative address or label specified in the instruction. 
According to [8], during a procedure call in the LEGv8 
processor, registers X0 to X7 are allocated for parameters and 
return values, while LR (X30) holds the return address. Each 
procedure call creates a stack frame, with the Frame Pointer 
(FP) pointing to the frame's start. To return from a procedure, 
the BR instruction unconditionally branches to the address 
stored in LR, and the temporary registers are popped from the 
stack and reloaded into registers. The values of stack pointer 
(SP), FP, and LR are restored to their values before the 
procedure call. 

 Values in the registers and data memory can be initialised 
before execution and changes in the registers, data memory, 
stack and the four flags: Negative, Zero, Overflow and Carry, 
that results from the execution of each instruction will be 
reflected and highlighted in the interface as shown in Fig. 1. 

C. Pipelined Execution 
Pipelined execution allows multiple sub-tasks to be carried 

out at the same time using independent resources. This 

increases the amount of useful work the processor can 
complete in a given length of time and decreases the cycle 
time of the processor, which often increases the throughput of 
instructions. A single cycle instruction execution can be split 
into five pipeline stages according to their functionality [8]: 

• Instruction Fetch (IF): Fetch the current instruction 
from the instruction memory at the address stored in 
the PC. 

• Instruction Decode (ID): Read values stored in the 
source registers and sign-extend immediate values. 

• Execute (EX): Perform arithmetic and logical 
operations such as addition, subtraction and shifting 
using the ALU. 

• Memory Access (MEM): Perform read or write on the 
memory. 

• Write Back (WB): Write the results from the EX or 
MEM stage into the destination registers. 

Pipelining allows the processor to be much more 
performant compared to single cycle execution as up to five 
instructions can be executed at one time with a 5-stage 
pipeline as seen from the five labelled instructions in Fig. 1. 

D. Hazard Detection and Elimination 
One of the complications that arise due to pipelining is the 

occurrence of pipeline hazards, which are events that arise due 
to dependency between concurrently executing instructions, 
disrupting pipeline flow, stalling the pipeline, and leading to a 
drop in efficiency. The two types of hazards that can be 
detected and eliminated by the simulator are data hazards and 
control hazards. To eliminate the pipeline hazards, their 
presence has to first be detected when the instruction is 
assembled, and then an appropriate number of NOP 
instructions, which are software stalls, need to be added. 

Data hazards arise due to either the source or destination 
register being unavailable when it is needed, which results in 
a stall to wait for the needed value to become available. 
Therefore, to detect data hazards, the code needs to be checked 
for data dependencies. Table 3 shows the three ways that are 
supported by the simulator to handle true dependence, which 
will require a different number of stalls in between the two 
instructions with dependencies. 

Fig. 1. Example of instruction execution step through for pipelined execution(settings to handle pipeline hazards is shown in Fig. 2) 
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TABLE III.  DATA HAZARD ELIMINATION METHODS [8] 

 No. of stalls 

No data forwarding 3 
Write back and decode simultaneously 2 
Full data forwarding 0-1 

Branching instructions cause control hazards because 
the pipeline has to wait for the branching outcome to be 
evaluated when executing B and CB type instructions before 
the subsequent execution sequence of instructions can be 
determined. The number of stalls required depends on the 
pipeline stage in which the Program Counter (PC) is 
updated upon the pipeline stage at which branch outcome is 
evaluated. The number of stalls needed can be reduced by 
evaluating and updating the PC value at an earlier stage, as 
seen in Table 4.  

TABLE IV.  CONTROL  HAZARD ELIMINATION METHODS [8] 

 No. of stalls 

Jump or Branch instruction evaluated at MEM 3 
Jump or Branch instruction evaluated at EXE 
Stage) 2 

Jump or Branch instruction evaluated at ID Stage 1 

 Users can select and save the desired elimination method 
to simulate for both the hazards in the settings, as seen in 
Fig. 2 below, which will reassemble the code and updates 
the number of stalls that are inserted, and the corresponding 
data path diagram is displayed. This setting is used in Fig. 1 

 
Fig. 2. Settings pane to select pipeline hazard handling options 

E. Data Path Visualisation 
The datapath diagram represents the flow of data that 

occurs during the execution of each instruction by 
displaying the inputs and outputs of each of the components 
of the processor in each clock cycle. The diagram helps 
users visualise each step of instruction execution so that it is 
easier to understand each type of LEGv8 instruction. The 
main elements of the datapath diagram are the PC and 
Instruction Memory used to fetch the current instruction in 
the Fetch stage, the Registers file to handle read and write 
to registers in the Decode and Write Back stages, the ALU 
to perform arithmetic and logical operations in the Execute 
stage, and Data Memory to handle memory access in the 
Memory stage [8]. To represent the data that is inputted to 
and outputted by each of the components, labels are used to 
show the value of the data, and they are positioned below 
the name of the architecture component as seen in the single 
cycle data path represented in Fig. 3. 

 
Fig. 3. Example of a data path visualisation for single cylce execution 

Additionally, careful consideration has been given to 
making the data path visualisation more user-friendly and 
intuitive. For example, the control unit and control signals 
are coloured purple in the data path diagrams to make a 
separation between the control flow and data flow in the 
diagram. A deliberate decision is made to remove the lines 
connecting the control unit to each of the control signals so 
as to reduce the complexity of the data path diagram so that 
it will be easier to focus on the data flow with a less cluttered 
diagram, and the user can also zoom and pan in the diagram 
to focus on specific areas. 

During single cycle execution as seen in Fig. 3, the 
diagram does not represent a snapshot of the execution at 
any instant in time as the data flow happens sequentially but 
instead shows all the data that has flowed through each of 
the components throughout the clock cycle to carry out the 
intended operation of the instruction. The output of each 
component is directly passed as the input to the next 
component that it is connected to, following the direction of 
the connecting arrow. Depending on the type of the 
instruction, not all the components of the diagram will be 
used and only the used components will be labelled. 

 
Fig. 4. Example of a data path visualisation for pipelined execution 

The components of the datapath diagram for pipelined 
execution, shown in Fig. 4, are largely similar to those for 
single cycle execution, but with the addition of the pipeline 
buffers in between each of the pipeline stages, which are 
represented by the long rectangles labelled IF/ID, ID/EX, 
EX/MEM and MEM/WB. These buffers temporarily hold 
the outputs from the current clock cycle and then pass them 
as input for the next stage of execution in the next clock 
cycle.  

Based on the options for data and control hazard 
handling for pipelined execution selected in the settings 
pane shown in Fig. 2, the datapath diagram will be updated. 
Firstly, to accommodate PC update in the desired stage 
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depending on the selected control hazard handling option, 
the logic gates that evaluate branching outcome, as seen in 
the MEM stage in Fig. 4, need to be repositioned. 
Additionally, when updating the PC in the ID stage, an 
additional zero checking component is required since the 
ALU is no longer available for this purpose. Secondly, 
additional components need to be added to enable data 
forwarding. For instance, data forwarding in the register file 
requires components to verify that the read and write 
registers are the same and the RegWrite control signal is 
enabled as illustrated in Fig. 8. However, to support data 
path visualisation with full data forwarding, the data path 
diagram would become too complex and hence, full data 
forwarding data path alone is not implemented in the 
simulator. Therefore, given that there are two implemented 
options for data hazard handling and three options for 
control hazard handling for data path visualisation, there are 
a total of six possible combinations of options and hence 
there are six different datapath diagrams for pipelined 
execution that are supported by the simulator. 

F. Output 
The output pane serves two purposes: to log execution 

error messages and show execution results. When errors are 
caught, the error messages and line numbers will be logged 
in the Output Pane. Secondly, when the last instruction in 
the instruction table has successfully executed without any 
errors, execution has completed, and an execution summary 
result will be generated. During pipelined execution, the 
total number of instructions executed, the number of stalls 
encountered, and the number of iterations, if there are loops 
present, will be recorded. The number of instructions 
executed and the number of stalls encountered are then used 
to calculate the steady state cycles per instruction (CPI).  

IV. EVALUATION 
The evaluation process involves functional testing, 

specifically black box testing, and user acceptance testing. 
By conducting these evaluations, any necessary 
improvements can be made to enhance the simulator's 
functionality and user experience, ensuring its effectiveness 
and success. 

A. Functional Testing 
 Functional testing assesses the simulator's performance, 
identifies any potential bugs or issues, and verifies that it 
operates as expected. Black box testing is a software testing 
method that only looks at the functionality of the product 
without considering its code structure or internal workings. 
The following section will cover an illustrative test case to 
demonstrate and verify the assembly, execution and data 
path visualisation functionalities of the simulator. 

TABLE V.  ILLUSTRATIVE TEST CASE (REF TABLE 2 FOR 
INSTRUCTIONS IN TESTCODE) 

Test Code 

(1)          ADDI R2, R1, 0xA 
(2)          B loop 
(3)          LSL R1, R1, #4 
(4) loop: STUR R2, [R3, #8] 
(5)          SUBI R1, R2, #4 
(6)          LDUR R3, [R1,#2] 

Test 
Conditions 

1. Pipelined Execution 
2. Data Hazard Handling: Write back and decode 

simultaneously (2 stalls) 
3. Control Hazard Handling: No data forwarding, 

update in MEM stage (3 stalls) 

 Table 5 shows the test code and conditions for testing 
the complete user flow when stepping through instructions 
using pipelined execution. After successfully assembling 
the instructions without any errors, NOP instructions will be 
inserted between the source instructions based on the 
options selected to handle the pipeline hazards. 

 
Fig. 5. Stepping through assembled instructions after stalls are inserted 

As seen from Fig. 5, three stalls are inserted between 
lines (2) and (3) as line (2) is an unconditional branch (B) 
which is a branching instruction that incurs a control hazard. 
Two more stalls are also inserted between lines (5) and (6) 
as there is a read-after-write dependency on R3 between the 
two instructions. By stepping through the instructions, the 
expected execution flow is as follows: 

 

1. R2 updates to 0xA (R1 (010) + 0xA = 0xA) 
2. PC updates to the address of Line 4 with the label 

“loop” 
3. Value of R2 (0xA) is stored at base-relative memory 

address of 810 since value of R3 (010) + 810 = 810 
4. R1 updates to 0x6 (R2 (0xA) – 410 = 0x6) 
5. Value of R3 updates to the value stored at base-

relative memory address of 8 (0xA) since value of 
R1 (610) + 210 = 8 

 

 
Fig. 6. Final state of registers and data memory after execution 

Fig. 6. correctly reflects the expected final state of updated 
registers and memory in the simulator after all the 
instructions have finished execution. It can also be 
observed that line (3) is skipped as line (2) causes an 
unconditional branch to the label, loop, which starts at line 
(4). Lastly, upon completion of execution, the execution 
statistics are displayed as shown in Fig. 7.  

 
Fig. 7. Execution results statistics 
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Fig. 8. Data path visualisation during instruction step 

through(writeback and decode simultaneously) 

In addition, the data path visualisation should use the 
correct data path diagram, reflecting the data flow 
instruction step through based on the pipeline hazard 
handling method as per the settings in Fig. 2. The data path 
diagram in Fig. 8 highlights the additional hardware added 
to the architecture to allow for write back and decode 
simultaneously, as well as the branching logic gate being in 
the MEM stage according to the test conditions indicated in 
Table 5 (PC updated in MEM stage). 

Overall, functional testing is conducted using test cases 
that cover both single cycle and pipelined execution for all 
combinations of pipeline hazard handling methods. Faulty 
code is also tested to ensure that syntax and semantic errors 
are caught during assembly and that execution errors are 
properly caught and logged without crashing the simulator. 

B. User Acceptance Testing 
A group of twenty students who are currently learning 

or have learnt the LEGv8 architecture through the computer 
architecture course taught at Nanyang Technological 
University were given an online survey to complete after 
they had time to learn and use the simulator. The aim was to 
evaluate the usability of the simulator and the users’ overall 
satisfaction and experience with the simulator. 

TABLE VI.  RESULTS OF SURVEY 

Question Average 
Score 

The LEGv8 architecture difficult to understand when 
taking the Advanced Computer Architecture module 4.4 

The simulator is easy to learn and understand with the 
instructions provided. 4.1 

The simulator is user-friendly. 4.4 
The simulator is a useful tool to further enhance 
students' understanding of the LEGv8 architecture. 4.6 

The survey results in Table 6 show that all of the 
respondents agreed that they found the LEGv8 architecture 
difficult to understand, which highlights the limitations of 
traditional course materials in providing students with 
sufficient understanding of complex computer architecture 
concepts. In general, the participants found the simulator 
easy to learn and user-friendly and some commented that 
the layout of the user interface is intuitive to use especially 
with the use of visual aids. Overall, all of the respondents 
felt that the simulator was able to improve their 
understanding of the LEGv8 architecture, especially for 
visualising pipelined execution and data path which are 
especially difficult to understand when taught using the 

traditional paper and pen method. This shows that the main 
objective of the simulator, which was to enhance students' 
understanding of computer architecture, was able 
successfully met. Lastly, some comments from the users 
could be used to make future improvements such as to add 
more explanation regarding the number of stall insertions. 

V. CONCLUSION 
The objective of this project was to develop an 

educational simulator for the LEGv8 architecture, which 
currently lacks a dedicated simulator. The simulator allows 
users to assemble LEGv8 assembly code, execute 
instructions for single cycle and pipelined architectures that 
can be configured, and visualize the data path. It provides a 
user-friendly and interactive tool for students to analyse 
their code, understand register and memory changes during 
execution, and visualize data flow in the processor. The aim 
is to make learning computer architecture more accessible 
and less challenging for students. The simulator is available 
online at http://jiatian2300.github.io/LEGv8-Simulator and 
is currently used as a teaching tool in the Advanced 
Computer Architecture module at Nanyang Technological 
University to help students better understand the hidden 
details of a pipelined processor and how the performance of 
the programs can be enhanced by appropriate optimisations. 
Future work can include implementing data path diagrams 
for architectures with full data forwarding, displaying and 
including explanations for identified pipeline hazards, 
adding more labels and details to labels in the data path 
diagrams, and supporting dynamic branch prediction. 
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