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Abstract — Surface Electromyography has gained tremendous 

significance in the recent years due to its suitability and 

reliability in a wide range of applications like automatic 

prosthetic control, diagnosis of neuromuscular disorders, in 

robotics and many such fields. Considering such applications, 

identification of various muscular movements is necessary and 

hence, EMG pattern recognition is needed. This paper focusses 

on a generalised EMG pattern recognition of various hand 

movements. The data from Ninapro Database - 4 has been used 

for pattern recognition. The database has Surface 

Electromyogram (sEMG) data of 52 various hand movements. 

The data was subjected to pre-processing, feature extraction 

and classification. An average accuracy of 64.87% was obtained 

for a combination of seven features in the time (temporal) 

domain, using Linear Discriminant Analysis (LDA) as the 

classification model. The obtained classification accuracies are 

compared and discussed with respect to the state-of-the-art 

literature. 
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I. INTRODUCTION  

 

Electromyogram signals are the biomedical signals 
that are generated due to muscular contraction, and the 

process of measuring these signals for analysis is called 

Electromyography. These signals contain information about 

the muscular state. They are measured using electrodes that 

are placed at the location of the desired muscular activity. 

Signal acquisition can be carried out in an invasive or non-

invasive way. The most preferred technique is the non-

invasive method, and the process is called Surface 

Electromyography. Surface Electromyogram (sEMG) signals 

have numerous applications in various domains, such as 

prosthetics, determination of muscle fatigue and 

neuromuscular disorders, and other clinical and industrial 
applications. 

 

It is seen that hand movement recognition based on 

sEMG signal processing has attained significance in recent 

years because of its ability to achieve automatic control of 

hand prosthetic devices [10]. Hence, pattern recognition 

methods were proposed to achieve hand movement 

classification by Englehart et al. [12] and many others. It is 

observed that features in the time domain gave a good 
performance in hand gesture identification [11]. It is also to 

be noted that the number of hand movements chosen can 

affect the accuracy of classification [12]. Some of the 

pioneering works carried out on the Ninapro Database 

include the analysis of Ninapro database by Manfredo Atzori 

et al. [14]; the comparison of six EMG acquisition setups for 

hand movement classification by Stefano Pizzolato et al. [2]; 

Fast Signal Feature Extraction Using Parallel Time Windows 

by Manfredo Atzori et al. [8]. 

 

In general, sEMG pattern recognition method 
involves these steps – Segmentation of data, Extraction of 

features and Classification [1]. In this work, the analysis of 

sEMG signals was carried out through the following four 

steps: (i) Data acquisition, where the acquired sEMG signal 

data of various subjects is imported from the database; (ii) 

Data pre-processing, to segregate the data for batch 

processing and filter out the noise signals; (iii) Feature 

extraction, to extract relevant time domain features and (iv) 

Classification, to classify various hand movements based on 

the extracted features.   

 

 In this paper, the main aim is to carry out EMG 
pattern recognition by hand movement classification using 

sEMG signal processing for various subjects and various 

feature combinations. The obtained classification accuracies 

are then to be compared with the available literature. This 

paper is subdivided into various sections: Section I contains 

an Introduction; Section II describes the methodology 

utilized in this work; Section III includes the results and 

relevant discussion and Section IV comprises the conclusion 

of the work carried out. 

 

II. METHODOLOGY 

 

The EMG pattern recognition is carried out by sEMG 

signal processing using MATLAB software, and this involves 

four steps as mentioned above: (i) Data acquisition; (ii) Data 

pre-processing; (iii) Feature extraction and (iv) 

Classification. Fig. 1 represents the block diagram of the 

methodology employed. 
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Fig. 1. Block diagram representing EMG Pattern Recognition method 

 

A. Data Acquisition 

 

The sEMG signal data used in this work has been obtained 

from Ninapro (Non–Invasive Adaptive Hand Prosthetics) 

Database 4 [2]. Ninapro is an open-source database publicly 
available for EMG data. In database 4, the EMG data 

corresponding to 52 hand movements was acquired from 10 

intact subjects [2]. These 52 movements included basic finger 

movements, basic wrist movements, isometric configurations 

and grasping movements. These movements were grouped 

into three different sets of exercises. The first exercise set, 

Exercise A, includes 12 basic finger movements. Exercise B 

contains 17 isotonic, isometric and basic wrist movements. 

Exercise C includes 23 different grasping and functional 

configurations. Figure 2 indicates some of the hand 

movement configurations used in the Ninapro database. As a 

part of signal acquisition, the subjects were asked to carry out 
each movement for a duration of 5 seconds, followed by a rest 

period of 3 seconds. Each movement was repeated six times 

[2].  

Fig. 2. Some of the hand movement configurations used in Ninapro 

database – 4 

 

 

The electromyogram signals were obtained from the 

forearm using Cometa Wave Plus wireless sensors connected 

to Dormo SX-30 ECG electrodes [2]. 12 electrodes were 

used: eight electrodes were placed on the forearm 

corresponding to the joint between the radius and humerus; 

two electrodes were positioned at the activity locations of 

flexor digitorum and extensor digitorum muscles; and two 

electrodes were positioned at the activity spots of biceps and 

triceps [2]. Since 12 electrodes were used, the data acquired 
has 12 channels. The database has 30 MATLAB files 

corresponding to the three exercises for 10 subjects. Each file 

contains the EMG data, the stimulus data representing the 

repetition of movements, and other general information such 

as height, weight, gender etc.  
 

B. Data Pre-processing 

 

 
              Fig. 3. Unfiltered and filtered sEMG signals from 12 channels 

 

The raw EMG data present in the Ninapro database-4 is 

imported into MATLAB software for processing. The EMG 

data corresponding to the stimulus data (repetition of 

movements) is mapped and stored in order to be used in batch 

processing. The data is sampled at a frequency of 2kHz [2]. 
During signal acquisition, there can be interference due to 

power lines, motion artifacts etc. Hence, in order to eliminate 

the noise signals, filtering of the EMG data is carried out. A 

high pass, Butterworth filter of fourth order, having a 10Hz 

cut-off frequency is used, followed by a low pass, 

Butterworth filter of fourth order, having a cut-off frequency 

of 1000Hz [2]. As the sEMG signals have both positive and 

negative amplitudes, it becomes arduous to carry out feature 

extraction. Also, there can be a loss of information while 

using certain formulas during feature extraction. Hence, the 

filtered EMG data is full wave rectified in order to convert 
the negative amplitude values into positive values, thereby 
preventing the loss of information [3]. Figure 3 shows the 

unfiltered and filtered EMG signals.  

 

C. Feature Extraction 

 

In order to acquire useful information from the raw sEMG 

data, feature extraction is carried out. These features are 

extracted by the process of windowing, where the entire 

signal is divided into small segments of fixed size called 

windows. Windowing technique is employed as EMG is a 

stochastic signal, and hence less information is available in 

any instantaneous sample of the signal [4]. The standard 

window size for EMG Signal processing is 200ms [5]. Hence, 
in this work, a window size of 200ms has been used. Further, 

these windows can be of two types – disjoint and overlapping. 

In this work, an overlapping sliding window with a window 

increment of 20Hz is used to extract the required features [8]. 

The windows can be of different types such as Rectangular, 
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Hamming, Hanning etc. Here, the type of window chosen is 
rectangular. 

 

The features to be extracted can belong to any of these 

three categories – time domain, frequency domain and time-

frequency domain [6]. This paper focuses on features from 

the time domain as time domain features are easy to extract 

and implement in real-time, compared to other domains. The 

time domain features extracted here are Root Mean Square 

(RMS), Mean Absolute Value (MAV), Zero Crossing rate 

(ZCR), Waveform Length, Average Power, Skewness and 

Kurtosis.  

 
(i) Root Mean Square (RMS) [6]: The Root Mean Square 

value is the square root of the mean of instantaneous values 

of the signal.  

  

                           𝑅𝑀𝑆 = √
1

𝑁
∑ |𝑥𝑛|2𝑁

𝑛=1                        (1) 

 
(ii) Mean Absolute Value (MAV) [6]: The Mean Absolute 

Value represents the moving average of the signal that is full 

wave rectified. 

 

                               𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥𝑛|𝑁

𝑛=1                         (2) 

 
(iii) Zero Crossing Rate (ZCR) [15]: Zero Crossing Rate 

represents the count of zero axis signal crossings, i.e., the 

number of times, the signal undergoes a sign change. 

 

               𝑍𝐶𝑅 =
1

2𝑁
∑ |𝑠𝑔𝑛(𝑥𝑛) −  𝑠𝑔𝑛(𝑥𝑛−1)|𝑁

𝑛=1       (3) 

 

where, sgn is the sign function such that, 

 

                          𝑠𝑔𝑛(𝑥𝑛) = {
0, 𝑥𝑛 < 0
1, 𝑥𝑛 ≥ 0

                       (4)           

 

(iv) Waveform length (WL) [6]: Waveform length indicates 

the cumulative length of the wave or signal over a segment. 

  

                         𝑊𝐿 = ∑ |𝑥𝑛+1 − 𝑥𝑛|𝑁
𝑛=1                        (5) 

 

(v) Average Power (AVGPOW) [16]: The average power of 

a signal is the average value of instantaneous power of a 

signal. 

 

                             𝐴𝑉𝐺𝑃𝑂𝑊 =
1

𝑁
∑ 𝑥𝑛

2𝑁
𝑛=1                  (6) 

 

(vi) Skewness (SKEW) [6]: Skewness indicates how the 

signal is spread about the mean value. 

                                        

𝑆𝐾𝐸𝑊 =
1

𝑁
∑ [

𝑥𝑛−𝑥̅

𝜎
]

3
𝑁
𝑛=1                  (7) 

 

(vii) Kurtosis (KURT) [6]: Kurtosis represents how the peaks 

of the signal are distributed in comparison to the normal 

Gaussian distribution. 

 

                        𝐾𝑈𝑅𝑇 = (
1

𝑁
∑ [

𝑥𝑛−𝑥̅

𝜎
]

4
𝑁
𝑛=1 ) − 3            (8) 

D. Classification 

 

Once the features were extracted, classification was 

carried out following the work of Englehart et al. [9, 17]. 

Labels were added to the EMG data and the extracted feature 

data to facilitate classification using machine learning 

algorithms. The extracted features were then used in various 
combinations for classifying the hand movements. According 

to Cipriani C et al., it is seen that for temporal features, Linear 

Discriminant Analysis (LDA) has a better performance than 

Multi-Layer Perceptron (MLP) [7]. Hence, Linear 

Discriminant Analysis (LDA), which is a supervised machine 

learning algorithm has been used for classification. LDA 

projects the data onto a lower-dimensional space to maximize 

the separation between the classes. In this work carried out, 

LDA of type ‘pseudolinear’ has been employed. During 

classification, the signals corresponding to the 52 movements 

are classified into different classes. 60% of the data was 
utilized for training the classification model and 40% of the 

data was utilized for testing the classifier. The different 

feature combinations used are: (i) RMS; (ii) MAV; (iii) ZCR; 

(iv) WL; (v) RMS, MAV, ZCR; (vi) RMS, MAV, WL; (vii) 

RMS, ZCR, WL; (viii) RMS, ZCR, WL, AVGPOW; (ix) 

RMS, MAV, WL, AVGPOW and (x) RMS, MAV, ZCR, 

WL, AVGPOW, SKEW, KURT. 

 

III. RESULTS AND DISCUSSION  

 
 The EMG data was imported from the database. The data 
was then subjected to pre-processing, followed by temporal 
feature extraction and classification using LDA. For 
classification, ten different feature combinations have been 
used. The average accuracies of all the ten subjects for the ten 
feature combinations were obtained separately for Exercises 
A, B and C. Then, an average of all the three exercises for the 
ten feature combinations was considered. The following table 
represents the average accuracies of the three exercises 
obtained for the various feature combinations for Database-4.  

 

TABLE I: AVERAGE CLASSIFICATION ACCURACIES OF 
DATABASE-4 FOR 10 FEATURE COMBINATIONS 

 

Sl 
.no 

Feature 
Combination 

Average 
Accuracy 

(%) 

1 RMS 48.14 

2 MAV 48 

3 ZCR 24.35 

4 WL 47.65 

5 
RMS, MAV, 

ZCR 
54.66 

6 
RMS, MAV, 

WL 
57.11 

7 RMS, ZCR, WL 56.69 

8 
RMS, ZCR, 

WL, AVGPOW 
60.44 

9 
RMS,MAV,WL, 

AVGPOW 
60.89 
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10 

RMS, MAV, 
ZCR, WL, 
AVGPOW, 

SKEW, KURT 

64.87 

 

      Table I records the average accuracies of all the ten 

feature groups. Figure 4 shows the graphical representation 

of average accuracies of all the ten feature groups. Figure 5 

indicates the Confusion Matrix of Subject 1 for Exercise A 

and 9th feature group. From the obtained accuracies, it is 
observed that the tenth feature group yields a maximum 

average accuracy of 64.87%. Also, the sixth feature group 

involving RMS, MAV and WL yields an accuracy of 57.11%. 

Among individual features, RMS and MAV give an accuracy 

of 48.14% and 48.00% respectively. The average accuracy 

for Exercises B and C for the tenth feature group was obtained 

as 59.36%.  It is seen that Stefano Pizzolato et al. obtained an 

accuracy of ⋍ 66% when they used a feature combination of 

RMS, Time domain statistics (TD), Marginalised discrete 

wavelet transform (mDWT) and Histogram together, with 
Support Vector Machine (SVM) as the classifier for 

classifying 41 different hand movements (Exercises B and C 

along with Rest hand configuration) [2]. Manfredo Atzori et 

al. obtained an accuracy of ⋍ 65.5% for the same feature 

combination using Random Forests as the classifier [8].  

 

It is observed that the accuracy obtained for the tenth 

feature group is less than the accuracy obtained by Stefano 

Pizzolato et al. [2] and Manfredo Atzori et al. [8]. One of the 

reasons for this could be the choice of features used in this 

work. The type of window and window increment used could 
have affected the accuracy. It is also to be noted that the 

number of movements chosen can affect the accuracy of 

classification [12]. Hence, for a particular dataset, feature and 

classifier, it is seen that the accuracy of classification reduces 

as the number of movements (classes) increases [13]. 

However, the accuracy obtained can be improved by the use 

of certain methods. It was observed by Omkar S et al. that the 

classification accuracy is enhanced by the application of 

Minimum Entropy Deconvolution Adjusted (MEDA) during 

the pre-processing stage [6]. Rami N et al. suggested that the 

output misclassifications by the classifier can be reduced by 

the use of Bayesian fusion post-processing method [4]. 
Krasoulis A. et al. suggested that the use of Inertial 

Measurements (IM) along with sEMG can boost the 

classification accuracy [10]. 

 

Fig 4. Plot of average accuracies for 10 feature groups 

 

 

Fig 5. Confusion Matrix of Subject 1 for Exercise A and 9th feature group 

 

IV. CONCLUSION 

 
EMG pattern recognition was carried out where the data 

from the Ninapro database - 4 was subjected to segregation, 

filtering and rectification. After pre-processing, seven 

temporal features were extracted. The features were then used 

for classification into various hand movements using LDA as 

the classifier. The maximum average accuracy obtained was 

64.87% for the tenth feature group. The obtained accuracies 

have been compared and discussed with respect to the 

literature. 
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