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Abstract—This study introduces a non-invasive egg sexing 

device that combines artificial intelligence (AI), spectroscopy, 

and computer vision technology to accurately determine the 

sex of duck embryos inside eggs. The device utilizes the 

plumage color as a reliable indicator of sex, employing a 

hybrid Convolutional Neural Network (CNN) and Gated 

Recurrent Unit (GRU) model alongside spectroscopic analysis. 

Extensive simulations and experiments validate the proposed 

algorithm, achieving an impressive 98.68% accuracy rate in 

sex determination, with an average processing time of 37.46 

milliseconds, significantly enhancing farming efficiency. 

Additionally, the research assesses the impact of spectroscopy 

on egg hatchability, demonstrating a higher hatchability rate of 

74.80% within a population of 500 eggs. This finding indicates 

that spectroscopy does not adversely affect egg viability. 

Overall, this study presents a sustainable solution for 

effectively managing male ducklings in the industry, 

optimizing resource utilization, and mitigating wastage. 

Keywords—Artificial Intelligence, CNN-GRU, Computer 

Vision, Spectroscopy 

I. INTRODUCTION 

The duck industry in the Philippines plays a significant 
role in the country's agricultural landscape and economy. 
Ducks are commonly reared for various purposes, including 
meat production, egg production, and as pets. The industry 
has seen notable growth and development over the years, 
with a rising demand for duck products both domestically 
and internationally. Currently, the duck industry relies on 
manual sexing of ducklings shortly after hatching. This 
process involves trained individuals visually inspecting the 
ducks to determine their gender [1]. Unfortunately, this 
process is time-consuming, costly, and not always accurate. 
Additionally, male ducks are typically less valuable than 
females in the industry, which has led to the practice of 
culling male ducklings shortly after birth. 

In-egg sexing, also known as in-ovo sexing, is a 
technique used to determine the gender of a bird embryo 
before it hatches from its egg [2]. This technique has the 
potential to revolutionize the duck industry by allowing for 
more efficient breeding programs and reducing the number 
of male ducks that are culled. 

One of the major benefits of in-egg sexing is that it 

allows for more efficient breeding programs [3]. With the 
ability to determine the sex of the embryo before it hatches, 
breeders can select only the eggs that will produce female 
ducks. This can lead to higher yields of female ducks, which 
are typically more valuable than males in the industry. 
Additionally, breeders can select for specific traits in their 
breeding programs, such as meat quality or egg production, 
with greater accuracy and efficiency. Duck hatcheries 
commonly incubate and hatch duck eggs, but they encounter 
a significant problem with surplus male ducklings. These 
excess males are unprofitable due to their higher feed 
consumption, negative impact on the fertility and growth of 
female ducks, and limited demand solely for breeding 
purposes. Moreover, the requirement of one male for every 
ten females further diminishes the demand and market value 
of these male ducklings. As a result, they are either sold at 
low prices or culled and disposed of as waste. In the duck 
hatchery business, disposing of these surplus male ducks at a 
loss has been the prevailing norm, offering minimal chances 
of recovering capital investments [4]. 

Avian species demonstrate sexual dimorphisms that can 
manifest during maturity or early developmental stages. For 
example, Müsse et al. [6] verified the presence of sexual 
dimorphisms in Ross 308 chickens based on bodyweight, 
with the weight difference between males and females 
increasing as they age. This dimorphism is also observed in 
ducks, including Muscovy, Pekin, and Sudani ducks, as 
confirmed by Makram et al. [7]. Another sexual dimorphism 
in avian species relates to egg shape. Yilmaz-Dikmen and 
Dikmen [8] initially established a correlation between 
pointed eggs and male chickens, whereas more rounded eggs 
had a higher probability of hatching female chickens. In 
ducks, Idahor [9] found that more conical duck eggs were 
associated with males, while more oval-shaped eggs resulted 
in more females. However, it is worth noting that this 
method is not considered a reliable metric for sexing. Ducks 
exhibit a sexual dimorphism in the asymmetry of the 
syringeal bulla, where ducks with syringeal bullas are male, 
while those without are considered females. This was 
confirmed by Wilson et al. [10] through the examination of 
common eider embryos. Johnsgard [11] also confirmed this 
dimorphism in whistling ducks, observing that males have a 
more oval syringeal bulla structure, while females possess a 
simpler structure. Additionally, sexual dimorphisms can be 
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manifested chromatically in avian species' down feathers. 
For instance, in Igic et al.'s [12] study of New Zealand 
whiteheads, males were observed to have brighter head and 
chest colors compared to females. Similarly, MacArthur and 
MacIlraith [13] found that female brown leghorn chicks 
exhibited darker down feathers compared to their male 
counterparts. However, it is important to note that this sexual 
dimorphism is not absolute, with a maximum sexing 
accuracy of 98% [14]. 

The AI system utilizes various features and indicators to 
distinguish between male and female duck embryos. These 
features can include visual characteristics such as plumage 
color, body size, shape, or internal structures like the 
syringeal bulla. Machine learning algorithms are trained on 
large datasets of labeled duck embryo images to learn and 
classify the sex of the embryos accurately. Only few papers 
are written for this kind of field. Research studies, such as 
Dioses et al. [15], have explored the use of advanced 
machine learning techniques, such as support vector 
machines (SVM), to analyze morphological features of duck 
eggs and improve sex determination accuracy. However, 
despite their efforts, the achieved accuracy of 87% highlights 
the need for further advancements in AI-based approaches. 
M. Kayadan and Y. Uzun [16] proposed RUSBoost 
Classifier to perform sex determination upon chicken eggs. 

 This paper presents a hybrid deep-learning model for sex 
determination of duck eggs using a non-invasive system. The 
main contributions of this paper are as follows: 

1) The paper proposes a non-invasive method of sex 

determination for duck eggs using geometric features and 

spectral properties using camera and spectrometer. 

2)  The paper also uses machine learning to classify the 

duck eggs. The method combines CNN and GRU, with 

CNN extracting features and GRU capturing their temporal 

dependencies. Regularization techniques are employed to 

prevent overfitting, and GRU interprets the extracted 

features. 
The paper is structured as follows. Section II reviews the 

theoretical foundations of CNN and GRU. Section III 
presents the proposed method that explains the process of 
duck sex determination. Section IV reports the results of the 
experiments. Finally, Section V summarizes the main 
contributions and implications of the study. 

II. THEORETICAL BACKGROUND 

A. Convolutional Neural Network 

The CNN is a type of feedforward neural network that 
utilizes a convolutional architecture to automatically extract 
features from data. Unlike traditional feature extraction 
methods, CNN does not rely on manual feature engineering. 
Inspired by human visual perception, the architecture of 
CNN incorporates activation functions that simulate the 
transmission of neural electric signals exceeding a specific 
threshold to the subsequent neuron. CNN kernels represent 
multiple receptors capable of detecting various features, with 
each artificial neuron corresponding to a biological neuron 
[16]. 

To facilitate learning, loss functions and optimizers are 
employed to train the entire CNN system and align its 
outputs with the desired expectations. CNN offers several 
advantages. Firstly, it employs local connections, where each 

neuron is selectively connected to a subset of neurons in the 
preceding layer. This localized connectivity effectively 
reduces the number of parameters and accelerates the 
convergence of the network. Secondly, weight sharing is 
employed, allowing a group of connections to share the same 
weights, further reducing the overall number of parameters. 
Thirdly, down sampling via pooling layers exploits the 
inherent local correlation present in images to reduce the data 
size while preserving essential information. Additionally, 
pooling can help discard irrelevant or trivial features, 
contributing to parameter reduction. 

B. Gated Recurrent Unit 

The vanishing-exploding gradient is likewise dealt with 
by the GRU, but it reduces the gates and outputs [17]. The 
GRU's model equations are: 

𝑧𝑡 = 𝜎(𝑏𝑟𝑧 + 𝑏𝑖𝑧 + 𝑈𝑧ℎ𝑡−1 +𝑊𝑧𝑥𝑡)                             () 

𝑟𝑡 = 𝜎(𝑏𝑟𝑟 + 𝑏𝑟𝑖 + 𝑈𝑟ℎ𝑡−1 +𝑊𝑟𝑥𝑡)                             (2) 

ℎ̃𝑡 = tanh(𝑏𝑟ℎ + 𝑏𝑖ℎ + 𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) +𝑊ℎ𝑥𝑡)            () 

ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ ℎ̃𝑡                                       () 

where 𝑧𝑡 , 𝑟𝑡 , and ℎ𝑡  represent the update, reset, and 
candidate activation gates, respectively. Additionally, 𝑏𝑖 and 
𝑏𝑟: stand for the input and recurring biases. Compared to the 
LSTM, the GRU contains one extra bias term but just one 
recurrent output. According to an empirical investigation, the 
GRU performs better than the LSTM on all tasks besides 
natural language processing. However, for deep multi-layer 
networks, gradient decay affects both GRU and LSTM, 
lengthening the training period. 

III. METHODOLOGY 

The proposed method in this study utilizes a combination 
of CNN and GRU networks to effectively capture both 
spatial and temporal features of duck eggs for gender 
determination. By leveraging CNN’s ability to extract spatial 
features from the images of the eggs and the GRU's 
capability to capture temporal dependencies in the data, the 
proposed method aims to achieve improved accuracy in 
gender classification. 

A. Data Gathering 

In this study, two sexual dimorphisms, namely the color 

of the duck's plumage and the shape of the egg, have been 

selected based on existing literature. To collect the plumage 

color data, a spectrometer will be employed, as it has been 

shown to be effective for this purpose according to Corion's 

study [18]. Additionally, for capturing the egg shape, a 

conventional USB camera will be utilized, following the 

techniques outlined by Dioses et al. [15]. These chosen 

methodologies are supported by previous research and will 

serve as the data collection methods for the respective 

sexual dimorphisms in this study. 

B. CNN-GRU 

To address the challenges in reliability, a Machine 
Learning Model will be employed. For this specific 
application, the chosen model needs to be recent, adjustable, 
and capable of handling the features to be measured. 
Considering these requirements, the CNN-GRU model has 
been identified as the most suitable choice for analyzing data 
from both the spectrometer and USB camera. The CNN-
GRU model possesses the necessary capabilities to 
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effectively process and interpret the collected data, making it 
an optimal solution for this study.  

The proposed CNN-GRU model comprises three key 
blocks as shown in Fig. 1. The first two blocks consist of two 
Convolutional Layers each, followed by a MaxPooling Layer 
and a Batch Normalization layer. These blocks are then 
connected to the final block, which includes a single GRU 
layer, followed by two fully connected layers with a dropout 
layer in between. 

The purpose of the CNN layers is to extract relevant 
features from the input data. By applying convolutional 
operations, these layers can effectively capture and represent 
the distinctive characteristics present in the acquired data. 
The subsequent MaxPooling Layer reduces the spatial 
dimensions of the features, while the Batch Normalization 
layer normalizes the outputs to facilitate stable training. 

The GRU layer plays a crucial role in learning the 
features and their dependencies within the data. It utilizes 
gated recurrent units to capture the temporal relationships 
and dependencies present in the sequence of features. This 
allows the model to effectively interpret the data and 
generate appropriate activations. 

Finally, the fully connected layers with a dropout layer 
between them help in mapping the learned features to the 
correct output classes. The dropout layer aids in preventing 
overfitting by randomly disabling a fraction of the neurons 
during training, promoting generalization and improving the 
model's performance. 

Overall, the combined CNN-GRU architecture leverages 
the strengths of both convolutional and recurrent layers. The 
CNN layers excel in feature extraction, while the GRU layer 
effectively learns the dependencies and patterns within the 
features, ultimately leading to accurate predictions in the 
fully connected layers. 

C. Process Flow of the Proposed Method 

The process flow of the proposed method is shown in 

Figure 2. The proposed methodology for determining the 

sex of duck eggs involves a series of technical processes: 

 

1) Acquisition of duck eggs: The eggs are obtained for 

analysis and data collection. 

2) Sampling using sensors for image and spectral data 

acquisition: Sensors are employed to capture both image 

data and spectral data from the sampled eggs. This enables 

the extraction of visual and spectral features relevant to 

gender determination. 

3) Cracking of eggs and labeling: Each egg is cracked 

to reveal its internal characteristics, and based on the 

observed color, the true label is assigned. Specifically, eggs 

with a black color are labeled as male, while those with a 

brown color are labeled as female. 

4) Training of the CNN-GRU machine learning model: 

The acquired image and spectral data, along with the 

corresponding labels, are utilized to train a CNN-GRU 

model. The model learns to recognize patterns and 

relationships between the input data and the gender labels. 

5) Hyperparameter tuning: The hyperparameters of the 

CNN-GRU model are fine-tuned to optimize its 

performance. This involves selecting the appropriate values 

for parameters such as learning rate, batch size, and 

regularization techniques to enhance the model's accuracy 

and generalization. 

6) Testing with labeled and unlabeled data: The trained 

CNN-GRU model is evaluated using both labeled and 

unlabeled image and spectral data. The model predicts the 

gender of the duck eggs based on the learned features and 

associations. The accuracy of the model in identifying the 

sex of the eggs is assessed through this testing process. 

By following these technical steps, the study aims to 

develop a reliable and accurate method for determining the 

sex of duck eggs using the combined power of CNN-GRU 

machine learning model and image and spectral data 

analysis. The block diagram of the whole prototype is 

shown in Figure 3. 

IV. RESULTS AND DISCUSSION 

The proposed method has a prototype produced with 
spectrometer and camera to collect data from the egg. The 
collected data is analyzed by the CNN-GRU algorithm and 
interpret as male or female ducks. 

A. Data Collection and Processing 

In this study, a technical approach was employed to 
investigate fertilized duck eggs. The eggs were sourced from 
a duck farm located in Zaragosa, Nueva Ecija, Philippines. A 

Fig. 1. Architecture of the Proposed CNN-GRU Model 

 

 
Fig. 2. Process flow of duck sexing using spectral data and image 

processing. 
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total of 500 duck eggs were selected randomly, disregarding 
their shape and size. These eggs were obtained from a 
diverse pool of fertilized duck eggs, ranging in age from 16 
to 20 days.  

Compared to a previous study referenced as [17], which 
only considered 170 egg samples, the number of eggs 
analyzed in this paper is significantly higher. The increase in 
sample size was implemented to enhance the accuracy of the 
proposed method. 

To collect data from the eggs, two sensors were utilized. 
These sensors enabled the acquisition of both image data and 
spectral data from the eggs. Once the data was obtained, the 
eggs were cracked open, allowing for the acquired 
information to be labeled based on the gender of the duckling 
inside. Specifically, a black duckling was labeled as male, 
while a brown duckling was labeled as female.  

Following the labeling of each data point, a 
Convolutional Neural Network-Gated Recurrent Unit (CNN-
GRU) model was employed to train the machine learning 
algorithm. The image data and spectral data obtained were 
processed using the Python programming language and 
executed within a Jupyter Notebook environment. 

One of the challenges encountered during data processing 
was the data imbalance issue, as there were a higher number 
of labeled female ducklings compared to labeled male 
ducklings. To address this, a technique called SMOTE 
(Synthetic Minority Oversampling Technique) was 
employed to augment and balance the data. SMOTE 
generates synthetic samples for the minority class (i.e., 
labeled male ducklings) to achieve a more equitable 
representation of both classes. 

For the automation of egg sexing, the trained CNN-GRU 
model was integrated into a Raspberry Pi 3B 
microcontroller. The Raspberry Pi 3B served as the hardware 
platform for implementing the model and performing sex 
detection of the eggs. 

B. Hatchability 

To evaluate the safety of the sexing device, an 
experiment was conducted using non-invasive visual capture 
technologies. The device was designed to recognize and 
process the properties of the eggs without adversely affecting 
the hatchability rate of the population. 

The experiment involved a population of 500 eggs, and 
the objective was to ensure that the device's operation did not 

result in a hatchability rate lower than 60%. This hatchability 
rate is considered acceptable in the context of the study. 

To assess the safety of the device, the eggs were 
subjected to the sexing process using the implemented 
technology. Throughout the experiment, it was crucial to 
ensure that the device's operation did not introduce any 
harmful effects that could compromise the development and 
viability of the embryos inside the eggs. 

Figure 3 shows the comparison of the hatchability 
between manual and prototype. By utilizing suitable non-
invasive visual capture technologies, the device aimed to 
minimize any potential risks and ensure the safety of the 
eggs. The properties of the eggs were accurately recognized 
and processed without negatively impacting their overall 
hatchability rate, which remained above the targeted 

threshold of 60%. 

C. Comparison of Results 

In the design of the machine learning algorithm for sex 

identification of duck eggs, the primary considerations 

include achieving an accuracy greater than 86% in 

accurately identifying the sex of duck eggs between 16-20 

days old. Relevant features for distinguishing between male 

and female duck eggs are determined based on prior 

literature, and a dataset of 500 duck eggs is obtained from 

which the data is divided into train, test, and validation sets. 

The model's performance is assessed using a confusion 

matrix, with the validation set serving as a measure of the 

algorithm's accuracy and effectiveness in sex identification, 

as shown in Table 1. 

 
Fig. 3. Block Diagram of Proposed in-Egg Sexing Device 

 
Fig. 3. Hatchability comparison between manual and prototype 
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Table 1 showcases the performance of the optimized 
CNN-GRU model on a dataset of 152 duck eggs. The model 
incorporates proprietary hyperparameter tuning by the 
researchers. Impressively, the model achieves a remarkable 
accuracy of 98.68% in accurately identifying the sex of the 
duck eggs. The experimental design for the optimized model 
involves conducting 100 tests to ensure the precision and 
reliability of the predictions made by the model. 

TABLE I.  CONFUSION MATRIX OF THE PROPOSED METHOD 

Confusion Matrix 

True Positive False Positive True Negative False Negative 

74 1 1 76 

 

The proposed method is also compared to two methods. 
This section compares the simulation results produced by the 
proposed approach to those produced by two existing 
methods [20][21] for image classification. The two existing 
methods are Convolution Neural Network with XGBoost 
(ConvXGB) and Differentiable Architecture Search 
(DARTS).The algorithms’ evaluation is based on a sample 
coming from a 500 duck eggs dataset divided into three 
sections – train set, test set, and validation set. The 
assessment yielded the following result. 

TABLE II.  COMPARISON OF RESULTS 

Algorithm Accuracy 
Processing Time 

(ms) 

ConvXGB[20] 81.81% 10.22 

DARTS [21] 72.73% 43.99 

Proposed Method 98.68% 37.46 

 

The proposed method demonstrates superior performance 
compared to existing methods, exhibiting a higher level of 
accuracy in sex determination. When compared to the 
approach presented by Dioses et al. [15], the proposed 
method achieves a significantly higher accuracy rate. 
Additionally, in terms of processing time, the proposed 
method successfully meets the predetermined target of 
processing a single egg for sex determination in less than 1 
second. This showcases the efficiency and effectiveness of 
the proposed method in handling the computational tasks 
associated with sex determination in a timely manner. 

V. CONCLUSION AND FURTHER STUDIES 

In conclusion, this research project successfully 
developed a non-invasive device that accurately predicts the 
sex of duck eggs by leveraging plumage color and egg 
geometric features. By employing a spectroscope and camera 
for data collection, the study achieved an impressive 
accuracy rate of 98.68% in determining the sex of the eggs. 
Moreover, the processing time for the prediction was 
efficient, with an average of 37.46 milliseconds, indicating 
the practicality and real-time applicability of the developed 
device. 

Importantly, the study also demonstrated the safety of the 
spectroscopy and device, as they did not have any 
detrimental effects on the eggs. This was evident from the 
hatchability rate of 74.80%, ensuring the profitability and 
quality of the duck eggs in the industry. To further enhance 

productivity, the researchers suggest exploring the possibility 
of processing a larger number of eggs in a single run, which 
would be beneficial for duck farmers. 

Overall, this research project provides a valuable 
contribution to the field of sex determination in duck eggs, 
offering a reliable and efficient non-invasive solution. It 
holds significant potential for practical implementation in the 
industry, empowering duck farmers with improved accuracy 
and productivity in managing the sex distribution of their 
flocks. 

Furthermore, the research focuses on early-stage 
embryonic development, falling within the range of 16-18 
days. Based on the available scientific literature and studies 
on ducks, it has been well-documented that ducks typically 
have an embryonic development period of 28 days [23]. 
According to the University of Illinois Urbana-Champaign 
Policy on Embryonated Avian Eggs in Research and 
Teaching [24], exemptions can be made on research 
involving avian embryos that will be euthanized prior to 
completing 75% of the total expected incubation period does 
not require IACUC review. Since the intended target falls 
significantly earlier than the full 28-day embryonic 
development, it is reasonable to conclude that the research 
can be exempted from the IACUC process [25]. The early-
stage developmental focus ensures that the research does not 
involve significant interventions during the later stages of 
embryonic development, thus reducing potential ethical 
concerns related to animal welfare. 
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