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Abstract— This research paper presents an automated 
system developed using Jetson Nano and the YOLOv5n6 
model for efficient and real-time detection and 
classification of pavement damage. The system offers a 
promising solution for transportation agencies in 
countries with extensive road networks, such as the 
Philippines, by reducing the need for manual inspections 
and streamlining maintenance efforts. By leveraging deep 
learning techniques, the proposed system demonstrates 
high accuracy in identifying various types of pavement 
damage, including cracks, alligator cracks, and potholes. 
The system's deployment on Jetson Nano provides 
efficient processing capabilities, enabling real-time 
analysis of video feeds from road cameras or mobile 
devices. The results of comprehensive evaluations indicate 
the system's adaptability to varying environmental 
conditions and its potential for large-scale 
implementation. The automated system contributes to cost 
savings, improved road safety, and enhanced management 
of pavement quality.   

Keywords—pavement distress, pavement distress 

classification, road infrastructure, pavement distress mapping, 

deep learning 

I. INTRODUCTION  

Roads are essential for economic development and 

provide social advantages by connecting people to job 

opportunities, social services, healthcare, and education. 

However, despite the construction of numerous road 

networks, congestion and overloading are prevalent in many 

areas. Factors such as natural wear and tear and human 

activities contribute to the deterioration of road surfaces, 

leading to issues like potholes, cracks, and unevenness. These 

problems increase fuel costs, prolong travel times, and pose 

risks to road safety. Detecting and addressing road distress at 

an early stage is crucial to prevent further damage and ensure 

safe and efficient transportation. 

To address this challenge, Fakhri and Dezfoulian 

(2017) emphasize the importance of regular pavement 

assessment in road network maintenance and rehabilitation 

[1]. They highlight the significance of various assessment 

techniques, including visual inspection, manual surveys, and 

automated systems. Automated systems, leveraging 

technologies like image processing, computer vision, and 

machine learning, offer benefits such as efficient data 

collection and objective assessments. These systems enable 

the timely detection of road distress, facilitating prompt 

interventions before conditions worsen or become hazardous. 

By implementing accurate pavement assessments, road 

infrastructure can be made safer and more durable. 

The proposed automated road distress detection, 

classification, and mapping system aim to improve the 

efficiency of road quality assessment. It includes the 

detection of distress, classification based on severity, and 

identification of different road surface types. Real-time 

mapping and monitoring of road quality are also incorporated 

into the design. The system utilizes a car-mounted camera to 

capture road conditions, with the coverage dependent on the 

camera's angle and placement. While the testing and analysis 

are limited to the city of Tanauan, the insights gained from 

this project can assist national specialists in evaluating road 

conditions. 

A. Pavement Quality 

It is important to choose a high-quality paving solution 

when constructing a road. The quality has a direct influence 

on how long and how effectively the asphalt surfacing will 

endure the effects of time, weather, and frequent use. High-

traffic roads and parking lots in harsh weather conditions 

demand asphalt mixtures.  

According to an article, road mishaps are responsible for 

the deaths of around 7,000 Filipinos each year, as well as the 

injuries of thousands more [2]. These statistics come from the 

World Health Organization (2021). Approximately 79 

percent of these incidents result from mistakes made by 

drivers, 11 percent are due to malfunctioning cars, and 10 

percent are due to poor road conditions and inadequate road 

maintenance. In most cases, the cause of these mishaps may 

be traced back to the driver's carelessness. Sometimes, 

drivers aren't the only ones to be blamed for accidents. A 

shocking number of automobile accidents occur yearly 

because of unsafe and deteriorated road conditions. 

Therefore, to promote road safety in our nation, the 

government's Department of Public Works and Highways 

should regulate the country's road infrastructures in a much 
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faster way to avoid accidents that shouldn't happen in the first 

place if the road had been maintained adequately.  

Asphalt must be stiff and resist distortion but also flexible 

and crack resistant. Stiffness and resistance to deformation 

allow asphalt to handle vehicle pressure; flexural strength 

prevents damage from contrasting pressures. The Philippines 

now has two kinds of asphalt: hot mix asphalt and cold mix 

asphalt. Hot mix asphalt consists of heated sand, gravel, and 

asphalt cement. Using this asphalt requires heating the mix 

between 300°C and 500°C before shipping and laying it at the 

desired location.  

On the other hand, cold-mix asphalt is frequently used for 

repairs and minor patches. This type of mixture does not need 

to be heated. Bags of cold mix asphalt can be poured straight 

upon potholes or cracks to prevent the damage from 

spreading. According to the Department of Public Works and 

Highways (DPWH), the acceptable IRI (International 

roughness index) for asphalt roads shall be less than 3.0 m/km 

for National Primary Road [3]. 

B. Monitoring and Maintenance of Asphalt Road 

The Department of Public Works and Highways (DPWH) 

is responsible for the planning, design, construction, and 

maintenance of national highways in the Philippines. 

Currently, road condition monitoring is conducted through 

manual inspections performed by surveyors. These surveyors 

visually assess road distress and record their findings, 

including the location and classification of the distress. 

Manuals are used to ensure consistent data collection, 

providing standards for the identification and severity rating 

of road defects. 

Previous research in 2018 from alumni of FAITH 

colleges, involved an interview survey with DPWH to gather 

insights into road condition evaluation [4]. The evaluation 

process, known as Local Road and Bridge Inventory and 

Condition Survey (LRBICS), relies on visual assessments by 

engineers. Road conditions are categorized as good, fair, 

poor, or bad based on the observed imperfections. The 

LRBICS manual draws from existing inventory, condition, 

and planning manuals used nationwide. 

However, these manual inspection techniques have 

limitations. They require specialized expertise and involve 

field trips that can be time-consuming, expensive, and 

potentially hazardous. Recommendations include the use of 

the Road Condition (ROCOND) manual by the Department 

of the Interior and Local Government (DILG) for LRBICS 

surveys. This manual incorporates references from various 

DILG and DPWH manuals and involves a survey team 

consisting of personnel from the planning, design, and 

maintenance divisions. 

While manual surveys are effective, practical, and widely 

used, they have drawbacks. They are costly, time-consuming, 

and reliant on the competence of the surveyor. Manual 

inspections also pose risks to surveyors working on highways 

and can disrupt traffic flow. Mr. Mario Sianquita, the 

Maintenance Point Person of the DPWH, highlighted the 

labor-intensive nature of manual inspections and expressed 

the need for an automated system to make the process faster 

and easier. 

In conclusion, there is a recognized need for an automated 

system to enhance the maintenance and monitoring of road 

pavements. The current manual survey approach, while 

effective, has limitations in terms of cost, time, accuracy, and 

safety. Developing an automated system would provide a 

faster and more efficient way to assess road conditions, 

ensuring timely interventions and improved road 

infrastructure management. 

C. Proposed Automated Pavement Distress Detection 

Classification and Mapping System 

The proposed automated road distress detection, 

classification, and mapping system are to be deployed to help 

Local Government Units (LGUs) in surveying road 

conditions. The design is featured to categorize cracks, rate 

road quality, assess whether a road is paved, and segment 

different asphalt road distresses such as cracks, alligator 

cracks, and potholes. Instead of physically examining roads, 

the suggested automated road distress detection will assist in 

monitoring, gathering, categorizing, and mapping road 

quality through real-time object detection based on different 

approaches to detect road distress. 

II. REVIEW OF RELATED LITERATURE 

This section contains a summary of the literature related 

to the theory and experiments carried out for this thesis. 

A. Crack Detection 

A study proposed by Lekshmipathy et al. (2020) presents 

two automated, cost-effective methods for evaluating 

pavement distress conditions. The first method involves 

smartphone sensor-based distress detection, using an 

Artificial Neural Network (ANN) to identify road defects [5]. 

The second method utilizes MATLAB coding for image 

processing to detect potholes, patches, and cracks from 

pavement video data. While both methods offer cost 

advantages and reasonable accuracy, the image processing 

approach is more effective than the vibration-based method, 

which detects distresses along the wheel path. The 

smartphone-based approach works day and night, while 

image processing requires artificial lighting at night. 

Combining methods could mitigate limitations and provide 

valuable insights into pavement conditions.  

Abbas and Ismael's study (2021) also underscores the 

transformative potential of image processing in pavement 

distress detection, aligning with the trend of enhancing 

infrastructure management through technology [6]. Their 

approach streamlines distress categorization, demonstrating 

efficient and precise outcomes. The automated process offers 

enhanced safety, user-friendliness, and cost-effectiveness, 

positioning it as a promising alternative for conventional road 

measurements.  

Du, Y., Pan, N., Zhang, X., Deng, F., Shen, Y., and Ke, 

H. (2020) employ a YOLO network-based approach to 

advance pavement distress detection [7]. Curating a dataset 

of 45,788 high-resolution images, each annotated with 

precise bounding boxes, they achieve a robust 73.64% 

detection accuracy and a processing speed of 0.0347s per 

image. Notably, their YOLO-based method outperforms 

Faster R-CNN by a factor of nine in processing speed and 

consumes only 70% of the time of SSD. Furthermore, their 
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exploration of the model's adaptability to different 

illumination conditions underscores its strong performance 

under optimal lighting. This YOLO-based approach offers 

promising potential for accurate PD detection without manual 

feature extraction, presenting opportunities to enhance 

pavement management and rehabilitation efforts. 

 
Fig. 2.1 The network architecture of YOLOv4 

Sung-Sik Park et al. (2021) conducted research on pothole 

detection using different object detection frameworks, 

including YOLOv4, YOLOv4-tiny, and YOLOv5s [8]. They 

evaluated the performance of these frameworks in terms of 

real-time responsiveness and detection accuracy using a 

dataset of 665 photos capturing various types of potholes 

under different road conditions. According to the study 

findings, the mAP 0.5 of YOLOv4, YOLOv4-tiny, and 

YOLOv5s are 77.7 percent, 78.7 percent, and 74.8 percent, 

respectively. The results showed that YOLOv4-tiny achieved 

the highest mean average precision (mAP) score among the 

tested models. 

In a comparative study conducted in 2022, the 

performance of various object detection algorithms was 

evaluated, including YOLOv5, YOLOv3, and YOLOv4 [9]. 

The study focused on assessing mean average accuracy 

(mAP) and frames per second (FPS) as performance metrics. 

The results indicated that YOLOv5 outperformed the other 

algorithms, exhibiting higher accuracy and faster processing 

speed. Based on these findings, the researchers developed a 

smartphone application called "ObjectDetect" using 

YOLOv5, aimed at assisting users in making incombered 

decisions while driving. 

 
Fig. 2.2 Flowchart of UAV pavement distress image acquisition 

Huang et al. (2022) proposed the use of a UAV equipped 

with a high-resolution camera for gathering pavement 

deterioration data [10]. They constructed a UAV platform 

and optimized flying parameters to ensure high-quality 

pavement images. The acquired photos were processed, 

labeled, and used to train three object detection algorithms—

Faster R-CNN, YOLOv3, and YOLOv4. Comparisons were 

made, and YOLOv3 demonstrated the best prediction 

capabilities among the tested algorithms. Fig. 2.2 illustrates 

the flowchart of UAV pavement distress image acquisition, 

showcasing the setup and process of capturing pavement 

pictures using the UAV platform. 

 

 

 

 

 

 

 

Fig. 2.3 Street View Object-Mapping 

In 2018, Krylov, Kenny, and Dahyot introduced a 

methodology to automate detecting and geotagging 

stationary objects in street view images [11]. Their approach 

employed convolutional neural networks (CNNs) for object 

segmentation and depth estimation, integrated with a Markov 

random field model for geolocation. By combining depth 

estimation and the geolocation model, their method enabled 

triangulation, yielding accurate 3D coordinates for detected 

objects. Experimental validation demonstrated strong recall 

rates and precise positioning. This technique's integration of 

depth estimation and triangulation resonates with our 

pavement distress automation objectives, offering insights for 

similar applications in identifying pavement irregularities 

and improving infrastructure management. 

III. METHODOLOGY 

 
Fig. 3.1 Conceptual Framework 

The research design focuses on constructing a system for 

pavement distress detection, classification, and mapping 
using image processing techniques. The design employs an 

input-process-output (IPO) model to conceptualize the 

system's architecture. The conceptual framework consists of 

four key processes: input acquisition, pre-processing, 

training, and output. These processes form the foundation of 

the design. 

A. Input Acquisition 

Image data needed for training and testing deep neural 

networks are collected using a camera interfaced with the 

microcomputer. The collected images are geotagged, which 

provides details on reference time and location. 

B. Pre-processing 

The acquired data are then pre-processed through four 

steps: (1) defining the bounding box regression; (2) cropping 

the bounding box regression; (3) image resizing; and (4) 
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Feature scaling. This process increases classification 

accuracy, given that it helps enhance features in the input. 

C. Training 

For recognition and detection tasks, deep convolutional 

neural networks efficiently handle image segmentation, 

feature extraction, classification, and categorization. In a 

Python application, this process is extracted from pavement 

distress inputs and utilized as the primary feature for 

classification in the object detection algorithm. 

D. Mapping 

The device, linked to a GPS module, executes real-time 

processes with simultaneous updates for practical use and 

visualization. Data is automatically registered if it meets the 

minimum accuracy threshold, along with the detected image's 

coordinates. Subsequently, a display showcases the detected 

items alongside reference GPS data. 

E. Method of Data Collection 

The researchers collected data from various sources, 

including relevant studies, literature, and IEEE papers, to 

ensure the accurate execution of their study on autonomous 

pavement distress detection, classification, and mapping. 

They also conducted an interview with professionals from the 

Batangas 3rd District Engineering Office to gather additional 

insights and recommendations for enhancing the design. This 

data and information enabled the researchers to develop a 

comprehensive framework for detecting pavement distress 

and plan the necessary system development for real-time 

implementation. 

IV. TECHNICAL STUDY 

A. Project Design 

The proposed automated pavement distress detection and 

classification using neural network and mapping focuses on 

classifying different pavement distress classifications based 

on the given database of DPWH: crack, alligator crack, and 

potholes pavement. The project implements a classification 

device that records pavement distress using a camera module 

and a microcontroller with the use of Python and YOLO 

learning algorithms.  A GPS module to embed the captured 

image with the exact location where it is taken. The project is 

implemented using Raspberry Pi placed inside the car, and a 

Raspberry Pi HQ Camera mounted on the car's front. 

B. Block Diagram 

 
Fig. 4.1 Block diagram 

 

 
Fig. 4.2 3D Model 

The input acquisition modules used in the design are the 

Raspberry Pi HQ Camera for capturing wider and higher-

resolution pavement images, and the VK-172 USB GPS 

Module for geotagging the data with latitude, longitude, time, 

and date. The hardware setup is shown in Fig. 4.1 and 3D 

model in Fig. 4.2. The microcomputer processes the data by 

detecting and recognizing various pavement distress types 

such as cracks, alligator cracks, and potholes. To accomplish 

this, a dataset is collected from publicly accessible internet 

images and preprocessed to enhance crack features and 

optimize training and testing accuracy. After processing, the 

data is mapped, and the output displays the locations of the 

identified pavement distress pins.  

C. Flowchart 

 

Fig. 4.3 Flowchart  

 

During startup, all modules are powered on as depicted in 

Fig. 4.3. The camera begins capturing pavement images, 

which are then geotagged to determine their latitude and 

longitude. The processed images undergo a series of steps to 

accurately pinpoint their location. An algorithm convolves 

the processed image with the dataset, and a decision is made 

to classify it as cracks, alligator cracks, and potholes. If no 

pavement distress is detected in the acquired image, the 
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system repeats the process for subsequent frames in the video 

stream. The collected and saved images are integrated into 

the database once a minimum accuracy is achieved during the 

detection phase. These images are displayed on an LCD 

panel, with the procedure executed simultaneously from 

vehicle acquisition to the cloud. At this point, a choice is 

presented to either stop the real-time pavement distress 

detection process or continue monitoring until the user 

decides to halt or shut down the system. The system persists 

in repeating its process until the user initiates the termination 

or shutdown. 

D. Verification Plan 

The study employed verification procedures such as detection 

calibration and actual road testing to ensure the designed 

automated distress detection system met the requirements. 

Data gathered from online sources, classified according to 

DPWH's records was used to train the detection model for 

accurate results. A prototype of the Automated Pavement 

Distress Detection (APPD) system was developed to validate 

the design and gather feedback. Through prototype testing on 

an actual road, with the camera mounted on the car's hood 

and connected to the microcomputer inside the vehicle, the 

system's functionality was assessed. A touch screen LED 

provided a user-friendly graphical interface. These 

verification procedures ensured the effectiveness of the 

APPD system design in accurately detecting and classifying 

various types of pavement distress. 

TABLE IV. Dataset 

Table 5.2 Classification Results using the images taken in 

Tanauan City, Batangas. 

 

V. RESULTS AND DISCUSION 

The testing procedure encompassed a journey spanning 

from Tanauan City to Sta. Maria Santo Tomas Chapel in 

Batangas, Philippines. The experimental setup involved 

strategically placing the microcomputer, Jetson Nano, in 

proximity to the vehicle's occupants, while situating the 

camera externally to capture the surrounding environment. 

Additionally, a GPS u-blox device, with a refresh rate of 5Hz, 

was affixed atop the vehicle to ensure precise positioning 

data, which was duly verified throughout the testing phase. 

The primary objective of the test entailed the utilization 

of the YOLOv5n6 object detection framework to identify and 

analyze various cracks encountered along the traveled route. 

The underlying aim was to assess the system's capability to 

replicate, in an automated fashion, the manual process 

traditionally employed for crack detection. 

The RDD 2022 dataset provided a comprehensive 

collection of 47,420 road images from six countries. These 

images were classified into four categories of road damage. 

To ensure the effectiveness of the training process, a 

meticulous selection of images was carried out, emphasizing 

those with prominent features and minimal obstructions. 

Preprocessing techniques were then applied to optimize the 

training efficiency and overall model performance. 

The training dataset was divided into three partitions: 

70% for training, 20% for validation, and 10% for testing. 

Two models, namely YOLOv5s and YOLOv5n6, were 

evaluated for their speed and accuracy. While YOLOv5s 

showcased slightly higher accuracy, YOLOv5n6 emerged as 

the preferred model due to its superior detection and 

inference capabilities. The decision was driven by the need to 

prioritize real-time road usage scenarios, where swift 

processing speed takes precedence, while accepting a 

minimal trade-off in terms of accuracy. 

Frames were sampled from the video footage at a rate of 

14 frames per second (FPS). Subsequently, the extracted 

frames underwent classification detection to identify 

instances of road damage. The detected road damage 

instances were then cropped and stored in designated folders, 

categorized according to their respective classes.  

Table 5.3 Accuracy, precision, recall, F1-Score values for the 

classification algorithm. 

Class n(truth) n(classified) Precision Recall 
F1 

Score 
Accuracy 

Overall 

Accuracy 

Potholes 17 20 0.75 0.88 0.81 88.33% 

68.33% Cracks 21 20 0.70 0.67 0.68 78.33% 

Alligator 

Cracks 
22 20 0.60 0.55 0.57 70% 

Success rates, accuracy, precision, recall, and F1-Score 

values for classification algorithm were calculated and are 

presented in Table 5.3. The overall accuracy achieved by the 

implemented system was determined to be 68.33%. The 

system focused specifically on measuring the performance of 

classifying pavement distress. 

 
Fig. 5.2 cgps -s info on GPS information 
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 The implementation of the GPS module facilitated 

the acquisition of live-streaming communication between the 

system’s object detection. Optimal conditions, such as clear 

skies and a high number of visible satellites, led to latitude 

and longitude coordinates with an accuracy of approximately 

2.5 m to 5 m. Fig. 5.2 illustrates the GPS module's 

implementation, demonstrating an error margin of +/- 8 ft in 

longitude and +/- 6 ft in latitude when all channels were 

available. This level of precision could typically be achieved 

within a span of 5 minutes. 

The integration of GPS data with the images allowed for 

the accurate mapping of pavement distress locations using a 

CSV file in Google Earth Pro. The mapped images effectively 

showcased the distribution patterns of different distress 

classifications, including cracks, potholes, and alligator 

cracks. Through a user-friendly Graphical User Interface 

(GUI), users were able to easily access the detected distress 

locations by utilizing the CSV file, which provided detailed 

information such as time, latitude, longitude, speed, and crack 

classification. This comprehensive system enabled users to 

efficiently identify and analyze the precise locations of the 

detected pavement distress, facilitating informed decision-

making for effective road maintenance and repair initiatives. 

 
Fig. 5.3 Mapping for Cracks 

 
Fig. 5.4 Mapping for Potholes 

 
Fig. 5.5 Mapping for Alligator Cracks 

 
Fig. 5.6 Mapping for All Classifications 

VI. CONCLUSION AND RECOMMENDATIONS 

The researchers have successfully developed a system for 

classifying pavement distress using the Yolov5 algorithm 

with PyTorch in the Python programming language. Through 

the implementation of image preprocessing techniques and 

the careful selection of a suitable dataset, the training model 

exhibited effective performance in streaming conditions, 

striking a balance between assessment speed and precision. 

The system's design incorporated an interfaced camera and 

the Jetson Nano microcomputer, which harnessed GPU 

capabilities and supported CUDA features, thereby 

facilitating efficient processing. 

The study recommends several improvements for the 

system classifying pavement distress. Firstly, implementing 

a 1-kilometer documentation approach instead of individual 

road fault documentation would provide a comprehensive 

catalog scheme, enhancing organization and accessibility. 

Secondly, incorporating a function to measure the area of 

pavement distress would enable more accurate assessments 

of severity and impact. Additionally, enhancing the system's 

adaptability to diverse road types and upgrading hardware 

and models for improved efficiency and precision are 

suggested. These recommendations aim to enhance decision-

making, resource allocation, and overall road network 

maintenance.  
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