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Abstract—Scene Text Recognition (STR) is a task in computer
vision that is used to read texts in natural scene images.
STR currently suffers from data distribution shift due to the
lack of large real datasets for training. Data augmentation is
a method that has been used in multiple studies to address
this issue. However, performing augmentation also introduces
computational overhead during training. In this paper, we pro-
pose FastSTRAug, a CUDA-based library of 36 augmentation
functions specifically designed for STR. When executed through
varying image sizes, FastSTRAug is observed to be significantly
faster over its serial counterpart in most functions, reaching up
to 380× speedup on larger images.

Index Terms—scene text recognition, data augmentation,
CUDA

I. INTRODUCTION

Texts are present everywhere. They are seen in documents,
logos, street signs, product labels, clothing, electronic de-
vices, etc. These provide useful information to aid us in our
daily activities. It helps us know what we are buying from
the market, which lane we should stay on the road, or where
our favorite restaurant is located. Because of this, scene text
recognition (STR), or the task of reading texts from scene
images, has gained a lot of interest in computer vision.

STR is a challenging problem since texts from scene
images are naturally irregular and inconsistent [2]. Moreover,
STR lacks large real datasets, leading to the trend of training
STR models on large synthetic datasets such as MJSynth [8]
and SynthText [9] instead. This is not ideal since synthetic
datasets are not as diverse as real scene text data, which leads
to models trained on synthetic data performing poorly when
tested on real images that are more complex and varied [5].

To improve STR model performance, multiple studies
attempt to include data augmentation as part of training in
order for synthetic data to better resemble irregularities found
in real scene text data [1], [6], [7]. While proven effective
in improving accuracy, augmentation also requires various
computations to be performed. Thus, computational overhead
is incurred and the time to train STR models becomes longer.

While multiple studies have focused on improving text
recognition accuracy through data augmentation, there are
none that focus on improving the speed of STR data augmen-
tation. Thus, this paper proposes the development of a GPU-
accelerated STR data augmentation library through Compute
Unified Device Architecture (CUDA) Python libraries.

FastSTRAug aims to implement 36 augmentation func-
tions based on STRAug [1], which is an earlier study that
focuses on the augmentation of STR data, but is designed to

work on the CPU. Each function performs the augmentation
based on the input parameters img, mag, and prob, which
dictates the input image, the magnitude of transformation,
and the probability of transformation respectively. Similar
to STRAug, the 36 functions are distributed into 8 logi-
cal groups: 1) Warp, 2) Geometry, 3) Noise, 4) Blur, 5)
Weather, 6) Camera, 7) Pattern, and 8) Process, based on
the functions’ nature, origin, and impact. Results show that
FastSTRAug provides significant speedup on most data aug-
mentation functions especially with larger images, compared
to its serial counterpart in STRAug.

II. RELATED WORK

Scene text recognition is an active research field in
computer vision that aims to recognize texts from natural
scene images. Recent studies have been mostly centered in
improving STR model architecture, with the development of
models such as PARSeq [10], MATRN [11], S-GTR [12],
CDistNet [13], and DPAN [14].

However, aside from fine-tuning model architecture, STR
also faces the problem of lacking publicly available large
real datasets for training. This scarcity is attributed to high
labeling costs incurred in generating real datasets [3]. As
an alternative, efforts have been made to generate large and
synthetic datasets for model training instead [4]. However,
their synthetic nature causes it to have less diversity and
irregularity than what is present in real data, a manifestation
of data distribution or domain shift.

In addressing distribution shift, data augmentation has
been used by various STR studies. Data augmentation is a
technique of performing transformations and manipulations
on input data to better mimic irregularities and diversities in
real scene text data [1]. Through this, the gap between syn-
thetic training data and real test data becomes more narrow
and the recognition accuracy of STR models increases.

Meng et al. [7] developed a sample-aware data augmentor
for STR that aims to balance the under-diversity caused
by affine transformations and the over-diversity caused by
elastic transformations, providing accuracy gains of up to
4.1% when tested on real data. Luo et al.’s Learn to Augment
[6] is a data augmentation method for text recognition that
focuses on spatial transformations. This method leads to
accuracy gains of up to 4.5% on irregular text datasets. While
these methods offer significant accuracy gains on STR mod-
els, they both introduce an additional augmentation network
integrated into the recognition model, leading to significantly
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longer training time. Atienza’s STRAug [1] is a library of
diverse functions such as image blurring, weather conditions,
camera sensor variations, and other augmentations that cater
a wide range of image corruptions observed in natural scenes.
Moreover, STRAug provides significant accuracy gains of up
to 2.10% even without the introduction of additional network
parameters to the recognition model.

In performing data augmentation, various numerical com-
putations are performed, leading to computational overhead
and added training time. Recent developments have been
made to accelerate scientific computing through GPU pro-
gramming, since GPUs are capable of high performance
computing due to its highly parallel nature and increasing
computational power [15]. With the development of NVIDIA
Compute Unified Device Architecture (CUDA), GPU accel-
eration has become more accessible for developers, making
it more ideal for high performance computing [16], [17].

Various applications in image processing make use of GPU
programming and CUDA to develop parallel programs that
achieve significant speedups over their serial counterparts.

Fung and Mann [23] presented a comparison on CPU
and CUDA implementations of the Lucy-Richardson De-
convolution, which is commonly used in restoring blurred
images. The GPU implementation achieved speedups of 9.8×
without damping and 21× with damping. Focusing on data
augmentation, Vila-Blanco et al. [24] developed IDALib, a
Python library for efficient general image augmentation on
GPU. It was observed that IDALib achieves up to 18.03×
speedup compared to CPU-implemented data augmentation.

To the best of our knowledge, there is a lack of study
in GPU utilization for performing STR data augmentation.
While GPU-accelerated data augmentation libraries such as
IDALib [24] are available, they are designed for general
image augmentation. Using these libraries for STR may
cause certain elements in text images to be heavily distorted,
causing poor model performance due to loss of information.
Thus, this study aims to address this gap by developing
an accelerated STR data augmentation library using CUDA
Python, and analyzing its effects on improving the speed of
data augmentation for STR.

III. METHODOLOGY

In making data augmentation more time-efficient, we pro-
pose FastSTRAug, a CUDA Python alternative of STRAug,
which is a data augmentation library designed for STR.
STRAug [1] is chosen as reference for FastSTRAug since it
caters a diverse set of augmentation methods, while allowing
great flexibility and reproducibility for reimplementation and
comparison. The 8 logical groups and 36 augmentation
functions of FastSTRAug is discussed further in this section.
In general, the algorithm used for performing augmentations
in FastSTRAug is adopted from Atienza [1]. However, we
use alternative CUDA Python libraries instead in order to
accelerate numerical computations and image processing for
the augmentation functions. Other differences in the algo-
rithm and implementation between our method and STRAug
[1] are also further discussed in this section.

For reference, the input image used in visualizing the
FastSTRAug data augmentations is displayed in Fig. 1.

Fig. 1. Source image for data augmentations

A. Warp
The Warp logical group contains the Curve, Distort, and

Stretch augmentation functions. These augmentation func-
tions mimic elastic deformations found in clothing, street
signs, product labels, logos, etc. The thin plate spline (TPS)
[25] algorithm is used to perform warping through pixel
movement according to source and destination control points.
The amount of warping performed is dictated by the magni-
tude of augmentation set by the user. These augmentations
are visualized using FastSTRAug as seen in Fig. 2.

Curve Distort Stretch

Fig. 2. Warp group augmentations
Kornia [21] and PyTorch [18] are used as the primary

libraries in performing CUDA-acceleration of the Warp
group. PyTorch is used for data handling as images are
converted into Torch CUDA tensors, while Kornia is used
for performing TPS transformation through CUDA.

B. Geometry
The Geometry group is designed to perform perspective

and affine transformations with the Perspective, Rotation, and
Shrink functions. Perspective transformation is used for the
Perspective augmentation, while TPS is used for the Shrink
function. The Rotation function performs image rotation with
the angle uniformly sampled from the range θmin to θmax,
depending on the augmentation magnitude. Fig. 3 visualizes
the Geometry group augmentations.

Perspective Shrink Rotate

Fig. 3. Geometry group augmentations
To enable CUDA-acceleration in the Geometry group, both

Kornia [21] and PyTorch [18] are used. Similar to the Warp
group implementation, Kornia is used for estimating and
performing both Perspective and TPS transformations. On the
other hand, PyTorch is used for data handling in CUDA and
for performing Rotation along the earlier mentioned range.

C. Pattern
In order to mimic patterns on scene texts caused by

multi-line LED displays, dot-matrix printed documents, or
texts overlapped by certain patterns, the Pattern group is
implemented. The group includes 5 grid patterns: Grid,
VGrid, HGrid, RectGrid, and EllipseGrid. The data augmen-
tation magnitude will determine the number of lines drawn
over the image. The augmentation group is visualized using
FastSTRAug in Fig. 4.

Line drawing on images is performed by changing the
pixel value of the line coordinates to the desired color. Thus,
Pattern augmentations on the CPU is already highly time-
efficient and performing it in CUDA-enabled libraries such
as Kornia [21] would not make it faster. Because of this, it
is decided to adopt the STRAug implementation for these
functions and transfer the image tensor over to the GPU
memory once the grid patterns have been drawn.
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Grid VGrid HGrid

RectGrid EllipseGrid

Fig. 4. Pattern group augmentations

D. Noise

Since STR data comes from natural scenes, it is common
for images to be corrupted due to noise. Thus, the Noise
group is designed to implement four types of noise corruption
on input images, namely GaussianNoise, ShotNoise, Im-
pulseNoise, and SpeckleNoise. The amount of noise injected
to the input image is affected by the data augmentation
magnitude. Images augmented through the Noise group is
displayed in Fig. 5.

GaussianNoise ShotNoise ImpulseNoise SpeckleNoise

Fig. 5. Noise group augmentations

As STRAug [1] uses NumPy to implement the algorithms
for all functions in the Noise group, FastSTRAug utilizes its
CUDA-counterpart, CuPy [19], to accelerate these compu-
tations. In addition, the cuCIM [20] library of the RAPIDS
suite is used to accelerate the scikit-image functions used to
implement the ImpulseNoise function.

E. Blur

Due to irregularities in imaging, blurring is commonly
seen in natural scene text images. In order to mimic this
in synthetic data, the Blur group contains GaussianBlur,
DefocusBlur, MotionBlur, GlassBlur, and ZoomBlur func-
tions. The amount of blurring on the images is also affected
by the user-defined augmentation magnitude parameter. A
simulation of the Blur augmentations are seen in Fig. 6.

GaussianBlur DefocusBlur MotionBlur

GlassBlur ZoomBlur

Fig. 6. Blur group augmentations

GaussianBlur and ZoomBlur is accelerated by performing
CUDA tensor operations in PyTorch [18]. DefocusBlur uses
CuPy [19] and cuSignal [20] for performing computations in
CUDA. The motion_blur filter of Kornia [21] is utilized
by MotionBlur to accelerate the STRAug implementation.
The GlassBlur implementation is adopting the STRAug
implementation on the CPU. This is because the implemented
algorithm performs pixel swapping through a sequential
nested for-loop, which is observed to be multiple times
slower on the GPU than on the CPU. Moreover, since the
algorithm is inherently sequential, parallelizing it through a
custom kernel will not result to the desired effect similar to
the STRAug implementation.

F. Weather

The Weather group is designed to augment input images to
simulate different weather conditions, including Fog, Snow,

Frost, Rain, and Shadow. The data augmentation magnitude
determines the amount of effect that the weather condition
simulation has on the input image. Sample scene text images
augmented with the Weather group are shown in Fig. 7.

Fog Snow Frost

Rain Shadow

Fig. 7. Weather group augmentations

The Fog implementation uses CuPy [19] to accelerate
NumPy operations. Snow and Frost use PyTorch [18] to
perform intermediary CUDA tensor operations, while Snow
also uses Kornia [21] to perform motion blurring in CUDA.
Kornia’s RandomRain function is used to implement Rain
in CUDA. The Shadow function is performed by drawing a
shadow overlay over the image. As discussed in the Pattern
group, drawing over the image is already efficient on the
CPU and thus, Shadow is also adopting the STRAug imple-
mentation to keep all FastSTRAug functions time-efficient.

G. Camera

Functions in the Camera group focus on augmentations
caused by camera effects and image manipulations. This
group supports Contrast, Brightness, JpegCompression, and
Pixelate functions. Similar to other groups, the amount
of augmentation done is determined by the user-defined
magnitude parameter. Camera effects as implemented by
FastSTRAug are simulated as shown in Fig. 8.

Contrast Brightness JpegCompres-
sion

Pixelate

Fig. 8. Camera group augmentations

Contrast and Pixelate use PyTorch [18] to accelerate
tensor operations. Brightness uses CuPy [19] to accelerate
numerical computations and cuCIM [20] to accelerate scikit-
image functions. Finally, JpegCompression uses the Python
implementation of nvJPEG [26], [27] to perform CUDA-
accelerated JPEG operations for image compression.

H. Process

Other image processing augmentations that are not appli-
cable to be included in previously mentioned groups but are
still suitable for STR compose the Process group. This group
includes Posterize, Solarize, Invert, Equalize, AutoContrast,
Sharpness, and Color. While all other functions in the group
have the augmentation magnitude defined by the user, the
Invert, AutoContrast, and Equalize functions only have one
augmentation level. The Process group augmentations are
shown in Fig. 9.

Posterize Solarize Invert Equalize

AutoContrast Sharpness Color

Fig. 9. Process group augmentations
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Conveniently, PyTorch [18] supports CUDA-accelerated
functions for all augmentations through its torchvision li-
brary, thus this is used for implementing the logical group.

IV. RESULTS, ANALYSIS, AND DISCUSSION

FastSTRAug is evaluated through an adoption of Zhang
et al.’s framework [22]. In this evaluation, we compare our
method to its serial counterpart, STRAug [1], to see if Fast-
STRAug does perform faster data augmentation operations.

A. Data Augmentation Process

Memory Augmentation Training

CPU GPU

Fig. 10. Data flow for optimizing FastSTRAug

Since FastSTRAug is designed for STR model training,
we adopted the data flow by Vila-Blanco et al. [24] as seen
in Fig. 10 to further optimize augmentation. We prevent
memory transfer overhead by keeping the data in the GPU
once it has been augmented so that it can be accessed by the
network model when performing GPU-accelerated training.

B. Experimental Setup

In evaluating the performance of FastSTRAug in terms of
speed, we compared the execution times of each FastSTRAug
function with its direct STRAug counterpart at mag=2 over
varying image sizes, getting the speedup ratio for each. The
execution time with the standard deviation was recorded
and averaged over 10 iterations. This was performed over
three varying image sizes: (1) 168×50, (2) 393×216, and (3)
778×336. In recording the runtimes, the data transfer time
from CPU to GPU was included, but the transfer time from
GPU back to the CPU was excluded following the data flow
in Fig. 10. All tests are run on the following hardware, CPU:
Intel Xeon @ 2.20 GHz 12GB RAM and GPU: NVIDIA Tesla
T4 16GB GDDR6 VRAM.

C. Speedup Evaluation

The results and analysis of FastSTRAug’s speedup evalu-
ation is done according to each logical group.

TABLE I
Warp GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Curve

168×50 14.22±0.76 3.445±0.051 4.129
393×216 16.39±0.48 3.360±0.13 4.878
778×336 21.36±0.60 4.032±0.11 5.299

Distort
168×50 1.951±0.056 1.885±0.066 1.035
393×216 16.40±1.4 3.458±0.051 4.743
778×336 48.76±1.8 9.675±0.065 5.039

Stretch
168×50 2.346±0.13 2.268±0.30 1.034
393×216 31.02±0.56 4.796±0.11 6.468
778×336 72.13±19 7.494±0.13 9.626

Table I presents the results of the speedup evaluation for
the Warp functions. The speed gains for the Curve function
is more consistent across varying image sizes, with 4.13×
speedup even on the 168×50 image. On the other hand, even

though very little speedup is observed on smaller images for
Distort and Stretch, they show significant speedups of up to
9.626× on larger images (778×336).

TABLE II
Geometry GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Rotate

168×50 8.201±0.70 1.096±0.024 7.486
393×216 10.2±0.37 1.262±0.018 8.08
778×336 16.19±1.0 1.826±0.029 8.869

Perspective
168×50 0.5375±0.044 0.9488±0.047 0.5665
393×216 2.132±0.066 1.537±0.061 1.387
778×336 6.019±0.91 2.931±0.10 2.054

Shrink
168×50 2.024±0.082 3.473±0.58 0.5826
393×216 16.32±1.9 6.107±0.068 2.672
778×336 50.57±6.5 11.08±1.8 4.563

As seen in Table II, the Rotate function leverages the use
of CUDA the most among the functions in the Geometry
group as it is observed to have speedups of at least 7.486×
(168×50). On the contrary, the performance of both Perspec-
tive and Rotate is observed to be poorer in smaller images
(168×50) with FastSTRAug taking almost twice the time to
execute compared to STRAug. However, it is seen to improve
to up to 4.563× faster as the input image size becomes larger.

TABLE III
Pattern GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Grid

168×50 0.8840±0.020 0.8508±0.028 1.039
393×216 1.816±0.071 2.107±0.37 0.8618
778×336 5.713±0.15 5.806±0.30 0.9840

VGrid
168×50 0.7504±0.027 1.423±1.4 0.5271
393×216 1.533±0.051 1.502±0.035 1.021
778×336 5.015±0.14 5.009±0.26 1.001

HGrid
168×50 0.5614±0.044 0.6198±0.18 0.9058
393×216 1.323±0.043 1.309±0.025 1.011
778×336 4.742±1.2 3.929±0.089 1.207

RectGrid
168×50 0.4579±0.017 0.4693±0.019 0.9758
393×216 1.149±0.037 1.157±0.040 0.9933
778×336 3.699±0.064 3.759±0.17 0.9841

EllipseGrid
168×50 0.5504±0.015 0.5379±0.018 1.023
393×216 1.461±0.049 1.694±0.31 0.8627
778×336 5.844±0.64 5.640±0.94 1.036

The observed execution times and speedup for the Pattern
group is displayed in Table III. As expected, the speedup
ratios observed are all close to 1, since both use the same
implementation as discussed.

The results of the Noise group, as seen in Table IV, shows
significant speedup for most of the group’s functions. Gaus-
sianNoise, ShotNoise, and SpeckleNoise all exhibit speedups
over STRAug across all image sizes, ranging from 2.895×
to as high as 46.64×. ImpulseNoise, on the other hand,
is observed to be slower when performed on the 168×50
image, but improves steadily with increasing image size.
This is believed to be caused by cuCIM’s random_noise
function, which is used in ImpulseNoise, being slower in
smaller images.

Out of all the function groups, the Blur group is observed
to have the highest speedup increase especially in larger
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images. As seen in Table V, speedups of up to 380.9× is
observed with the GaussianBlur function, with slightly lower
but still significant speedups observed in DefocusBlur, Mo-
tionBlur, and ZoomBlur. As expected, the GlassBlur function
is observed to have little-to-no difference with STRAug since
they both have the same implementation.

TABLE IV
NOISE GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
GaussianNoise

168×50 1.063±0.16 0.3674±0.017 2.895
393×216 6.369±0.49 0.5431±0.022 11.73
778×336 19.88±1.5 0.8563±0.029 23.22

ShotNoise
168×50 2.139±0.14 0.426±0.021 5.022
393×216 15.4±1.3 0.7617±0.23 20.21
778×336 44.49±2.5 0.9538±0.059 46.64

ImpulseNoise
168×50 2.495±0.020 4.494±0.010 0.5552
393×216 10.21±0.24 4.826±0.010 2.115
778×336 29.01±0.41 6.891±0.050 4.210

SpeckleNoise
168×50 0.9882±0.032 0.3693±0.012 2.676
393×216 6.848±0.76 0.5199±0.014 13.17
778×336 19.08±1.2 0.8339±0.017 22.88

As displayed in Table VI, the Snow function is ob-
served to gain the highest speedups of at most 43.28× over
the STRAug implementation. On the other hand, moderate
speedups were observed in Frost and Rain. The Fog function
is slower in the 168×50 image, but is seen to be faster in
larger images (393×216 and 778×336). As expected, execu-
tion times between STRAug and FastSTRAug’s Shadow are
relatively close since they have the same implementation.

TABLE V
Blur GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
GaussianBlur

168×50 1.86±0.12 0.6833±0.091 2.722
393×216 1966±1.3 6.012±0.025 327.0
778×336 7117±24 18.69±0.24 380.9

DefocusBlur
168×50 1.64±0.062 0.9709±0.066 1.689
393×216 14.76±0.60 1.678±0.044 8.794
778×336 30.24±1.4 1.591±0.38 19.01

MotionBlur
168×50 29.65±6.7 2.882±0.16 10.29
393×216 178.6±6.2 2.872±0.15 62.17
778×336 437.7±23 4.117±0.15 106.3

GlassBlur
168×50 213.5±19 213.3±18 1.001
393×216 2351±28 2451±38 0.959
778×336 7319±60 7304±56 1.002

ZoomBlur
168×50 4.452±0.15 1.122±0.066 3.968
393×216 33.24±0.94 1.736±0.052 19.15
778×336 153.8±4.8 4.524±0.26 33.99

Table VII shows that functions of the Camera group
exhibit speedups across all image sizes. Brightness has the
largest speedup at 110.6×. Other functions, Contrast, Jpeg-
Compression, and Pixelate, while gaining smaller speedups
than Brightness, is still faster over its STRAug counterparts.

Finally, the execution times and speedups of the Process
group are shown in Table VIII. As observed, perform-
ing these operations on the CPU is already time-efficient
especially on smaller images. Thus, it is expected that

FastSTRAug will not perform significantly better on these
smaller data, which is evident in the Equalize, AutoContrast,
Sharpness, and Color functions. However, these functions
still exhibit speedups over STRAug on larger-sized images.

TABLE VI
Weather GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Fog

168×50 6.793±0.20 11.82±0.26 0.5749
393×216 35.08±1.7 18.38±0.52 1.909
778×336 156.4±19 15.38±1.4 10.17

Snow
168×50 24.57±2.6 3.355±1.2 7.323
393×216 123.9±5.8 4.289±0.15 28.88
778×336 337.6±22 7.800±0.26 43.28

Frost
168×50 25.45±12 13.89±6.8 1.832
393×216 22.56±8.5 13.94±6.9 1.618
778×336 48.26±12 14.11±7.3 3.418

Rain
168×50 4.369±0.33 3.107±0.31 1.406
393×216 3.474±0.18 2.823±0.09 1.231
778×336 7.388±0.42 6.008±1.7 1.230

Shadow
168×50 0.637±0.080 0.6152±0.026 1.035
393×216 1.524±0.078 1.521±0.072 1.002
778×336 6.047±0.69 6.596±1.7 0.9167

Overall, it is clear that FastSTRAug outperforms STRAug
in most augmentation functions. This is highly evident in
more complex augmentation methods such as GaussianBlur,
MotionBlur, and Brightness where the STRAug implementa-
tion takes hundreds to thousands of milliseconds to perform.

TABLE VII
Camera GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Contrast

168×50 0.945±0.042 0.3586±0.020 2.635
393×216 5.519±0.094 1.031±0.030 5.354
778×336 23.69±0.87 3.045±0.15 7.778

Brightness
168×50 4.482±0.69 0.5132±0.019 8.734
393×216 35.76±1.2 0.6826±0.027 52.38
778×336 111.4±2.8 1.007±0.033 110.6

JpegCompression
168×50 1.161±0.55 0.8184±0.023 1.419
393×216 4.748±0.85 1.837±0.041 2.585
778×336 10.54±0.30 4.417±0.093 2.387

Pixelate
168×50 0.4372±0.024 0.3774±0.02 1.159
393×216 2.068±0.060 1.029±0.043 2.011
778×336 5.748±0.24 3.575±1.4 1.608

On the other hand, there are also functions that do not
benefit much from CUDA acceleration such as Equalize
and GlassBlur since either the STRAug implementation is
already highly time-efficient or the operations needed to
perform the augmentation is inherently slower on the GPU.

The general trend observed is that the speedup increases
with increasing input data size, except some functions such
as Rain and Pixelate. CUDA-accelerated augmentations are
more effective in speeding up the processing of larger data,
which we believe is due to factors such as memory transfer
having less impact on the overall execution times.

One important observation is that while significant
speedup is obtained in most functions, differences in exe-
cution times between our method and STRAug [1] is within
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milliseconds only, which may seem insignificant when eval-
uated with individual images. However, we believe that our
method becomes useful if we consider commonly used STR
datasets, MJSynth [8] and SynthText [9]. Since these datasets
contain millions of images, individual speedups obtained
from each augmentation will accumulate, thus decreasing
overall time needed to train models with augmentation.

TABLE VIII
Process GROUP EVALUATION

Image Size (px) STRAug (ms) FastSTRAug (ms) Speedup
Posterize

168×50 0.3664±0.018 0.1947±0.012 1.881
393×216 1.211±0.066 0.4527±0.022 2.675
778×336 2.962±0.16 0.9201±0.023 3.220

Solarize
168×50 0.3738±0.021 0.243±0.0092 1.538
393×216 1.202±0.033 0.5506±0.19 2.184
778×336 3.105±0.34 1.001±0.025 3.103

Invert
168×50 0.3314±0.024 0.1735±0.0088 1.910
393×216 1.405±0.28 0.4442±0.021 3.164
778×336 2.861±0.16 0.911±0.0077 3.14

Equalize
168×50 0.4821±0.02 1.46±0.068 0.3303
393×216 1.566±0.075 1.84±0.14 0.8513
778×336 3.72±0.42 2.218±0.050 1.677

AutoContrast
168×50 0.4917±0.020 0.6394±0.28 0.7689
393×216 1.531±0.060 0.7206±0.028 2.124
778×336 3.628±0.17 1.162±0.034 3.122

Sharpness
168×50 0.5612±0.027 0.6088±0.033 0.9217
393×216 4.058±0.13 1.775±0.44 2.286
778×336 10.5±0.47 2.69±0.27 3.903

Color
168×50 0.3711±0.020 0.4207±0.12 0.8821
393×216 2.266±0.44 0.5774±0.011 3.925
778×336 4.854±0.34 1.081±0.045 4.489

V. CONCLUSION

In this paper, we develop a CUDA-based STR data
augmentation library called FastSTRAug, with the aim of
minimizing computational overhead when performing data
augmentation on scene text images.

Results show that FastSTRAug is effective in speed-
ing up augmentation in most functions. Moreover, Fast-
STRAug augmentation in larger images usually leads to
better speedup. However, some functions do not benefit much
from CUDA acceleration since there are operations that are
still inherently slow on the GPU.

Future work should focus on analyzing the accuracy
gains of FastSTRAug compared to STRAug and other data
augmentation methods when trained with STR models, along
with further optimization of the functions, especially those
that were observed to be slower than their serial counterparts.
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