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Abstract—GNSS (Global Navigation Satellite System) is cur-
rently used in a variety of applications, and its positioning
accuracy requirements become more and more demanding. We
focus on an automatic strawberry pollination robot (under
development in Kobe City College of Technology) and study
a method of successive moving baseline vector estimation.
In this paper, we propose a method to estimate accurate
successive moving baseline vectors based on the difference of
the single GNSS receiver observables obtained at two successive
observation time (epoch). Furthermore, we also propose a
method to estimate the bias error included in the solution
of the moving baseline vector. Throughout the experiment,
the proposed method and the relative positioning method are
compared, and the results show that the proposed method can
provide the baseline vector with the accuracy of 1.06 cm.

Index Terms—GNSS, Point positioning, Relative positioning,
Kalman filter

I. INTRODUCTION

GNSS is currently used in a variety of applications [1],
and its positioning accuracy requirements become more and
more demanding. In this paper, we focus on an automatic
strawberry pollination robot that repeatedly moves and stops
at low speed about less than 1 meter per 1 minute.

A. Strawberry Pollination Robot

Fig. 1. Strawberry Pollination Robot

Fig. 1 shows the image of strawberry pollination robot.
The strawberry pollination robot searches for the target
strawberry’s flower using single camera and pollinates au-
tomatically by the robot arm in strawberry field [2]. To
pollinate precisely, the angle and three dimensional position
from robot to the target flower are required. The robot
equipped single camera moves and takes two images of the
flower at the start and end point. The relative angle and the
three dimensional position of the flower from the robot can
be obtained by applying the moving stereo image processing
technique, e.g. [3] to the images. In order to implement the
stereo image processing precisely, the moving baseline vector
need to be precisely estimated. In this paper, we propose a
method to estimate the moving baseline vector by using the
single GNSS receiver [4], [5].

B. Concept of Proposed Method

Fig. 2. Proposed Method

In this paper, we propose a method to estimate accurate
successive moving baseline vectors based on the difference
of the GNSS receiver observables obtained at two successive
observation time (epoch). Fig. 2 shows the relation between
the observation epoch and the position of the robot. The
position at epoch k (time tk) is denoted by uk, and the robot
moves from u0 to uN , where tk ≡ t0+ k∆T and ∆T is the
sampling interval.

The concept of the proposed method is to estimate the
moving baseline vector between two successive epochs uk−
uk−1 based on the difference of observables at k and k − 1
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that are obtained by one receiver. By summing the estimated
moving baseline vectors, we can also obtain the position of
the robot relative to the start point u0. In this paper, we
consider the case that the baseline length from u0 to uN is
about 1 meter for 1 minute, and the sampling time interval
is 1 second, i.e. ∆T = 1.

The idea of the proposed method is based on the so-called
moving base method proposed in [6], [7]. In [6], [7], the
relative position between two moving receivers are obtained
with millimeter to centimeter level accuracy. The principle
of the moving base is similar to the relative positioning
method [8] which can provide the highest accuracy in GNSS
positioning methods. In this paper, we modify the moving
base method and apply it to the one receiver case. If the
sampling time interval is sufficiently short, e.g. less than 5
[s], almost same accuracy of the moving base method can be
expected. Although highly accurate estimates of the moving
baseline vector are expected by the relative positioning, it
is widely known that they have small (millimeter level for
short baseline) errors. The small errors are mainly caused by
the surrounding environments, and can be regarded as bias
errors within several minutes. In this paper, therefore, we
also propose a method to estimate the bias error utilizing the
estimation results during the robot stops. And we correct the
estimated moving baseline vector by the estimated bias when
the robot in moving.

II. MEASUREMENT MODELS
AND MOVING BASELINE ESTIMATION

Hereafter, the model of observables is shown for only
GPS (Global Positioning System) of the U.S. [9], [10], and
it can be easily extended to other satellite systems. Let
ρpi (k) denote the code pseudorange observation of satellite
p at epoch k. The subscript i is the index of the type of
code pseudorange, such that i = 1 means C/A code and
i = 2 means P(Y) code. Similarly, let Φp

j (k) denote the
carrier phase observation. The subscript j is the index of the
frequency band, such that j = 1 means L1 band and j = 2
means L2 band [8], [11]. They are typically expressed as
follows:

ρp1(k)=rp(k) + c{δt(k)− δtp(k)}+ δIp(k)

+δT p(k) + ep1(k), (1)

ρp2(k)=rp(k) + c{δt(k)− δtp(k)}+ f2
1

f2
2

δIp(k)

+δT p(k) + ep2(k), (2)
Φp
1(k)=rp(k) + c{δt(k)− δtp(k)} − δIp(k)

+δT p(k) + λ1N
p
1 + εp1(k), (3)

Φp
2(k)=rp(k) + c{δt(k)− δtp(k)} − f2

1

f2
2

δIp(k)

+δT p(k) + λ2N
p
2 + εp2(k), (4)

where c (≈ 2.99792458×108 m/s) denotes the speed of light,
f1(= 1575.42 MHz) and λ1 are central frequency and the
wave length of the L1 carrier wave. Similarly, f2(= 1227.6
MHz) and λ2 are central frequency and the wave length
of the L2 carrier wave, respectively. δIp is the ionospheric
delay, and δT p is the tropospheric delay. Np

j denotes carrier

phase ambiguity between the satellite p and the receiver. e
and ε are the observation noises. δt(k) is the receiver clock
error. δtp(k) is the satellite clock error.

rp(k) is the geometric distance between the receiver and
the satellite p. Namely, rp(k) ≡ ||uk − sp(k)||, where
uk ≡

[
xk, yk, zk

]T
is the unknown user position, sp ≡[

xp, yp, zp
]T

is the satellite position , and ||a|| denotes the
Euclidean norm of vector a.

Then, applying the 1st order Taylor series approximation
around the a priori estimate uk = ûk, the linearized obser-
vation equations are obtained as follows:

ρ̃p1(k)=ρp1(k)− rpûk
(k) + gpûk

ûk

=gpûk
(k)uk + c{δt(k)− δtp(k)}+ δIp(k)

+δT p(k) + ep1(k), (5)
ρ̃p2(k)=ρp2(k)− rpûk

(k) + gpûk
ûk

=gpûk
(k)uk + c{δt(k)− δtp(k)}+ f2

1

f2
2

δIp(k)

+δT p(k) + ep2(k), (6)
Φ̃p
1(k)=Φp

1(k)− rpûk
(k) + gpûk

ûk

=gpûk
(k)uk + c{δt(k)− δtp(k)} − δIp(k)

+δT p(k) + λ1N
p
1 + εp1(k), (7)

Φ̃p
2(k)=Φp

2(k)− rpûk
(k) + gpûk

ûk

=gpûk
(k)uk + c{δt(k)− δtp(k)} − f2

1

f2
2

δIp(k)

+δT p(k) + λ2N
p
2 + εp2(k), (8)

where

rpûk
(k)≡||ûk − sp(k)||,

gpûk
(k)≡

[
∂rp(k)

∂uk

]T
uk=ûk

=
{ûk − sp(k)}T

||ûk − sp(k)||
.

A. Satellite-Satellite Single Difference

If we also obtain the same types of observations for
satellite q, we can eliminate errors caused by the receiver
such as receiver clock error and receiver hardware bias, by
differencing them. This is called the satellite-satellite single
difference and can be expressed as follows:

ρpqi (k) ≡ ρpi (k)− ρqi (k), (9)
Φpq
j (k) ≡ Φp

j (k)− Φq
j(k). (10)

Based on the linearized equations (5)–(8), the single differ-
ences are expressed as follows:

ρ̃pq1 (k)=ρ̃p1(k)− ρ̃q1(k)

=gpûk
uk − gqûk

uk + c(δtq − δtp) + δIp − δIq

+δT p − δT q + ep1 − eq1
=gpqûk

uk + cδtqp + δIpq + δT pq + epq1 , (11)
ρ̃pq2 (k)=ρ̃p2(k)− ρ̃q2(k)

=gpûk
uk − gqûk

uk + c(δtq − δtp) +
f2
1

f2
2

(δIp − δIq)

+δT p − δT q + ep2 − eq2

=gpqûk
uk + cδtqp +

f2
1

f2
2

δIpq + δT pq + epq2 , (12)
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Φ̃pq
1 (k)=Φ̃p

1(k)− Φ̃q
1(k)

=gpûk
uk − gqûk

uk + c(δtq − δtp)− (δIp − δIq)

+δT p − δT q + λ1(N
p
1 −Nq

1 ) + εp1 − εq1
=gpqûk

uk + cδtqp − δIpq + δT pq

+λ1N
pq
1 + εpq1 , (13)

Φ̃pq
2 (k)=Φ̃p

2(k)− Φ̃q
2(k)

=gpûk
uk − gqûk

uk + c(δtq − δtp)− f2
1

f2
2

(δIp − δIq)

+δT p − δT q + λ2(N
p
2 −Nq

2 ) + εp2 − εq2

=gpqûk
uk + cδtqp − f2

1

f2
2

δIpq + δT pq

+λ2N
pq
2 + εpq2 , (14)

where

gpqûk
≡gpûk

− gqûk
,

δtqp≡δtq − δtp,

δIpq≡δIp − δIq,

δT pq≡δT p − δT q,

Npq
j ≡Np

j −Nq
j ,

epqi ≡epi − eqi ,

εpqj ≡εpj − εqj .

B. Single Difference Between Two Epochs

Similarly, the satellite-satellite single difference can be
obtained for epoch k−1. Furthermore, by differencing these
successive single differences, errors due to satellite side such
as satellite clock error, tropospheric and ionospheric effects,
and carrier phase ambiguity can be eliminated because they
are rigorously constant or considered to be constant within
a short time span. Finally, code pseudorange and carrier
phase observations in the proposed method are formulated
as follows:

ρpqi (k, k − 1)≡ρpqi (k)− ρpqi (k − 1)

=ρpi (k)− ρqi (k)

−ρpi (k − 1) + ρqi (k − 1), (15)
Φpq
j (k, k − 1)≡Φpq

j (k)− Φpq
j (k − 1)

=Φp
j (k)− Φq

j(k)

−Φp
j (k − 1) + Φq

j(k − 1). (16)

Based on the linearized expression (11)–(14), and substitut-
ing the a priori estimate ûk by ûk−1 for linearization such

that gpûk−1
(k) ≡

[
∂rp(k)
∂uk

]T
uk=ûk−1

, we obtain

ρ̃pq1 (k, k − 1)=gpqûk−1
(uk − ûk−1) + cδtqp(k, k − 1)

+δIpq(k, k − 1) + δT pq(k, k − 1)

+epq1 (k, k − 1), (17)
ρ̃pq2 (k, k − 1)=gpqûk−1

(uk − ûk−1) + cδtqp(k, k − 1)

+
f2
1

f2
2

δIpq(k, k − 1) + δT pq(k, k − 1)

+epq2 (k, k − 1), (18)

Φ̃pq
1 (k, k − 1)=gpqûk−1

(uk − ûk−1) + cδtqp(k, k − 1)

−δIpq(k, k − 1) + δT pq(k, k − 1)

+λ1N
pq
1 (k, k − 1)

+εpq1 (k, k − 1), (19)
Φ̃pq
2 (k, k − 1)=gpqûk−1

(uk − ûk−1) + cδtqp(k, k − 1)

−f2
1

f2
2

δIpq(k, k − 1) + δT pq(k, k − 1)

+λ2N
pq
2 (k, k − 1)

+εpq2 (k, k − 1). (20)

In (17)–(20), gpqûk−1
is a known 1 × 3 vector. Also, the

difference of satellite clock error

δtqp(k, k − 1) ≡ δtqp(k)− δtqp(k − 1),

and the ionospheric and tropospheric delays

δIpq(k, k − 1)≡δIpq(k)− δIpq(k − 1),

δT pq(k, k − 1)≡δT pq(k)− δT pq(k − 1)

are negligible for short baseline and short time span. The
carrier phase ambiguity

Npq
j (k, k − 1) ≡ Npq

j (k)−Npq
j (k − 1)

is rigorously zero as long as the receiver continuously tracks
the satellite signal.

Therefore, finally, we obtain the observation equations for
moving baseline estimation in a very simple expression as
follows:

ρ̃pqi (k, k − 1)=gpqûk−1
(uk − ûk−1) + epqi (k, k − 1), (21)

Φ̃pq
j (k, k − 1)=gpqûk−1

(uk − ûk−1) + εpqj (k, k − 1), (22)

where

epqi (k, k − 1)=epqi (k)− epqi (k − 1),

εpqj (k, k − 1)=εpqj (k)− εpqj (k − 1).

C. Moving Baseline Estimation

Since the robot moves at low speed, assuming its small
velocity can be expressed by small Gaussian white noises,
the state equation is expressed by equation (23).

x(k + 1)=x(k) + w(k), (23)

where

x(k)≡uk − ûk−1.

For multiple satellites (p = 1, q = 2, · · · , ns), the observ-
ables in equations (21) and (22) are expressed as vectors
yi and yj , e.g. yi ≡ [ρ12i , ρ13i , · · · , ρ1ns

i ]T. Similarly, ob-
servation noises epqi (k, k − 1) and εpqj (k, k − 1) in (21)
and (22) are expressed as vectors ei and εj , e.g. ei ≡
[e12i , e13i , · · · , e1ns

i ]T. The whole observation equation can
be expressed as equation (24).

y(k)=H(k)x(k) + v(k), (24)

where

y(k)≡
[
yi
yj

]
, H(k)≡

[
Gpq

Gpq

]
, v(k)≡

[
ei
εj

]
,
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Gpq≡
[
g12ûk−1

T
, g13ûk−1

T
, · · · , g1ns

ûk−1

T
]T

.

The Kalman filter is applied to equations (23) and (24) to
estimate the robot’s moving baseline vector uk− ûk−1 [12]–
[14]. Finally, we obtain the position uk = ûk at epoch k by
adding the moving baseline vector uk− ûk−1 to the position
uk−1 = ûk−1 at epoch k − 1.

The filtered estimate of the above Kalman filter, which is
denoted by x̂(k|k), is the estimate of the moving baseline
vector between epochs k and k − 1. Therefore, let L̂N the
moving baseline L in Fig. 1, and it can be obtained by
summing x̂(k|k) for k = 1, · · ·N as follows:

L̂N =

N∑
k=1

x̂(k|k). (25)

Also, the position uN = ûN relative to the starting position
u0 can be obtained as follows:.

ûN = L̂N + u0. (26)

III. THE BIAS ERROR ESTIMATION

It is well known, in the GNSS community, that the baseline
vector can be obtained with excellent accuracy by so-called
RTK (Real Time Kinematic) method [15]. For example,
according to the specification of the typical GNSS receiver
[16], the horizontal accuracy (RMS value)
0.6 + (0.5×10−6× baseline length) centimeters is achieved.

The method proposed in this paper is not the RTK method.
On the other, for the situation of the short baseline and
short time span, that is the assumptions in this paper, we
can consider that the similar principle which provides highly
accurate solution of the RTK method is also employed in
the proposed method. Therefore, it is expected that the
estimated moving baseline vector between successive epochs,
i.e. x̂(k|k), has almost the same accuracy as the RTK method.

However, it is also well known that the small error in
RTK solution mainly depends on surrounding environment
such as buildings, as well as satellite’s constellation. And
the small error varies slowly as it can be recognized as the
constant bias in the period of several minutes. In the proposed
method, the estimated baseline vector between successive
epochs are summed as shown in (25). Although the error
is small (millimeter level) individually, the sum will be large
as a few centimeters to several tens of centimeters.

To overcome this problem, we also propose a simple
but effective method to mitigate the influence of the small
error in x̂(k|k). In order to describe the algorithm, now
we assume the robot keeps stopping from time t0 to tM ,
and M + 1 epochs GNSS observation data are collected at
position u0 = u1 = · · · = uM , see Fig. 2 by substituting N
by M . Then, by applying the method in Section II, we obtain
the moving baseline vector as (25). Here, it is denoted by
L̂s,M , where the subscripts “s, M” mean the estimate based
on “s”topping, “M” epochs data. So that

L̂s,M=

M∑
k=1

x̂(k|k)

=

M∑
k=1

(x(k) + b). (27)

The vector x(k) is theoretically a zero vector because the
robot keeps stopping in this period. By assuming the small
error in x̂(k|k), which is denoted by b, is the constant for
M + 1 epochs, we can obtain the estimate of b as

b̂ =
L̂s,M

M
. (28)

Therefore, we estimate b̂ prior to the robot motion, the
bias error mitigation can be implemented by

L̂b,N =

N∑
k=1

(x̂(k|k)− b̂). (29)

Similarly, the position uN = ûN of (26) is corrected as
follows:

ûb,N = L̂b,N + u0. (30)

IV. EXPERIMENTAL RESULTS

We have carried out experiments under the open sky
environment and applied proposed method to real receiver
data. Table I shows experimental conditions. Through all
the observation epochs, the satellite constellation was the
same. The total number of satellites was 5 (ns = 5), and
we selected the satellite with highest elevation angle as the
reference satellite (p = 1) for single differencing operation
described in II-A.

TABLE I
EXPERIMENTAL CONDITIONS

Date April 20, 2022

Location Biwako-Kusatsu Campas,
Ritsumeikan University

Observation Data(GPST) 09:35’00–09:50’00
Antenna ANN-MB-00-00(u-blox)

Receiver AsteRx-m2 UAS(Septentrio)
FLEX6(NovAtel)

Sampling Interval 1 [s]
Elevation Mask 30 [deg.]

Measurement Data C/A P(Y) code pseudorange
L1 L2 carrier-phase

Used Satellite GPS

Fig. 3. Experiment Situation

The robot stopped at u0 for 2 minutes, then it started
moving at t0 =09:42’18, and after 41 seconds (N = 41),
it reached uN at tN =09:42’59 (see Fig. 3). The distance
moved was 1 m, which was measured by using a tape
measure.

The GNSS receiver AsteRx-m2 UAS of Septentrio was
equipped on the robot. Furthermore, to evaluate the accuracy
of the proposed method, another receiver, that is FLEX6 of
NovAtel fixed about 2 m aware from the robot collected
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Fig. 4. The Experimental Results of the Horizontal Coordinates

GNSS data simultaneously. Here, the performance of the
proposed method is evaluated by regarding the traditional
relative positioning (RTK) result between AsteRx-m2 and
FLEX6 as the reference trajectory.

Based on the 2 minutes GNSS data, that were collected
prior to the movement, the estimated small error (bias error
in x̂(k|k)), i.e. b̂ of (28) was

b̂ = [5.542, 0.004534,−3.058]T × 10−3 m.

Fig. 4 shows the estimates of the horizontal coordinates
of the robot. The pink and red square symbols show the
point u0 and uN obtained by the RTK method, respectively.
Also, the blue square symbols show the trajectory by the
RTK method. So, the square symbols are recognized as
the refence (true) for evaluating the proposed method. The
horizontal axis shows the coordinates of the east direction,
and the vertical one shows the north direction, where the
origin shows the position of FLEX6 receiver. In Fig. 4, the
estimated coordinates of the robot by the proposed method
without the bias correction, that is L̂N for N = 1, · · · 41 are
shown by the black circle symbols. Also, the estimates with
bias correction, that is L̂b,N for N = 1, · · · 41 are shown by
the orange circle symbols.

Now, focusing on the point uN where is the point of the
end of movement, the error of estimated position was 16 cm
in L̂41 (without bias correction), and 1.06 cm in L̂b,41 (with
bias correction).

Fig. 5. East Position Errors

Fig. 6. North Position Errors
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We also focus on the circle symbols by the proposed
methods and square symbols by the RTK method. Fig. 5
shows the relation between the observation time and the
east direction error of estimated position. Similarly, Fig. 6
shows the relation between the observation time and the north
direction error of estimated position. The east error of the
estimated position was 16.5 cm in L̂41 (final value of the
blue line) and 0.82 cm in L̂b,41 (final value of the orange
line). The north error of estimated position was 0.082 cm in
L̂41 and 0.67 cm in L̂b,41, both within 1 cm accuracy.

Fig. 7. The Accuracy of the Moving Baseline Vector

Furthermore, the accuracy of the moving baseline vector
x̂(k|k) is shown in Fig. 7. The horizontal axis shows the
observation time, and the vertical one shows the error of the
moving baseline vector estimated by the proposed method
and the RTK method. The error was finally 0.44 cm.

It can be seen from these results that the idea of bias
correction of Section III is very effective and the moving
baseline L is estimated precisely by the proposed method
with the bias correction.

V. CONCLUSIONS

In this paper, we proposed the new method to estimate the
short moving baseline vector of slowly moving robot by us-
ing the single GNSS receiver. The algorithm is based on the
difference of the successive two epochs GNSS observables.

Also, we proposed the simple but effective algorithm to
mitigate the influence of the small bias like estimation error
in the baseline vector between two successive epochs. From
the results of experiments, we can see that the proposed
algorithm achieves less than about 1 centimeter accuracy for
1 meter movement in several tens of seconds, and it is almost
the same performance of the traditional high accuracy RTK
method.

In the future study, we will evaluate the algorithm for
various kind of situations such as periods for estimating the
bias like error b, satellite constellation, as well as for the real
moving robot.

The proposed method assume that the robot moves at low
speed about less than 1 meter per 1 minute. Therefore, we

will also consider the algorithm in terms of speed as well,
such as by adding the Doppler observable to the observation
equation (24) and improving the state equation (23), to see
how the increase of the robot’s speed affects the accuracy of
the proposed method.
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