

Educational Simulator for Analysing Pipelined
LEGv8 (subset of ARMv8)Architecture

Jia Tian Chia, Smitha K G
School of Computer Science and Engineering

Nanyang Technological University
50 Nanyang Avenue, Singapore 639798

jchia033@e.ntu.edu.sg, smitha@ntu.edu.sg

Abstract—This paper presents the design and
implementation of a pipelined Lessen Extrinsic Garrulity
(LEGv8) architecture simulator, subset of ARMv8 architecture.
The simulator is developed as a web application that can
simulate the assembly of instructions in the LEGv8 assembly
language, the execution of the instructions, and the visualisation
of data path during execution. The simulator supports both
single cycle and pipelined execution, with the option to select the
control and data hazard handling methods to use. Users will be
able to analyse the changes in the registers and memory,
branching behaviour, hazard detection and elimination, as well
as visualise data flow when stepping through instructions. This
gives users the freedom to comprehend computer architecture
more easily at their own pace by making use of the user-friendly
and interactive educational simulator to enhance their
understanding beyond what can be taught in the classroom.

Keywords—Educational Simulator, Lessen Extrinsic
Garrulity (LEGv8) Architecture, Advanced RISC Machines (ARM
v8) architecture, Pipelined Architecture, Data Path Visualisation,
Computer Architecture

I. INTRODUCTION
The LEGv8 architecture is a constrained subset of the

Advanced RISC Machines (ARM) v8 architecture, which is
used for teaching purposes, such as in the Computer
Architecture module offered at various universities. The
architecture employs 32-bit instructions, a 64-bit address bus,
64-bit data, and 32 registers with 64 bits each [1]. According
to their functionality, the LEGv8 instruction set can be split
into three categories: data-processing instructions, load and
store instructions, and branch instructions [1].

Understanding the inner workings of computer
architecture and computer hardware, such as the CPU and
memory, can be challenging due to the inability to physically
observe data flow and changes. This poses a barrier for
students from diverse educational backgrounds who may find
these concepts intimidating and challenging to visualise.
Additionally, when learning assembly language, students
often lack direct feedback on their code's correctness or any
misconceptions they may have when simply learning
assembly instruction execution, pipelining, and data flow
using the traditional pencil-and-paper method. While static
graphical diagrams and examples are often used during
lessons, simulators are more beneficial as they allow students
to insert their own code, manipulate memory values, and then
explore and visualise the code execution simulation.
Unfortunately, contrary to the abundance of simulators for
other ISAs, such as the MARS, which is a well-liked
interactive development environment for the Microprocessor
without Interlocked Pipelined Stages (MIPS) architecture [2],
there are no comparable simulators available specifically for
the LEGv8 (subset of ARMv8) architecture, making it

necessary to develop a tool to support students' learning in
education settings.

The main objective of the work presented in this paper was
to create a web-based educational simulator that can be used
to enhance students' understanding of computer architecture
by providing them with a user-friendly and interactive
medium to learn and analyse the execution of the basic set of
instructions that the LEGv8 architecture supports. The scope
of the simulator includes:

• Assembly of LEGv8 instructions with support for
syntax highlighting and code linting in the code editor.

• Single cycle and pipelined execution with registers and
memory values that can be initialised before execution.

• Data and control hazard detection and configurable
hazard handling methods for hazard elimination.

• Data path visualisation during step-by-step execution.

• Error logging and execution statistics results.

• User-friendly and intuitive web-based visual interface.

II. RELATED WORKS
Although there is a lack of comprehensive and functional

simulators created for the LEGv8 architecture, there are a
variety of educational simulators available for other
architectures. The following section will discuss and compare
the features and limitations of some of these existing
simulators.

A. MARS
MARS (MIPS Assembler and Runtime Simulator) is an

educational tool designed for MIPS assembly language
programming [2]. It serves as an integrated editor, assembler,
simulator, and debugger for the MIPS processor. Its major
strength lies in its interactive debugging capabilities, allowing
users to modify registers and memory, set breakpoints, and
step through execution as well as a user-friendly graphical
interface. However, a limitation of MARS is its support for
single cycle execution only, which can be overcome by using
a plugin for pipelined execution with features like Data
Forwarding and branch prediction [3].

B. DrMIPS
DrMIPS is a free and open-source graphical simulator of

the MIPS processor designed for teaching and learning
computer architecture [4]. It visually represents data path and
supports the step-by-step execution of assembly programs.
The simulator offers flexibility with different unicycle and
pipeline data paths, allowing the configuration of jump or
branch instructions, hazard detection, and data forwarding. It
also allows the creation of CPUs with custom instruction sets

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA2SB.4

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 181

and provides relevant statistics such as clock period, CPI, and
CPU cycles. However, its accessibility is limited, as it is only
available as a desktop or Android application.

C. WebMIPS
The WebMIPS simulator is a web-based MIPS simulation

environment that allows users to upload and assemble MIPS
code, simulate a partially or fully five-stage pipeline, and view
register and memory values, input/output data from pipeline
elements and both the data path and control path on the
diagram [5]. It only focuses on the fundamental set of
instructions covered in an introductory computer architecture
course. However, WebMIPS has limitations such as the
absence of support for single cycle execution and an
unintuitive and difficult-to-navigate web interface.

D. RIPES
RIPES is a comprehensive visual computer architecture

simulator and assembly code editor designed for the RISC-V
Instruction Set Architecture [6]. It stands out for its seamless
integration of a built-in assembler, compiler support, and
cache simulator centred around its visual microarchitecture
simulator, enabling users to develop and test RISC-V
programs and also provides a clear understanding of the inner
workings of the RISC (Reduced Instruction Set Computer).

E. WebRISC-V
WebRISC-V is a web-based educational tool designed for

exploring the pipelined execution of assembly programs based
on the RV32IM and RV64IM specifications [7]. It focuses on
enabling users to analyse and comprehend the impact of
pipeline stalls on program execution as well as investigate the
internal state of the pipeline components in the RISC-V
architecture during step-by-step execution.

F. Comparison and Evaluation

TABLE I. EVALUTAION OF EXISTING WORKS

 MARS DrMIPS Web
MIPS RIPES Web

RISC-V

Platform Desktop Desktop,
Android Web Desktop Web

Single Cycle
Execution Yes Yes No Yes No

Pipeline
Execution

Yes
(Plugin) Yes Yes Yes Yes

Hazard
Detection

Yes
(Plugin) Yes Yes Yes Yes

Visual Data
Path Yes Yes Yes Yes Yes

Code Editor Yes Yes Yes Yes Yes

Error
Message
Console

Yes Yes No No Yes

Effective and
Attractive
GUI

Yes Yes No No No

 From Table 1, it can be seen that the simulators that
offer the most comprehensive features for analysing
execution are DrMIPS and MARS for understanding the
MIPS architecture and RIPES for the RISC architecture.
MARS has a user-friendly GUI with extensive use of tooltips
and popups, while DrMIPS has a clear and organized
interface. On the other hand, only WebMIPS and WebRSIC-

V are fully web-based and easily accessible. They effectively
make use of pop-ups to provide a lot of information about the
data flow at every component in the architecture diagram but
it also makes the interface relatively complex and difficult to
navigate. It can also be observed that simulators supporting
both single and pipelined execution are limited. By
combining the strengths and functionalities of existing
simulators, a user-friendly LEGv8 simulator for ARMv8
architecture, which integrates the most essential features in
design and development from literature.

III. PROPOSED FEATURES AND IMPLEMENTATION
A web application is selected as the platform for the

simulator to ensure maximum accessibility for users. It
eliminates the need for downloading software and can be
accessed through any browser on a computer with an internet
connection, regardless of the operating system. The simulator
is built using React.js, a front-end JavaScript UI library, along
with third-party React components to enhance functionality
and minimize development time.

A. Instruction Assembly
An assembler performs the role of converting assembly

language to machine code that is stored in the text memory of
the processor and can then be directly executed by the
processor. During the assembly process, each line of
instruction string is first parsed to break the line down into its
constituent tokens, such as the instruction opcode, registers,
and immediate values, and then analysed. This allows syntax
errors to be identified when the source instruction does not
match the grammar of the LEGv8 instructions. Additionally,
name checking is also carried out to ensure that there is no
duplicate use of label names and the labels referenced by
branching instructions have been declared in the code. These
syntax and semantic errors that are identified are passed to the
code editor to be displayed with relevant error messages for
easier debugging.

All LEGv8 instructions are thirty-two bits long, but
instructions of different types are made up of a different
combination of fields, which include the opcode, destination
and source registers, and address of the destination, each field
being of different lengths [8]. After each line of instruction is
parsed into its constituent tokens, if no errors are identified,
the value of each field is derived by converting the token to its
binary value, which is then appended together to form the full
32-bit instruction, which is then allocated a memory address
and stored in the text memory.

B. Single-Cycle Execution
During single cycle execution, only one instruction is

being executed at any one time hence, the critical path with
the longest delay determines the clock period. LEGv8
instructions can be classified into five main types according to
their format: Register, Immediate, Data Transfer,
Unconditional Branch and Conditional Branch [8].

The simulator in this paper only focuses on a small set of
the most fundamental instructions from the extensive LEGv8
architecture, consisting of over fifty instructions. This
selection effectively demonstrates the functionality of
instructions from each instruction type, providing a basic
understanding of computer architecture operations. The core
set of instructions of each type that are supported by the
simulator are shown in Table 2 below.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 182

TABLE II. SUPPORTED INSTRUCTION SET

Instruction
Type

Instruction Names & Mnemonics

Register
(R) Type

Add (ADD), Add & Set flags (ADDS), Subtract (SUB),
Subtract & Set flags (SUBS), And (AND), Or (ORR),
Exclusive Or (EOR)

Immediate
(I) Type

Add Immediate (ADDI), Add Immediate & Set flags
(ADDIS), Subtract Immediate (SUBI), Subtract
Immediate & Set flags (SUBIS), And Immediate (ANDI),
Or Immediate (ORRI), Exclusive Or Immediate (EORI),
Logical Shift Left (LSL), Logical Shift Right (LSR)

Data
Transfer
(D) Type

Load Register Unscaled offset (LDUR), Store Register
Unscaled offset (STUR)

Branch (B)
Type

Branch (B), Branch with Link (BL), Branch to Register
(BR)

Conditional
Branch
(CB) Type

Compare & Branch if Not Zero (CBNZ), Compare &
Branch if Zero (CBZ)

Instructions can be executed line by line by stepping forward
and backward or entirely at once using the Run function by
clicking the buttons in the top nav bar, as seen in Fig. 1. The
next instruction to be executed will be the next instruction in
the table unless the latest executed instruction is a B type
instruction or the branch condition is met for a CB type
instruction, whereby the next instruction will instead depend
on the PC-relative address or label specified in the instruction.
According to [8], during a procedure call in the LEGv8
processor, registers X0 to X7 are allocated for parameters and
return values, while LR (X30) holds the return address. Each
procedure call creates a stack frame, with the Frame Pointer
(FP) pointing to the frame's start. To return from a procedure,
the BR instruction unconditionally branches to the address
stored in LR, and the temporary registers are popped from the
stack and reloaded into registers. The values of stack pointer
(SP), FP, and LR are restored to their values before the
procedure call.

 Values in the registers and data memory can be initialised
before execution and changes in the registers, data memory,
stack and the four flags: Negative, Zero, Overflow and Carry,
that results from the execution of each instruction will be
reflected and highlighted in the interface as shown in Fig. 1.

C. Pipelined Execution
Pipelined execution allows multiple sub-tasks to be carried

out at the same time using independent resources. This

increases the amount of useful work the processor can
complete in a given length of time and decreases the cycle
time of the processor, which often increases the throughput of
instructions. A single cycle instruction execution can be split
into five pipeline stages according to their functionality [8]:

• Instruction Fetch (IF): Fetch the current instruction
from the instruction memory at the address stored in
the PC.

• Instruction Decode (ID): Read values stored in the
source registers and sign-extend immediate values.

• Execute (EX): Perform arithmetic and logical
operations such as addition, subtraction and shifting
using the ALU.

• Memory Access (MEM): Perform read or write on the
memory.

• Write Back (WB): Write the results from the EX or
MEM stage into the destination registers.

Pipelining allows the processor to be much more
performant compared to single cycle execution as up to five
instructions can be executed at one time with a 5-stage
pipeline as seen from the five labelled instructions in Fig. 1.

D. Hazard Detection and Elimination
One of the complications that arise due to pipelining is the

occurrence of pipeline hazards, which are events that arise due
to dependency between concurrently executing instructions,
disrupting pipeline flow, stalling the pipeline, and leading to a
drop in efficiency. The two types of hazards that can be
detected and eliminated by the simulator are data hazards and
control hazards. To eliminate the pipeline hazards, their
presence has to first be detected when the instruction is
assembled, and then an appropriate number of NOP
instructions, which are software stalls, need to be added.

Data hazards arise due to either the source or destination
register being unavailable when it is needed, which results in
a stall to wait for the needed value to become available.
Therefore, to detect data hazards, the code needs to be checked
for data dependencies. Table 3 shows the three ways that are
supported by the simulator to handle true dependence, which
will require a different number of stalls in between the two
instructions with dependencies.

Fig. 1. Example of instruction execution step through for pipelined execution(settings to handle pipeline hazards is shown in Fig. 2)

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 183

TABLE III. DATA HAZARD ELIMINATION METHODS [8]

 No. of stalls

No data forwarding 3
Write back and decode simultaneously 2
Full data forwarding 0-1

Branching instructions cause control hazards because
the pipeline has to wait for the branching outcome to be
evaluated when executing B and CB type instructions before
the subsequent execution sequence of instructions can be
determined. The number of stalls required depends on the
pipeline stage in which the Program Counter (PC) is
updated upon the pipeline stage at which branch outcome is
evaluated. The number of stalls needed can be reduced by
evaluating and updating the PC value at an earlier stage, as
seen in Table 4.

TABLE IV. CONTROL HAZARD ELIMINATION METHODS [8]

 No. of stalls

Jump or Branch instruction evaluated at MEM 3
Jump or Branch instruction evaluated at EXE
Stage) 2

Jump or Branch instruction evaluated at ID Stage 1

 Users can select and save the desired elimination method
to simulate for both the hazards in the settings, as seen in
Fig. 2 below, which will reassemble the code and updates
the number of stalls that are inserted, and the corresponding
data path diagram is displayed. This setting is used in Fig. 1

Fig. 2. Settings pane to select pipeline hazard handling options

E. Data Path Visualisation
The datapath diagram represents the flow of data that

occurs during the execution of each instruction by
displaying the inputs and outputs of each of the components
of the processor in each clock cycle. The diagram helps
users visualise each step of instruction execution so that it is
easier to understand each type of LEGv8 instruction. The
main elements of the datapath diagram are the PC and
Instruction Memory used to fetch the current instruction in
the Fetch stage, the Registers file to handle read and write
to registers in the Decode and Write Back stages, the ALU
to perform arithmetic and logical operations in the Execute
stage, and Data Memory to handle memory access in the
Memory stage [8]. To represent the data that is inputted to
and outputted by each of the components, labels are used to
show the value of the data, and they are positioned below
the name of the architecture component as seen in the single
cycle data path represented in Fig. 3.

Fig. 3. Example of a data path visualisation for single cylce execution

Additionally, careful consideration has been given to
making the data path visualisation more user-friendly and
intuitive. For example, the control unit and control signals
are coloured purple in the data path diagrams to make a
separation between the control flow and data flow in the
diagram. A deliberate decision is made to remove the lines
connecting the control unit to each of the control signals so
as to reduce the complexity of the data path diagram so that
it will be easier to focus on the data flow with a less cluttered
diagram, and the user can also zoom and pan in the diagram
to focus on specific areas.

During single cycle execution as seen in Fig. 3, the
diagram does not represent a snapshot of the execution at
any instant in time as the data flow happens sequentially but
instead shows all the data that has flowed through each of
the components throughout the clock cycle to carry out the
intended operation of the instruction. The output of each
component is directly passed as the input to the next
component that it is connected to, following the direction of
the connecting arrow. Depending on the type of the
instruction, not all the components of the diagram will be
used and only the used components will be labelled.

Fig. 4. Example of a data path visualisation for pipelined execution

The components of the datapath diagram for pipelined
execution, shown in Fig. 4, are largely similar to those for
single cycle execution, but with the addition of the pipeline
buffers in between each of the pipeline stages, which are
represented by the long rectangles labelled IF/ID, ID/EX,
EX/MEM and MEM/WB. These buffers temporarily hold
the outputs from the current clock cycle and then pass them
as input for the next stage of execution in the next clock
cycle.

Based on the options for data and control hazard
handling for pipelined execution selected in the settings
pane shown in Fig. 2, the datapath diagram will be updated.
Firstly, to accommodate PC update in the desired stage

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 184

depending on the selected control hazard handling option,
the logic gates that evaluate branching outcome, as seen in
the MEM stage in Fig. 4, need to be repositioned.
Additionally, when updating the PC in the ID stage, an
additional zero checking component is required since the
ALU is no longer available for this purpose. Secondly,
additional components need to be added to enable data
forwarding. For instance, data forwarding in the register file
requires components to verify that the read and write
registers are the same and the RegWrite control signal is
enabled as illustrated in Fig. 8. However, to support data
path visualisation with full data forwarding, the data path
diagram would become too complex and hence, full data
forwarding data path alone is not implemented in the
simulator. Therefore, given that there are two implemented
options for data hazard handling and three options for
control hazard handling for data path visualisation, there are
a total of six possible combinations of options and hence
there are six different datapath diagrams for pipelined
execution that are supported by the simulator.

F. Output
The output pane serves two purposes: to log execution

error messages and show execution results. When errors are
caught, the error messages and line numbers will be logged
in the Output Pane. Secondly, when the last instruction in
the instruction table has successfully executed without any
errors, execution has completed, and an execution summary
result will be generated. During pipelined execution, the
total number of instructions executed, the number of stalls
encountered, and the number of iterations, if there are loops
present, will be recorded. The number of instructions
executed and the number of stalls encountered are then used
to calculate the steady state cycles per instruction (CPI).

IV. EVALUATION
The evaluation process involves functional testing,

specifically black box testing, and user acceptance testing.
By conducting these evaluations, any necessary
improvements can be made to enhance the simulator's
functionality and user experience, ensuring its effectiveness
and success.

A. Functional Testing
 Functional testing assesses the simulator's performance,
identifies any potential bugs or issues, and verifies that it
operates as expected. Black box testing is a software testing
method that only looks at the functionality of the product
without considering its code structure or internal workings.
The following section will cover an illustrative test case to
demonstrate and verify the assembly, execution and data
path visualisation functionalities of the simulator.

TABLE V. ILLUSTRATIVE TEST CASE (REF TABLE 2 FOR
INSTRUCTIONS IN TESTCODE)

Test Code

(1) ADDI R2, R1, 0xA
(2) B loop
(3) LSL R1, R1, #4
(4) loop: STUR R2, [R3, #8]
(5) SUBI R1, R2, #4
(6) LDUR R3, [R1,#2]

Test
Conditions

1. Pipelined Execution
2. Data Hazard Handling: Write back and decode

simultaneously (2 stalls)
3. Control Hazard Handling: No data forwarding,

update in MEM stage (3 stalls)

 Table 5 shows the test code and conditions for testing
the complete user flow when stepping through instructions
using pipelined execution. After successfully assembling
the instructions without any errors, NOP instructions will be
inserted between the source instructions based on the
options selected to handle the pipeline hazards.

Fig. 5. Stepping through assembled instructions after stalls are inserted

As seen from Fig. 5, three stalls are inserted between
lines (2) and (3) as line (2) is an unconditional branch (B)
which is a branching instruction that incurs a control hazard.
Two more stalls are also inserted between lines (5) and (6)
as there is a read-after-write dependency on R3 between the
two instructions. By stepping through the instructions, the
expected execution flow is as follows:

1. R2 updates to 0xA (R1 (010) + 0xA = 0xA)
2. PC updates to the address of Line 4 with the label

“loop”
3. Value of R2 (0xA) is stored at base-relative memory

address of 810 since value of R3 (010) + 810 = 810
4. R1 updates to 0x6 (R2 (0xA) – 410 = 0x6)
5. Value of R3 updates to the value stored at base-

relative memory address of 8 (0xA) since value of
R1 (610) + 210 = 8

Fig. 6. Final state of registers and data memory after execution

Fig. 6. correctly reflects the expected final state of updated
registers and memory in the simulator after all the
instructions have finished execution. It can also be
observed that line (3) is skipped as line (2) causes an
unconditional branch to the label, loop, which starts at line
(4). Lastly, upon completion of execution, the execution
statistics are displayed as shown in Fig. 7.

Fig. 7. Execution results statistics

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 185

Fig. 8. Data path visualisation during instruction step

through(writeback and decode simultaneously)

In addition, the data path visualisation should use the
correct data path diagram, reflecting the data flow
instruction step through based on the pipeline hazard
handling method as per the settings in Fig. 2. The data path
diagram in Fig. 8 highlights the additional hardware added
to the architecture to allow for write back and decode
simultaneously, as well as the branching logic gate being in
the MEM stage according to the test conditions indicated in
Table 5 (PC updated in MEM stage).

Overall, functional testing is conducted using test cases
that cover both single cycle and pipelined execution for all
combinations of pipeline hazard handling methods. Faulty
code is also tested to ensure that syntax and semantic errors
are caught during assembly and that execution errors are
properly caught and logged without crashing the simulator.

B. User Acceptance Testing
A group of twenty students who are currently learning

or have learnt the LEGv8 architecture through the computer
architecture course taught at Nanyang Technological
University were given an online survey to complete after
they had time to learn and use the simulator. The aim was to
evaluate the usability of the simulator and the users’ overall
satisfaction and experience with the simulator.

TABLE VI. RESULTS OF SURVEY

Question Average
Score

The LEGv8 architecture difficult to understand when
taking the Advanced Computer Architecture module 4.4

The simulator is easy to learn and understand with the
instructions provided. 4.1

The simulator is user-friendly. 4.4
The simulator is a useful tool to further enhance
students' understanding of the LEGv8 architecture. 4.6

The survey results in Table 6 show that all of the
respondents agreed that they found the LEGv8 architecture
difficult to understand, which highlights the limitations of
traditional course materials in providing students with
sufficient understanding of complex computer architecture
concepts. In general, the participants found the simulator
easy to learn and user-friendly and some commented that
the layout of the user interface is intuitive to use especially
with the use of visual aids. Overall, all of the respondents
felt that the simulator was able to improve their
understanding of the LEGv8 architecture, especially for
visualising pipelined execution and data path which are
especially difficult to understand when taught using the

traditional paper and pen method. This shows that the main
objective of the simulator, which was to enhance students'
understanding of computer architecture, was able
successfully met. Lastly, some comments from the users
could be used to make future improvements such as to add
more explanation regarding the number of stall insertions.

V. CONCLUSION
The objective of this project was to develop an

educational simulator for the LEGv8 architecture, which
currently lacks a dedicated simulator. The simulator allows
users to assemble LEGv8 assembly code, execute
instructions for single cycle and pipelined architectures that
can be configured, and visualize the data path. It provides a
user-friendly and interactive tool for students to analyse
their code, understand register and memory changes during
execution, and visualize data flow in the processor. The aim
is to make learning computer architecture more accessible
and less challenging for students. The simulator is available
online at http://jiatian2300.github.io/LEGv8-Simulator and
is currently used as a teaching tool in the Advanced
Computer Architecture module at Nanyang Technological
University to help students better understand the hidden
details of a pipelined processor and how the performance of
the programs can be enhanced by appropriate optimisations.
Future work can include implementing data path diagrams
for architectures with full data forwarding, displaying and
including explanations for identified pipeline hazards,
adding more labels and details to labels in the data path
diagrams, and supporting dynamic branch prediction.

ACKNOWLEDGMENT
The authors express their gratitude to the School of

Computer Science and Engineering at Nanyang
Technological University for the support provided.

REFERENCES
[1] ARM, “ARM® Architecture Reference Manual ARMv8, for

ARMv8-A architecture profile,” 2013. [Online]. Available:
https://yurichev.com/mirrors/ARMv8-
A_Architecture_Reference_Manual_(Issue_A.a).pdf.

[2] K. Vollmar and P. Sanderson, "MARS: an education-oriented MIPS
assembly language simulator," in ACM SIGCSE Bulletin, vol. 38,
no. 1, pp. 239-243, Mar. 2006, doi: 10.1145/1124706.1121415.

[3] D. X. Lim and K. G. Smitha, "Pipelined MIPS Simulation: A plug-
in to MARS simulator for supporting pipeline simulation and branch
prediction," 2019 IEEE International Conference on Engineering,
Technology and Education (TALE), Yogyakarta, Indonesia, 2019,
pp. 1-7, doi: 10.1109/TALE48000.2019.9225934.

[4] B. Nova, J. C. Ferreira and A. Araújo, "Tool to support computer
architecture teaching and learning," 2013 1st International
Conference of the Portuguese Society for Engineering Education
(CISPEE), Porto, Portugal, 2013, pp. 1-8, doi:
10.1109/CISPEE.2013.6701965.

[5] I. Branović, R. Giorgi, and E. Martinelli, "WebMIPS: a new web-
based MIPS simulation environment for computer architecture
education," in Proceedings of the 2004 workshop on Computer
architecture education, WCAE '04, June 2004.

[6] M. B. Petersen, "Ripes: A Visual Computer Architecture Simulator,"
2021 ACM/IEEE Workshop on Computer Architecture Education
(WCAE), Raleigh, NC, USA, 2021, pp. 1-8, doi:
10.1109/WCAE53984.2021.9707149.

[7] R. Giorgi and G. Mariotti, "WebRISC-V: a Web-Based Education-
Oriented RISC-V Pipeline Simulation Environment," in Proceedings
of the 2019 ACM International Conference on Interactive Surfaces
and Spaces, 2019, pp. 1-6, doi: 10.1145/3338698.3338894.

[8] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design ARM Edition: The Hardware Software Interface.
Cambridge, MA: Elsevier, Morgan Kaufmann Publishers, 2016.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 186

