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Abstract — With decreasing rooftop photovoltaic (PV) costs 

and increased incentives to generate electricity, more and more 

end-users are installing rooftop PV systems and availing net 

metering.  However, as rooftop PV and net metering become 

more prevalent, electricity theft detection becomes more 

challenging. This paper investigates the performance of 

features and algorithms used in classification-based theft 

detection algorithms on systems with rooftop PV and net 

metering. We explore five features and four algorithms. We 

use the following features computed from check meter and 

individual customer meter readings: gamma deviance (GD), 

log cosh loss (LCL), percent loss error (PLE), Poisson deviance 

(PD), and squared error (SE). The meter readings were 

simulated using the IEEE European Low Voltage Test Feeder 

using OpenDSS across a wide range of PV, net metering, and 

theft penetration levels.  We then used the extracted features to 

train classifiers using the following algorithms: support vector 

machine (SVM), artificial neural network (ANN), k-nearest 

neighbors (KNN), and decision tree (DT). Test results showed 

that KNN generally performed poorly, and DT generally 

performed well. Moreover, models using PD and LCL as 

features generally displayed robustness to varying levels of PV 

and net metering. And finally, ANN, SVM, and DT models that 

use LCL and PD as features are among the highest ranked 

models in terms of median accuracies and range of accuracy.  

Keywords — electricity theft detection, rooftop photovoltaics, 

net metering, machine learning 

I. INTRODUCTION 

The Philippines Republic Act 9513 “An Act Promoting 
the Development, Utilization and Commercialization of 
Renewable Energy Resources and for Other Purposes” 
encourages customers to generate renewable resources by 
providing investment opportunities to energy producers [1]. 
It allows for net metering, a utility billing strategy that 
enables customers to sell excess energy generated back to the 
grid, to offset their consumption and reduce their bills using 
a net meter [2]. 

However, using rooftop photovoltaics (PV) and net 
metering presents new opportunities for some customers to 
steal electricity. Pilferers have two options: either relay lower 
readings if their consumption of electricity is higher than 
their generation of electricity or report more energy put into 
the grid to claim larger profits [3]. Exploiting these theft 
tactics results in financial problems for distribution utilities 
and users in terms of increased costs and safety risks [4].  

In the literature, machine learning-based algorithms show 
promising performance when it comes to detecting electricity 
theft [5] but there is limited work on theft detection 
considering PV and net metering. This study aims to address 
this gap by testing machine learning-based classifiers that 

can detect electricity theft in systems with PV and net 
metering. 

II. ELECTRICITY THEFT AND DETECTION METHODS IN 

SYSTEMS WITH PVS AND NET METERING 

A. Electricity Theft 

System loss is the difference between how much energy 
was made and how much was sold during a certain billing 
period. In the Philippines, system losses stands at 9.4% in 
2019, rising by 11% from the previous year [6]. Republic 
Act 7832 lets distribution utilities charge customers a 
recoverable rate of system losses up to a maximum cap [7]. 
This law encourages utilities to perform loss reduction 
programs [8] covering all sources of system losses in the 
distribution sector including losses from electricity theft.  

There are many ways people can steal electricity, 
especially in the advent of smart meters. Pilferers can either 
interrupt the smart meter measurement, tamper with the 
stored demand, or modify the smart meter data. The first 
method prevents the pilferer’s smart meter data from being 
recorded by physically disconnecting the meter or by meter 
inversion [9]. The second method allows malicious 
customers to hack into smart meters to report higher energy 
to the grid and claim more profit [5]. Another method alters 
the object identification system (OBIS), an identification 
code for measurement data and smart-meter readings [10]. 

One way to reduce theft is by putting meters in iron 
boxes and placing them at the top of the poles where they are 
hard to reach and tamper with [8]. Another is by using data 
analytics and machine learning by using historical data to 
look for irregularities in the system. 

B. Classification-based Theft Detection  Algorithms  

Methods for detecting electricity theft can be 
classification-based, regression-based, or state-based. State-
based methods use wireless sensors and RFID tags to 
monitor power system states but is expensive [9]. Regression 
based methods look at the coefficients and errors from fitted 
meter reading datasets to determine the presence of theft. It is 
low-cost and can handle  incomplete information, but is 
susceptible to small errors caused by theft [11]. 
Classification-based methods use data mining and machine 
learning to train a model to classify energy consumption 
anomalies based on a testing dataset [9]. Some classification-
based algorithms include the following: 

1) Support Vector Machines (SVM) 

SVM is an algorithm that builds an optimal hyperplane 

that sorts values by making a linear combination of training 

samples. The radial basis kernel function (RBF-SVM) is the 

most used kernel function, as it can handle nonlinear data 
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[12]. Ref. [13] used SVM to detect electricity theft in 

Malaysia, achieving an accuracy of 86.43% and an average 

hit rate of 77.41%. In 2019, Ref. [14] added principal 

component analysis (PCA) to the theft detection algorithm, 

which led to a 90% accuracy rate. In 2020, Ref. [12] used 

SVM for detecting meter tampering, resulting in accuracy 

and an F1-score of 96.96% and 95.35%, respectively. 

 

2) Artificial Neural Networks (ANN) 

An artificial neural network is a system that is based on 

biological neural networks [15]. There are different types 

depending on the number of layers and how the neurons are 

connected: simple artificial neural network, convolutional 

neural networks (CNN), feed-forward neural networks 

(FFNN), and long short-term memory (LSTM), among 

others. Several different types of ANN were used to look at 

the smart meter data from the State Grid Corporation of 

China (SGCC) to see how often electricity was stolen. Long 

short-term memory [16] and convolutional neural networks 

[17] had reported accuracy rates of 73.2% and 81.2%, 

respectively when used for electricity theft detection. 

 

3) K Nearest Neighbors 

K nearest neighbors (KNN) is an algorithm that uses 

cluster prediction to classify data [17]. In 2016, Ref. [18] 

used KNN to find theft in data that considered the 

weather, location, and load. In 2019, Ref. [19] helped the 

Multan Electric Power Company (MEPCO) in Punjab, 

Pakistan, find people who were stealing electricity. They 

used KNN as one of their algorithms, which has a reported 

81.79% accuracy. That same year, Ref. [20] implemented 

KNN with feature selection techniques to determine false 

data injection (FDI) attacks on the system. They tested 

KNN on the IEEE 57-bus system, which produced an 

accuracy of 85.59%. A year later, in the same country, Ref. 

[21] used KNN to distinguish between legitimate and 

fraudulent energy customers and discovered that even 

though it achieved an accuracy rating of 91%, it showed a 

false positive rate (FPR) of 11.88%. 

 

4) Decision Trees 

Decision tree algorithms sort data into groups based on 

how sets of questions are answered. Decision nodes show 

the choices that were made, and leaf nodes show the results. 

Ref. [22] used random forest (RF) to detect electricity theft 

in 2021. Random forest picks a subset of features from a set 

of decision trees at random to prevent overfitting. They 

correctly classified 85% of the data, given that 10% were 

pilferers. 

C. Theft Detection in systems with rooftop PV and net 

metering 

Ref [3] used theft detection algorithms in homes with 

PV and net metering with a success rate of over 90%. The 

method detects anomalies in time-series meter readings 

without needing check meters. Ref. [23] tested algorithms 

using check meter readings from simulations using the IEEE 

European LV Test Feeder across different levels of PV and 

net metering penetration. Results showed that both 

algorithms produced acceptable results at low penetration 

levels but could not detect electricity theft properly in 

households with high penetration. 

The lack of more work indicates that there aren’t many 

reports on how to catch electricity theft in systems with PV 

and net metering. To address this gap in literature, it is 

important to study more algorithms, features, and methods 

for detecting theft in systems with rooftop PV and net 

metering. 

III. METHODOLOGY 

This work compares four classification-based methods 
and five features in detecting electricity theft in systems with 
PV and net metering. The study is divided into the following 
steps: data acquisition and processing, network modeling in 
OpenDSS, benign dataset creation, malicious dataset 
creation, feature extraction and labeling, theft detection 
algorithm implementation, and assessment. 

A. Raw Data Acquisition and Processing 

The load and PV generation profiles were obtained from 
the Ausgrid dataset of electricity generation and consumption 
of 300 customers with rooftop solar panels installed in their 
homes [24]. Only those from 2010 to 2011 were used 
because it is the only subset with half-hour intervals. 
Moreover, households with controllable loads were 
discarded, resulting in a total of 161 customer load and PV 
generation profiles. A week’s worth of data corresponding to 
the week of December 5 to 11, 2010 was chosen because it is 
similar to the weather in the Philippines. 

B. Network Modeling in OpenDSS 

The IEEE European Low Voltage Test Feeder was used 

to model the power flows of 55 households connected to a 

substation, as shown in Figure 2. Additionally, eight check 

meters were added to measure the load consumption in 

different areas of the network. The IEEE-provided LV 

feeder files and randomly chosen customer profiles from the 

161 Ausgrid customer profiles serve as the inputs to one 

OpenDSS simulation.  

 
 

Fig. 1. IEEE European Low Voltage Test Feeder with 8 check 

meters installed 

 

 

Households are assumed to operate in one of the 

following modes: (1) no PV and no net metering, (2) with 

PV but no net metering, and (3) with PV and net metering. 

If the house has neither PV nor net metering, only its PQ 

load is considered. If the house has PV installed but no net 

metering, excess generation is curtailed once PV generation 
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matches PQ load consumption. If the house has both PV and 

net metering, excess PV generation will be injected back to 

the grid. 

C. Benign Dataset Creation 

Thirteen datasets with varying levels of PV and net 
metering penetration were generated. The PV penetration 
level refers to the percentage of houses with PV installed and 
the net metering penetration level refers to the percentage of 
houses with net metering installed from the total houses with 
PV. There are four levels of penetration considered for both 
PV and net metering penetration: zero (0%), low (33%), 
medium (66%), and high (100%). There are a total of 1430 
OpenDSS power flow simulations for the benign case, 110 
for each dataset. Each simulation uses 55 customer profiles 
chosen at random from the 161 Ausgrid customer profiles 
and assigns them to the 55 customer nodes in the test feeder. 
Each customer profile consists of 7 days’ worth of load and 
PV generation data in 30-minute intervals. With the 
customer profiles and test network parameters as input per 
simulation, OpenDSS was used to conduct power flow 
analysis to solve for the check meter readings. There is no 
theft in the benign dataset and hence, discrepancies between 
the check meter and customer meter readings are due to 
technical losses in the network only. 

D. Malicious Dataset Creation 

Like the benign dataset, 1430 simulations were also 

conducted for the creation of the malicious dataset. That is, 

a different set of 55 customer profiles are randomly chosen 

and assigned to the 55 customer nodes in the test feeder per 

simulation. OpenDSS was then used to solve for the check 

meter readings using the actual customer profiles.  

To represent theft, one pilferer was chosen per 

simulation. The pilferer changed the reading on their meter 

with a multiplier k between 35% and 65% to either relay 

lower readings (if the net consumption is positive) or report 

more energy to the grid (if the net consumption is negative). 

The malicious value for the pilferer’s net meter reading, X, 

was computed using Eq. 1, where x is the net consumption. 

 

 

(1) 

 

Two types of theft frequencies were simulated, full-day and 

half-day. The result is that for each dataset, there are 110 

simulations wherein each of the 55 households was 

designated as the culprit once for each of the full-day and 

half-day frequencies. Full-day theft means that Eq. (1) is 

applied for 24 contiguous hours a day while half-day theft 

means that Eq. (1) is applied for 12 contiguous hours. 

E. Feature  Extraction and Labeling 

The readings from the check meters and customer meters 

were turned into daily frequencies by getting the total check 

meter and customer meter consumption for the day. Each 

daily value was given a 1 or 0 to indicate whether theft 

happened that day or not. Since each of the 1430 benign and 

1430 malicious simulations uses a week’s worth of data, 

each simulation generates 7 raw data points of daily check 

and customer meter readings labeled with 1 or 0. This 

results in a total of 20,020 labeled raw data points in total 

with 1540 raw data points per dataset, with the same number 

of benign and malicious samples for each of the 13 datasets. 

The next step is to process the raw data points to 

compute the features that will be used for classification. We 

considered five features, namely: (1) gamma deviance (GD), 

(2) log-cosh loss (LCL), (3) percent loss error (PLE), (4) 

Poisson deviance (PD), and (5) squared error (SE). The 

corresponding equations are shown in Equations 2-6 where 

CM is the check meter reading and Mn are individual 

household meter readings under the check meter. 

 

 

(2) 

 
(3) 

 
(4) 

 

(5) 

 
(6) 

 

The percent loss error and squared error compares the 

difference between the check meter readings and the sum of 

downstream meter readings in a straightforward manner. On 

the other hand, the gamma deviance, log cosh loss, and 

Poisson deviance transform the data to compare the 

readings. These features magnify the difference between the 

check meter reading and the customer meter readings to aid 

in better classification. 

Each of the five features were extracted separately for 

for each of the 8 check meters and for each of the thirteen 

datasets. In the end, each final data point is a 9x1 vector 

with 8 values corresponding to the value of the feature 

computed per check meter and 1 value corresponding to the 

label, benign or malicious. In total, 65 unique datasets were 

created (13 datasets of varying PV and net metering levels * 

5 features) after this step, with 1,540 final data points per 

dataset. 

F. Theft Detection Algorithm Implementation 

Each of the 65 datasets was split into training (80%) and 

testing (20%) datasets. Four algorithms were used: k-nearest 

neighbors (KNN), support vector machines (SVM), artificial 

neural networks (ANN), and decision trees (DT). This 

results in 260 models consisting of 20 classifier-feature pairs 

trained using the 13 datasets of varying PV and net metering 

levels. Built-in functions in Python were used to implement 

the algorithms. 

For SVM, the svc function was used from the Scikit-

learn library. The radial basis kernel function was used to 

handle non-linear data. Grid search and ten-fold cross 

validation was used to tune the cost and gamma 

hyperparameters. For ANN, functions from the Keras 

library was used. The following hyperparameters were tuned 

during hyperparameter optimization: optimizer to be used, 

learning rate, number of nodes, type of activation function, 

number of epochs, and batch size. For KNN, the 

neighbors function was used from the Scikit-learn library. 
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And lastly for DT, the DecisionTreeRegressor function 

was used from the Scikit-learn library. 

G. Performance Metrics 

The algorithms’ performances were evaluated based on 

their accuracy metric presented in Eq. 7. TP, TN, FP, and 

FN stand for true positive, true negative, false positive, and 

false negative, respectively. 

 

 
(7) 

IV. RESULTS AND DISCUSSION 

Figs. 2-5 show the box and whiskers plot of the accuracy 

of the 20 classifier-feature pairs while Table 1 shows the 

underlying data table. The span of the whiskers reflects the 

variance in accuracy when the PV and net metering 

penetration is varied. 

Figs. 2-3 show that the performance of SVM and ANN 

follow the same trend. When GD and PLE are used to train 

the SVM and ANN models, the median accuracy is high at 

88.5-90.9% but the variance in accuracy is large with lows 

down to 52.4-62.3%. This means that the performance of 

these algorithms generally degrades as more customers use 

rooftop PV and net metering. When LCL and PD are used to 

train the SVM and ANN models, the median accuracy is 

better at 92.0-93.2% and the variance in accuracy is small. 

This indicates good performance that is robust across 

varying levels of PV and net metering penetration. Lastly, 

when SE is used to train the SVM and ANN models, the 

median accuracy degrades to just 76.8-80.5% but the 

variance in accuracy is small. This indicates poor 

classification performance but is robust across varying PV 

and net metering penetration. 

Fig. 4 shows that the performance of KNN has a similar 

trend with that of SVM and ANN but has much lower 

median accuracies of only 67.9%, 74.0%, 73.0%, 72.1%, 

and 63.0% when using GD, LCL, PLE, PD, and SE as 

features respectively. This indicates a generally worse 

performance in terms of classification accuracy relative to 

using SVM and ANN. 

Fig. 5 shows that the accuracy of all DT models is better 

than 70% regardless of the feature used or PV and net 

metering penetration level. The median accuracies are at 

90.6%, 92.9%, 89.6%, 91.9%, and 91.6% when using GD, 

LCL, PLE, PD, and SE as features respectively. The range 

in accuracy is also small indicating robustness to varying 

PV and net metering penetration levels. 

In terms of algorithm-feature pairs with the best median 

accuracy, SVM-PD ranked the best with 93.2% median 

accuracy followed by DT-LCL and SVM-LCL with 92.9% 

both. In terms of the range of accuracies across varying PV 

and net metering levels, ANN-PD has the smallest range 

spanning 6.17%, followed by KNN-SE spanning 6.5% and 

ANN-LCL spanning 8.6%.  

 

 
Fig. 2 ANN classifiers accuracy boxplot 

 

 

Fig. 3 SVM classifiers accuracy boxplot 

 

 

Fig. 4 KNN classifiers accuracy boxplot 

 

 
Fig. 5 DT classifiers accuracy boxplot 
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TABLE I: CLASSIFIER-FEATURE PAIR ACCURACY PER DATASET 

 

While there is no definite “best” algorithm-feature pair 

from the models tested, KNN generally performed poorly 

relative to the others with overall lower median accuracies 

while DT generally performed well with high median 

accuracies and small accuracy ranges. Models using PD and 

LCL as features generally displayed robustness to varying 

levels of PV and net metering penetration as evidenced in 

the small accuracy ranges of the models using these as 

features. And finally, ANN, SVM, and DT models that use 

LCL and PD as features are among the highest ranked 

models in terms of median accuracies and range of 

accuracy.  

To explore why LCL and PD generally performed well 

as features, we plot the histograms of the five features for 

both benign and malicious datasets for Dataset 13 (100% 

PV and 100% net metering penetration) in Figs. 6-10. For 

GD, PLE, and SE, the histograms of the features have large 

overlaps indicating that models built using these features 

will find it difficult to distinguish between malicious and 

benign data. On the other hand, for LCL and PD, the overlap 

is much smaller indicating that models built using these 

features will find it easier to distinguish between malicious 

and benign data. 

 

 
Fig. 6 Gamma deviance histogram 

 

 
Fig. 7 Percent loss error histogram 

 

 
Fig. 8 Squared error histogram 

 
Fig. 9 Log cosh loss histogram 

 

 
Fig. 10 Poisson deviance histogram 

V. CONCLUSION 

This study tested four algorithms and five features to 

detect electricity theft in distribution systems with rooftop 

solar panels and net metering. For the algorithms, we looked 

at the following: support vector machines (SVM), artificial 

neural networks (ANN), k nearest neighbors (KNN), and 

decision trees (DT). For the features, we looked at the 

Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13

% PV 0 33 33 33 33 66 66 66 66 100 100 100 100

% NM 0 0 33 66 100 0 33 66 100 0 33 66 100

SVM-GD 96.1 92.5 92.2 87.7 93.5 91.9 82.8 93.8 85.4 68.5 90.9 74.0 62.3

SVM-LCL 97.4 92.9 90.9 85.1 94.8 92.2 89.9 96.4 93.5 88.6 97.4 94.5 90.3

SVM-PLE 98.4 94.5 93.2 88.3 94.2 90.9 81.2 93.2 85.7 72.7 92.9 85.7 59.4

SVM-PD 96.8 94.2 94.5 86.0 93.2 93.2 89.6 93.8 91.9 92.5 96.8 95.8 93.2

SVM-SE 84.4 83.4 80.5 77.9 86.4 78.9 73.7 84.1 79.9 77.3 84.4 82.1 79.9

ANN-GD 96.6 92.4 90.6 89.1 92.4 89.8 73.9 92.5 80.1 65.6 83.1 78.6 52.4

ANN-LCL 96.3 92.5 89.0 87.7 92.1 89.8 88.8 94.2 89.8 89.8 94.2 94.8 92.4

ANN-PLE 95.6 93.5 90.3 89.8 93.2 90.9 78.6 88.5 80.8 63.3 85.9 77.3 54.2

ANN-PD 96.6 93.2 90.6 91.1 94.5 92.2 90.6 94.2 92.4 90.4 94.3 94.0 91.6

ANN-SE 81.3 79.1 73.9 74.4 81.3 73.5 73.4 79.8 75.8 79.2 76.0 78.9 76.8

KNN-GD 75.7 74.7 71.8 67.5 74.4 71.1 66.6 76.3 66.2 63.3 67.9 62.0 56.5

KNN-LCL 76.0 74.0 73.1 71.8 73.1 72.1 67.9 75.3 74.4 75.0 77.3 75.7 69.8

KNN-PLE 78.6 76.3 74.0 73.7 76.0 73.4 67.2 73.1 65.6 57.8 72.1 58.8 54.9

KNN-PD 78.3 72.1 71.4 70.8 75.3 73.1 72.1 77.9 74.0 72.1 76.6 72.1 70.5

KNN-SE 66.6 64.9 64.0 63.0 64.9 63.6 61.7 64.0 62.7 61.4 62.0 61.7 60.1

DT-GD 94.8 92.2 91.6 89.0 90.6 91.2 88.3 92.5 87.0 87.0 90.9 88.0 79.2

DT-LCL 96.4 94.5 93.5 87.1 93.2 89.6 85.7 95.1 89.9 88.0 96.8 92.9 88.0

DT-PLE 92.9 90.6 89.6 89.0 92.2 91.9 89.0 90.9 85.7 82.5 89.9 85.1 73.1

DT-PD 94.5 91.2 90.3 89.0 93.2 91.9 87.3 94.8 91.9 89.3 95.1 93.5 92.9

DT-SE 96.4 91.6 90.9 85.4 93.5 91.2 87.7 92.5 93.8 89.9 95.1 92.5 90.9
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following features computed from the check meter readings 

and the customer meter readings: gamma deviance (GD), log-

cosh loss (LCL), percent loss error (PLE), Poisson deviance 

(PD), and squared error (SE).  

Results show that KNN generally performed poorly with 

lower median accuracies while DT generally performed well 

with high median accuracies and small accuracy ranges 

across datasets. Models using PD and LCL as features 

generally displayed robustness to varying levels of PV and 

net metering penetration levels. And finally, ANN, SVM, 

and DT models that use LCL and PD as features are among 

the highest ranked models in terms of median accuracies 

with SVM-PD being the best with 93.2% median accuracy 

followed by DT-LCL and SVM-LCL with 92.9% both. 

Future work will extend the simulations to other test 

systems with varying test system sizes and topologies, 

number of check meters, number of customers doing theft, 

and amount of electricity stolen. 
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