TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

FriMo1XC.3

Parkinson’s Disease Detection from Speech Signals
using Explainable Artificial Intelligence

Ghanta Sai Krishna*, Kundrapu Supriya f, Vinay Mishra ¥, Santosh Kumar ®
*Department of Computer Science, IIIT Naya Raipur, India
e-mail: ghanta20102@iiitnr.edu.in, kundrapu20100@iiitnr.edu.in, vinay21300@iiitnr.edu.in, santosh@iiitnr.edu.in

Abstract—Parkinson’s disease (PD) is a neurological condition
that is on the rise and disrupts the nervous system. However, there
is no specific diagnosis for Parkinson’s disease; only a variety of
motor signs can be used to identify it. A speech impairment was
found in more than 90% of PD patients. This study presents a
voice and speech signal data-based model for PD identification.
The PD is the speech data set used in this experiment has a
great amount of dimension with very few data points. Different
data pretreatment techniques, such as data standardization, mul-
ticollinearity diagnostic, and dimensionality reduction approach,
were used in our suggested model to enhance the quality of the
data. Different Machine Learning (ML) classifiers were employed
to categorize PD, including k-nearest Neighbor, Support Vector
Machine, Random Forest, AdaBoost, and Logistic Regression.
In this experiment, grid search, cross-fold validation, and hyper-
parameter tweaking were used to optimize classifier performance
and maintain the class distribution of the unbalanced data set.
Our suggested model outperformed the prior tests on the same
data set by around 98.00% and reached a maximum accuracy
of 98.10

Index Terms—Parkinson Disease, Machine Learning, Explain-
able Al

I. INTRODUCTION

Millions of people worldwide suffer from progressive neu-
rodegenerative Parkinson’s disease (PD) as shown in Fig. 2?.
Dopamine-producing brain neurons degenerate, causing motor
and non-motor symptoms. Early identification of Parkinson’s
disease is critical for optimal treatment and care, although
symptoms vary and there are no conclusive diagnostics.Early
diagnosis of Parkinson’s disease is essential for efficient man-
agement and therapy, but it may be difficult since symptoms
can vary and there are no reliable diagnostic tests [1].

Speech recordings have garnered increasing attention in
recent years as a non-invasive, economical way to identify
Parkinson’s disease early on. Speech is a multifaceted signal
that reflects the health of many brain systems, including those
responsible for motor control, cognition, and emotion. As a
possible biomarker for early identification, changes in speech
patterns and features have been connected to the early stages
of Parkinson’s disease. As effective methods for analysing
voice recordings and extracting pertinent aspects that may be
utilised for Parkinson’s disease diagnosis and monitoring, sig-
nal processing and machine learning approaches have evolved.
Machine learning algorithms [2] may be used to categorise
speech recordings into distinct groups based on these qualities.
Signal processing methods employ a variety of digital signal
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processing techniques to extract speech properties including
pitch, intensity, and formant frequencies.

II. RELATED WORKS

Speech recordings have drawn more attention recently as a
non-invasive, economical method of identifying Parkinson’s
disease in its early stages. The health of numerous brain
systems involved in motor control, cognition, and emotion is
reflected in speech, a complicated signal. Parkinson’s disease’s
early phases have been associated with changes in speech
patterns and features, making it a potential biomarker for
early identification. In order to analyse speech recordings
and extract pertinent elements for Parkinson’s disease diag-
nosis and monitoring, machine learning and signal processing
methods have developed into useful tools. Based on these
variables, machine learning algorithms may categorise voice
recordings, whilst signal processing techniques employ various
digital approaches to extract speech qualities including pitch,
intensity, and formant frequencies. The categorization and
severity evaluation approach for PD was developed by the
authors of [3]. For the categorization, they combine Support
Vector Machines with neural networks. The findings reveal
a detection accuracy of 97.64%. The main obstacle to deter-
mining accurate classification accuracy is the amount of the
database employed in the trials. Less than 60 recordings of
voices are often used by the writers, with varying degrees of
effectiveness.

Srishti Grover [4] classified the data into the two categories
of “severe” and “not severe” using deep learning on the
Parkinson’s Telemonitoring Voice Dataset from the UCI ML
Repository. The neural network has two neurons in the output
layer, three hidden layers with 10, 20, and 10 units each,
and an input layer with 16 units. The accuracy of the model
was 81.6%. Another research [5] used PCA and OFS-based
feature sets in an effort to categorise the PD group. Using
RF and PCA, nonlinear classifiers including Bagging classi-
fication, Regression tree (Bagging CART), Random Forest,
and RPART were utilised to classify data. Based on the com-
promised writing skills, Clayton R. Pereira [6]suggested an
alternative strategy. They proposed employing two alternative
CNN architectures—ImageNet and LeNet—to learn pen-based
characteristics from signals derived from the smart pen’s six
sensors. With ImageNet for meanders and OPF for spirals, the
authors reported the highest accuracy of 83.77%. Additionally,
a major feature of PD is a reduction in the quantities of
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dopamine generated by brain cells called neuron. It can be
discovered using FP-CIT SPECT and dopamine transporter
imaging, and the authors of [7] created an automated deep-
learning algorithm to decipher a collection of FP-CIT SPECT
images taken from the PPMI repository. SPECT pictures are
used as inputs for a 3D convolutional layer, which generates
16 3D outputs after going through 777 convolutional filters,
max-pooling, and ReLU activation layers in addition to the
output layer.

Resul Das [8] conducted a machine learning study compar-
ing four different types of classification algorithms to enable
the diagnosis of Parkinson’s disease. The study used SAS-
based software to model various classifiers that can detect the
presence of PD, such as DMNeural, Neural Network, Regres-
sion, and Decision Tree. The efficiency of the classifiers was
evaluated using various methods, and the accuracy assessment
revealed that the Neural Network classifier had a 92.9% correct
classification rate. Hariharan et al. [9] distinguish their paper
from others by presenting a novel method for detecting and
diagnosing Parkinson’s disease (PD) using a hybrid intelligent
system3. Their proposed system includes model-based cluster-
ing pre-processing with a Gaussian Mixture Model, followed
by feature reduction with Principal Component Analysis,
Linear Discriminant Analysis, Sequential Forward Selection,
and Sequential Backward Selection. The authors used three
supervised classifiers for classification: least square support
vector machine, Probabilistic Neural Network, and General
Regression Neural Network. The data used in their study
came from the UCI ML5 database. Astrom and Koker [10]
found that a parallel feed-forward neural network structure4
was more effective than a single neural network in predicting
Parkinson’s disease. They used a set of nine parallel neural
networks, which resulted in an 8.4% improvement. A rule-
based system was used to evaluate the output of each individ-
ual neural network to arrive at the final output. Additionally,
each network’s unlearned data was collected and fed into the
training set of the next network in the series.techniques were
surpassed by their suggested manner.

III. METHODOLOGY

The progression of the classification process as a whole is
the topic of discussion in this section. FS was carried out by
the 23 voice features of approximately 195 different examples,
all of which are multivariate characteristics of Dataset. The
conceptual architecture of proposed methodology is illustrated
down below in the form of Fig. 1. Data collection, feature
selection, the training of a model, and model prediction are
the subsequent steps in the suggested method. This research
investigates a Machine Learning (ML)-based diagnosis of
Parkinson’s disease utilising a variety of classifiers, and the
accuracy of their predictions is diagnosed based on the estab-
lished characteristics.

A. Exploratory Data Analysis

During our exploratory data analysis, we observed the
presence of outliers in many features. However, these outliers
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Fig. 1. Conceptual Diagram of Proposed End-to-End Framework

fall within the possible biological ranges for the respective
variables, indicating that they could be genuine data points
rather than errors. Based on this observation, we decided to
let the outliers remain in the dataset and not treat them as
anomalies.

o Correlation Analysis : We conducted a correlation anal-
ysis to identify any patterns or relationships among the
variables in the dataset. Several interesting observations
were made during this analysis

o Clusters of Strong Correlations : We found clusters
of strong correlations between specific groups of vari-
ables. For example, measurements of Jitter are strongly
correlated with each other, suggesting that they may share
some underlying commonality. Additionally, there is a
decent correlation observed between Shimmer and Jitter
variables, which might imply a relationship between these
two groups of features.

o High Negative Correlation : We identified a strong
negative correlation between the Harmonics-to-Noise Ra-
tio (HNR) and the rest of the variables in the dataset.
This finding indicates that as HNR increases, the other
variables tend to decrease, and vice versa.

o Novel Measurements : The novel measurements such as
Recurrence Period Density Entropy (RPDE), Detrended
Fluctuation Analysis (DFA), and Pitch Period Entropy
(PPE) are not strongly correlated with other variables in
the dataset. This observation can be attributed to the fact
that these measurements are nonlinear and therefore may
not exhibit a linear relationship with the other variables.

In conclusion, our exploratory data analysis revealed some

intriguing patterns and relationships among the variables in
the dataset. These insights will be valuable when we proceed
to the next stages of our analysis, such as feature selection
and model building.

B. Principle Component Analysis

A statistical method called principal component analysis
(PCA) is used to make datasets smaller while preserving as
much variance as feasible. To do this, the original data is
transformed into a new coordinate system, where the first
axis (principal component) denotes the direction of highest
variation and each succeeding axis denotes the direction of
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maximum variation orthogonal to the preceding axis. In data
analysis and machine learning, PCA is often used to find
patterns in data, minimise the number of variables in a dataset,
and enhance the accuracy of prediction models. When dealing
with high-dimensional datasets, where it is difficult to visualise
the data or find significant associations between variables, it
is very helpful.
The following are the steps for doing PCA:

° Data standardisation is important because PCA
works best with variables that have comparable
scales. As a result, it’s crucial to standardise the data
by dividing by the normal deviation and removing
the mean.

. Calculate the covariance matrix to reveal the rela-
tionships between the variables in the dataset. It is
calculated by adding the transpose to the conven-
tional data matrix.

° Determine the eigenvectors and eigenvalues: Eigen-
vectors are the directions in which the data vary
most, and eigenvalues are the degree to which each
eigenvector varies the data. They are computed by
solving the eigenvalue problem, which entails locat-
ing the covariance matrix’s eigenvectors and eigen-
values.

) Choose the principle components: The eigenvectors
with the highest eigenvalues are the principal com-
ponents. They stand for the directions in which the
data vary most widely.

° Transform the data: To convert the original data
into the new coordinate system, multiply it by the
eigenvector matrix.

C. Predictive Modelling

1) Random Forest: A popular machine learning approach
for classification and regression applications is called Ran-
dom Forest. Multiple decision trees are combined using an
ensemble learning approach to create a model that is more
accurate and stable. The step by step process of random forest
is described below:

2) Decision Tree: A graphical depiction of a decision-
making process that has a tree-like form is called a decision
tree. Decision-making processes are modelled and visualised
using it in a variety of industries, including business, medical,
engineering, and finance. Both classification and regression
issues may be solved using decision trees. The step by step
process of decision tree is described below:

3) SVM: A supervised machine learning approach called
Support Vector Machine (SVM) is used for classification and
regression analysis. It operates by identifying the hyperplane
in a high-dimensional space that best classifies the data.

4) KNN: A simple but effective machine learning approach
called K-Nearest Neighbors (KNN) is utilised for classifica-
tion and regression applications. The instance-based or slow
learning algorithms group includes KNN. In a KNN, the input
consists of the k training instances that are closest to each
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other in the feature space, and the output, for classification or
regression problems, is a class membership.

5) CNN + LSTM: The LSTM + CNN model is a deep
learning architecture that combines convolutional neural net-
works (CNNs) and long short-term memory (LSTM) networks.
This architecture is commonly used in tasks such as image
captioning, where both visual and textual information need to
be processed. Working of LSTM + CNN model:

° Data preprocessing: The CSV data is first prepro-
cessed into a format suitable for deep learning. This
typically involves scaling the data and splitting it into
training and testing sets.

° CNN layer: The input data is then passed through a
1D CNN layer to extract features:

conv;; = O'(bz + Z wk,il’j—&-k—l) (1)
k=1
where i indexes the filter, j indexes the time step, n
is the filter size, ;41 is the input data at time step
J+k-1, wy ; is the weight of the filter, b; is the bias
term of the ith feature map, and o is the activation
function.

° LSTM layer: The output of the CNN layer is then fed
into an LSTM layer, which processes the temporal
sequence of features:

it = o(Waire + Whily—1 + Weice—1 + b)) (2)
fi=0Wyrxy + Whrhi—1 + Wepeim1 +bp) Q)
ct = fr-cio1tig-tanh(Woexs + Whehi—1+be) (4)
or = 0(Waottt + Wholi—1 + Weoct + o) (5)
ht = o; - tanh(ct) (6)

where i;, f;, ¢, and o; are the input, forget, cell,
and output gates, respectively, x; is the input feature
vector at time t, h;_q is the previous hidden state,
ct—1 is the previous cell state, W and b are the
weight and bias matrices, and tanh and o are the
hyperbolic tangent and sigmoid activation functions,
respectively.

o Dense layer: The output of the LSTM layer is passed
through a time-distributed dense layer, which applies
a fully connected layer to each time step:

where y; is the output at time t, W, and b, are
the weight and bias matrices of the dense layer,
respectively.

° Softmax layer: The output of the time-distributed
dense layer is passed through a softmax layer to
generate the final predictions:

P, = softmaz(y;) (3

where P, is the predicted probability distribution
over the classes at time t.
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6) GRU: The Gated Recurrent Unit (GRU) is a type of
recurrent neural network (RNN) that is widely used for se-
quential data processing, such as speech recognition, language
translation, and image captioning. The GRU was introduced
by Cho et al. in 2014 as a simpler alternative to the long
short-term memory (LSTM) architecture. The GRU has fewer
parameters than the LSTM and is easier to train, while still
achieving state-of-the-art performance on many tasks. The
GRU architecture consists of a hidden state vector h and two
gating mechanisms: the reset gate r and the update gate z. The
reset gate determines how much of the previous hidden state
to forget, while the update gate determines how much of the
new information to incorporate into the new hidden state.

The equations for the GRU are as follows:

Resetgate : ry = sigmoid(Wy[x¢, hi—1] + by) 9)

Updategate : zz = sigmoid(W,[x¢, he—1] + b2) (10)
Candidateactivation : hy = tanh(W [z, 7y % hy_1] + b)

(11)

Hiddenstate : hy = (1 — 2z;) % hy—1 + 2¢ * hy (12)

where, x; is the input vector at time t, h;—1 is the previous
hidden state, r; is the reset gate vector, z; is the update
gate vector, hy is the candidate activation vector, W,., W,
and W are weight matrices for the reset gate, update gate,
and candidate activation, respectively b,, b,, and b are bias
vectors for the reset gate, update gate, and candidate activation,
respectively.

The reset gate r; determines how much of the previous
hidden state h;_; to forget. If 7 is close to 1, then the previous
hidden state is fully retained, while if r; is close to 0, then
the previous hidden state is mostly ignored.

Finally, the new hidden state h; is computed as a weighted
average of the previous hidden state h;_; and the candidate
activation h;, where the weights are determined by the update
gate z;. If z; is close to 1, then most of the new hidden state
is based on the candidate activation, while if z; is close to 0,
then most of the new hidden state is based on the previous
hidden state.

D. Evaluation Metrics

1) Accuracy: Accuracy is a term commonly used in statis-
tics and machine learning to measure the degree of correctness
of a prediction or classification model. In classification tasks,
accuracy is defined as the ratio of correctly predicted instances
to the total number of instances in the dataset. It is often
expressed as a percentage, with higher values indicating a
more accurate model [11].

2) Precision: Precision is a performance metric commonly
used in machine learning and statistics to evaluate the quality
of a classification model. It is defined as the ratio of true
positive instances to the total number of instances predicted
as positive. In other words, precision measures how many of
the positive predictions made by the model are actually correct.

Tp

_ 13
Tp+ Fp (13)

Precision =
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3) Recall: Another evaluation metric that can be used for
evaluating the performance of the model is recall. It is defined
as the ratio of true positive instances to the total number
of instances that are actually positive. In other words, recall
measures how many of the positive instances in the dataset
the model correctly identified.

Tp
Tp + Fn

4) F1-Score: F1-Score is the harmonic mean of precision
and recall, which provides a balanced measure of both metrics.

Recall = (14)

FlScore — 2 x Precision x Recall

15
Precision + Recall (15

E. Explainable Al

XAI approaches like SHAP and LIME explain machine
learning model predictions. Explaining feature relevance in a
forecast is popular with SHAP. SHAP values each character-
istic in a forecast based on its effect on the outcome. This
helps users understand which elements are most relevant for
prediction and how they interact. LIME explains forecasts.
It develops a local model around a forecast and illustrates
which characteristics most affected its result. This helps users
understand how the model made a prediction. SHAP and
LIME work with any machine learning model, independent
of its training method. This makes them handy tools for many
uses.

IV. EXPERIMENTAL RESULTS
A. Dataset Description

This dataset contains biomedical voice measurements of 31
individuals, including 23 individuals diagnosed with Parkin-
son’s disease (PD) and 8 healthy individuals. The dataset
aims to identify and discriminate healthy individuals from
those with PD based on voice-related characteristics derived
from voice recordings. Each row of the dataset represents
one voice recording, and each column represents a particular
voice measure. There are 195 voice recordings in total, with
approximately six recordings per patient. The first column of
the dataset identifies the name of the patient. The “status”
column is the target variable that indicates the health status of
each individual. The value of O represents a healthy individual,
and the value of 1 represents an individual with PD. The
dataset is provided in ASCII CSV format, which contains
196 rows (including header) and 23 columns. The header row
specifies the name of each voice measure, and the remaining
rows contain the values of each measure for each voice
recording.

B. Dimensionality Reduction :

In our analysis, we addressed the issue of multicollinearity
and high-dimensional data by applying dimensionality reduc-
tion techniques. Rather than simply dropping highly correlated
variables, we chose to utilize Principal Component Analysis
(PCA) on different subsets of variables. This approach allowed
us to condense the information contained in multiple related
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TABLE I

THE DESCRIPTION OF DATASET

Voice measure

MEANING

MDVP-Fo (Hz)

Average vocal frequency

MDVP:Fhi (Hz)

Maximum vocal frequency

MDVP:Flo (Hz)

Minimum vocal frequency

MDVP- Iitter (%)

Measures of variation in

MDVP:.Jitter (Abs)

Frequency

MDVP:RAP MDVP relative amplitude perturbation
MDVP:PPQ MDVP five-point quotient
Jitter:DDP Average difference between jitter cycles

MDVP-Shimmer

Measures of variation in amplitude

MDVP-Shimmer (dB)

Measures of variation in amplitude in (dB)

Shimmer:APQ3 Three-point perturbation quotient
Shimmer:APQ5 Five-point perturbation quotient
MDVP:APQI11 MDVP 11-point perturbation quotient
Shimmer:DDA Average differences between the amplitudes
NHR Two measures of ratio of noise to tonal
HNR components in the voice
RPDE Two nonlinear dynamical complexity
D2 measures
DFA Signal fractal scaling exponent
spread 1 Three nonlinear measures of fundamental
spread 2 frequency variation
PPE Pitch period entropy

status

Healthy or Not

variables into a smaller number of uncorrelated components.
For instance, we applied PCA to the group of Jitter variables,
which consisted of five different measures.

C. The Evaluation of Proposed Architecture

1) Evaluation of Machine Learning Models and Deep
Learning Models: Different machine learning and deep learn-
ing models have been implemented on the PD dataset and the
results of all the machine learning models have been shown
in Table II. From the table, we can observe that out of all the
implemented machine learning models KNN has obtained a
higher accuracy. A total of 4 deep learning models has been
deployed and the results of the deep learning models. CNN +
LSTM has obtained higher accuracy when trained and tested
on data without PCA whereas GRU has better accuracy when
trained and tested on data PCA.

2) Evaluation based on Metrics: For the purpose of evalu-
ating our system, the standard standards for assessing classi-
fication models have been used. Fig. 2 is a representation of
the learning curves of accuracy and loss for the training and
validation of the models. These learning plots are evidence of
an effective learning algorithm since the validation curve and
the training curve both retain a point of stability with a mini-
mum difference between them. In order to get the best possible
results, the training of the effective model was designed to
integrate three separate but interrelated tasks at the same time:
1) the calculation of output, 2) the correction of mistakes, and
3) the fine-tuning of the hyper-parameters. Following a number
of rounds during which the hyper-parameters were fine-tuned,
the highest training and validation accuracies, respectively,
were found to be 99.5% and 98.1% when using a particular
combination of hyper-parameters. The precision, recall, and F1
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scores, along with other accuracy measures, were computed,
as given in Table II.
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Fig. 2. Explainable AI (SHAP) Results

3) Impact of Training and Validation Splits: After being
educated on our source data, it is imperative that we do an
analysis of our model. When a model keeps the parameters
of a periodic function and is then experimented on using the
same data, this might lead to overfitting problem.

As a result, we verified our model by taking into account
five distinct instances of data splits. Following a number of
trials, the model’s best training and validation accuracy are
both 100%, with an 80:20 split of the results, as depicted in
Fig. 3. Because of the highly generalized nature of the trained
model, we were able to achieve a test accuracy of close to
one hundred percent when we developed an independent test
set that consisted of ten samples and was not a part of the
training or validation process.

4) Explainable AI: SHAP bar plot shows the overall impact
of each feature on the model’s predictions. The bars represent
the average SHAP value for each feature, and their length
indicates the magnitude and direction of the impact. If a
feature has a positive SHAP value, it means that increasing
its value tends to increase the model’s output, and vice versa
for negative values. The SHAP bar plot show that spreadl
has the highest positive impact on the model’s predictions,
followed by PPE and then MDVP:HFo(hz). This suggests that
if the data consists larger spreadl value then it tends predict
the given data point as disease.

Similarly SHAP dot plot shows the impact of each feature
on individual predictions. Each dot represents a single obser-
vation in the dataset, and its position on the x-axis corresponds
to the SHAP value for the corresponding feature. The y-axis
can represent the actual value of the prediction or some other
variable of interest. From the fig we can see that the spreadl
had a high positive impact on its predicted price, while the PPE
had a smaller positive impact, and the MDVP:HFo(hz) had a
small negative impact. This suggests that the if the spreadl
value is larger than average and has more PPE than average,
which tends to increase its value.

V. CONCLUSION

In this research paper, we aimed to perform a compar-
ative analysis of machine learning and deep learning-based
approaches for Parkinson disease (PD) identification. Our
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TABLE II
THE DESCRIPTION OF EVALUATION RESULTS OF MACHINE LEARNING MODELS

Model Train Accuracy | Test Accuracy | F1 Score | Recalis] | Area Under Curve(AUC
KNN 94,85 94.92 96.47 95.35 94.55
SVM 70.47 3458 85.15 100 5312
Naive Baves 57.55 85.44 90.24 86,05 85.77
Logistic Regression 84.56 8644 91.49 100 90
Meta Cassfier 94.85 9492 96.35 97.67 9259
Decision Tree 8.76 86.44 91.49 100 75
Bagging 87.5 88.14 92.47 100 7812
Adaboost 96.32 88.14 91.95 93.02 84.01
Gradient Boost 96.37 91.53 9451 100 84.38
Random Forest 95.3 92.22 95.35 95.35 91.42
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Fig. 3. Confusion Matrix and Impact of Train-Test-Validation Split of on (a)-(b) CNN+LSTM and (c)-(d) GRU

primary objective was to identify key predictors, especially
speech-related characteristics of PD, using explainable Al
Furthermore, we aimed to build an end-to-end framework
for PD identification, starting from patient data collection to
the final diagnosis. Our results showed that both machine
learning and deep learning-based approaches are effective in
identifying PD from voice signals. However, deep learning
models outperformed machine learning models in terms of
accuracy and robustness. We also found that various speech-
related characteristics, such as jitter, shimmer, and harmonic-
to-noise ratio (HNR), were important predictors for PD identi-
fication. To make the diagnosis process more interpretable and
explainable, we developed an explainable Al-based approach
that not only provides accurate predictions but also highlights
the key features that contribute to the prediction. Our approach
can aid medical professionals in making informed decisions
and improving the quality of care for PD patients. Finally, we
built an end-to-end framework for PD identification, which
involves data collection, preprocessing, feature extraction,
model training, and prediction. Our framework can be used
in clinical settings for early detection and diagnosis of PD,
which is crucial for improving patient outcomes. Overall, our
research provides insights into the use of machine learning
and deep learning-based approaches for PD identification and
highlights the importance of speech-related characteristics as
key predictors. We hope that our work will contribute to the
development of more accurate and interpretable models for
PD diagnosis and ultimately improve the quality of life for
PD patients.
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