
A Multi-view Skeleton Data Fusion Method Based
on BP Neural Network

1st Yueyi Li
School of Communications and Information Engineering
Chongqing University of Posts and Telecommunications

Chongqing 400065, China
s210131116@stu.cqupt.edu.cn

2nd Xin Su
Department of Electronic Engineering

Tsinghua University
Beijing, China

suxin@tsinghua.edu.cn

3rd Xibin Xu
Department of Electronic Engineering

Tsinghua University
Beijing, China

xuxb@tsinghua.edu.cn

Abstract—In recent years, human skeleton tracking technol-
ogy has attracted a lot of attention in the fields of virtual
reality, human-computer interaction and medical rehabilitation.
Human skeleton tracking technology is the basis for building
human models in virtual reality scenarios. Among them, Kinect
camera is widely used as a motion tracking sensor for virtual
reality human-computer interaction. However, many current
studies on skeleton point tracking are limited to single or dual
camera systems, which leads to problems such as occlusion,
missing skeleton data and errors. To solve the problems of
limited capture range and data occlusion of a single Kinect
camera, this paper proposes a skeleton point tracking method
based on multiple Kinect cameras. The method uses multiple
Kinect cameras to track the 3D coordinates of 32 body joints
simultaneously, and unifies the joint coordinates captured by
multiple Kinect cameras in different viewpoints into the same
world coordinate system through coordinate transformation.
The BP (Back Propagation) neural network is used to train
the skeleton data from multiple viewpoints, thus generating a
reliable user skeleton position in real time. By this method, the
problems of the existing methods for obtaining skeleton points
in a single camera view are solved.

Index Terms—Azure Kinect, Coordinate calibration, BP neu-
ral network, Data fusion

I. INTRODUCTION

Virtual reality (VR) is a computer-based high-tech means
for creating virtual environments that integrate the senses
of sight, sound, and touch [1]. Virtual reality technology is
widely used and plays an important role in cultural enter-
tainment, educational training, engineering design, medical
rehabilitation, and other fields. The creation of human body
models is crucial to improve the interactivity and immersion
of virtual reality human-computer interaction technologies.
Using Kinect sensors to capture human motion is a method
based on computer vision principles, which allows motion
capture of the human body in the tracking area through a
camera without the need to wear any equipment, with less
constraint and a stronger sense of immersion.

Microsoft developed the Kinect sensor and its SDK to
capture human motion and provide corresponding 3D joint
coordinates in real time, without the use of any markers or
handheld controllers. It is potentially cost-effective and can
be widely used as a portable markerless motion capture tool
for clinic and home-based gait observation. However, past

studies have shown that the accuracy of motion tracking
based on the first and second generation Kinect is low [2].
Microsoft Kinect [3] provides a low-cost and convenient
method to acquire human posture by extracting the complete
skeleton of human motion in real time for capture. The
latest version of Azure Kinect DK has been released and
is expected to improve image sensing technology. It features
two selectable field-of-view modes, higher resolution, a more
compact appearance, and weighs almost half of the previous
version. However, using a single Kinect to recognize human
pose often encounters problems such as missing data, errors,
and occlusions [4]. As a result, we are unable to capture the
human pose accurately. Although there are solutions to avoid
these problems, acquiring and fusing data using multiple
Kinects is a more reliable approach. However, how to obtain
valid information through data fusion is still a challenge to
be solved.

Many scholars have worked on information acquisition
and data fusion accuracy of multiple Kinect sensors. Yunru
[5] proposed a motion capture system based on dual Azure
Kinect, which provides relatively accurate knee angles in
terms of ground gait compared to standard 3D gait analysis
systems, but still cannot solve problems such as data loss
that cannot meet the need for high-precision recognition
of human postures. Saputra [6] combined multiple human
tracking modules in Azure Kinect based on the ONNX run-
time, each using passive infrared as the human segmentation
and recognition process and converting depth information to
3D positions, improving the accuracy of skeleton tracking,
but the convenience needs to be improved. Liu [7] studied
the data fusion technology for multi-sensor networks and
proposed a data fusion model based on BP neural network
to realize the system adaptive multi-source data fusion.

In this paper, we build a multi-view human skeleton track-
ing system to handle issues such as occlusion. We improve
the performance of Azure Kinect skeleton tracking from
several angles. By using a hardware arrangement scheme
with three Kinects, we can transform the coordinate system
of the skeleton data captured by the three Kinects to ensure
the consistency and accuracy of the skeleton data. Then,
by building a BP neural network using the Kinects’ own
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Fig. 1. Block diagram of the proposed system.

properties, we achieved the fusion of the three Kinect data
by using the visual information captured by the Kinects as the
input and output samples of the neural network. The training
of the neural network provides a reliable skeleton position,
solving the problems of missing data, errors and occlusions
when skeleton data is collected by a single Kinect.

II. SYSTEM DESIGN

This section describes a skeleton data fusion system based
on BP neural network, as shown in Fig. 1. The system con-
sists of three Kinect sensors, which are each connected to a
personal computer through a universal serial bus (USB). The
user’s skeleton information are collected by each computer
and transmitted to the main server for data processing via
Transmission Control Protocol /Internet Protocol (TCP/IP).
If motion sensors are detected, skeleton information from
each sensor is transmitted to the main server for processing.
To integrate the skeleton data with constant body size,
orientation and root position of the user, we used coordinate
calibration and skeleton normalization methods to overcome
these problems. Then, the predicted skeleton information can
be derived based on the skeleton data collected by the three
cameras as input to the neural network. Each process is
described in detail in the following subsections.

A. Coordinate System Transformation

Azure Kinect is the latest generation of Kinect products
from Microsoft, which is specifically designed for develop-
ers. The device includes a depth sensor, RGB camera, 7-
microphone array, accelerometer and gyroscope, and pins
for external synchronization [8]. Each Kinect sensor can
obtain joint information of 32 human bones at 30 frames
per second(fps) through the Kinect Software Development
Kit (SDK) provided by Microsoft. The human skeleton
information consists of the tracking state and position values
of the bones. These skeleton joints are composed in a certain
hierarchical structure, distributed from the center of the body
toward the extremities. Each skeleton joint (articulation)
connects a parent joint to a child joint. Fig. 2 shows the
joint locations and the connections relative to the body.

When performing data acquisition with multiple cameras,
we need to synchronize the cameras with each other in
order to ensure that each frame of data captured by each
camera is from the same moment of the scene. When using
multiple Kinect devices for connection, we divide them into
two attributes: master and subordinate. There can be only one
master device, while the rest of the devices are subordinate.
To achieve synchronous operation, we connect the input port
of the subordinate devices to the output sync port of the
master device via a splitter. In this way, the master device
sends a synchronization signal to ensure that all cameras start

Fig. 2. Joints of skeleton that captured by Kinect sensor.

collecting data at the same moment. In the actual scenario
used in this paper, we used three cameras for data acquisition
and arranged them in the arrangement shown in Fig. 3. This
ensures that the data captured by each camera is at the same
point in time and provides consistency for subsequent data
processing.

When three Kinect devices are used to capture human
postures, each Kinect is able to acquire skeleton joint point
data of the target from a different viewpoint, and each Kinect
has its own coordinate system. Therefore, these cameras need
to be calibrated to translate their captured human pose into
the same spatial coordinate system. The purpose of camera
calibration is to obtain external parameters between cameras
without internal calibration, because the motion capture
module in this paper only involves skeleton coordinates
and does not involve conversion between depth and color
images. To achieve camera calibration, a checkerboard grid
coordinate calibration method can be used by acquiring the
rotation and translation matrices between multiple cameras
[9]. The skeleton joint point data acquired by each Kinect
is transformed by coordinates to a unified world coordinate
system and then transferred to a data fusion server for subse-
quent processing. The ultimate goal is to establish a nonlinear
mapping relationship of the skeleton points collected by three
cameras from the 2D image coordinates.

Audio cable
USB-C

Fig. 3. Schematic illustration of the Three Kinect System.
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Using the equation for the intrinsic matrix of the camera:
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In the pixel coordinate system, [u; v; 1] represents the coor-
dinates of the projection point, while in the world coordinate
system, [X;Y ;Z; 1] represents the position coordinates of
the object. Transformation of the object from the world
coordinate system to the camera coordinate system can be
achieved by rigid body transformation, a process in which
no deformation of the object occurs and only rotation and
translation are involved. The rotation matrix R3×3 and the
translation vector T3×1 are external parameters describing
the world coordinate system to the camera coordinate system,
also known as the external reference matrix of the camera,
and they describe the pose of the camera in the world
coordinate system. Assuming that the current scaling factor
is s=1, if the image from the camera is scaled, then the other
parameters should be scaled by the same ratio.

To obtain the desired features of the target image and use
it as a tool for calibrating the coordinate systems between
the master and slave devices, we can print a black-and-white
chessboard pattern. One side of the chessboard pattern should
consist of an equal number of black squares, while the other
side should have an equal number of white squares [10]. By
utilizing such an image, we can perform calibration between
the master and subordinate devices, establishing a consistent
coordinate system relationship between them.

B. Skeleton Data Normalization

Since the skeletal data collected by the Kinect sensors
belong to different coordinate systems, in order to integrate
these skeletal data, calibration is first required to obtain
the camera matrix of each Kinect sensor. Then, for the
coordinates of each joint position, it needs to be normalized
so that it has a consistent scale in the same coordinate system.

The body size of the user can have an impact on the
position of the skeletal joints, as different body sizes can lead
to differences in joint positions. Therefore, normalization is
required when fusing skeletal joint position data to ensure
that body sizes remain consistent across different human
bodies [11]. Therefore, an ergonomic kinematic tree con-
sisting of 32 joints is considered to describe the structure of
skeletal joints. In the kinematic tree, joints are represented
as nodes and limbs are represented as edges. According to
the definition of the kinematic tree, we designate the Spine
Base joint (j = 0) as the root node of the tree, while the
other 31 joints are used as branch nodes.

Let Ll represent the length of the lth limb, l ∈
1, 2, 3, ..., 32, ml and nl represent the starting and ending
joints. For j = 0, 1, 2, ..., 32, the fused skeletal position
is Pj , and let Nj denote the coordinates of the jth joint
of the normalized skeleton. We can determine Nj by a
normalization process. The normalization process starts with
the root joint (Spine Base joint). The root normalizes the
joint coordinates of the fused skeleton as:

Nnl
= Nml

+ Ll ·
Pnl

−Pml

∥Pnl
−Pml

∥
(2)

The user’s position in the world coordinate system will
change according to their own skeletal movements and the
tracking results will be inaccurate. To ensure that the absolute
position of the skeletal data in the world coordinate system
remains constant for the user, we need to choose a fixed
coordinate origin as the reference point [12]. Spine Base joint
is used as the origin of the world coordinate system, and the
positions of the other joints are transformed accordingly as:

Nj = Nj −N0, j = 1, 2, 3, . . . , 32 (3)

C. Skeletal Data Fusion based on BP Neural Network

The BP neural network is a multi-layer feed-forward neu-
ral network, which simulates the working principle of human
brain and trains the network with a certain amount of data
samples to convert the complex logical relationship between
the data into the connection weight parameters between the
network nodes.The BP neural network consists of nonlinear
transformation units, which use the mechanism of error back
propagation to realize the nonlinear mapping from The BP
neural network consists of nonlinear transformation units
that use the error back propagation mechanism to achieve
a nonlinear mapping from input signals to output patterns.
The basic algorithm is the least squares method, which
calculates the weight value that minimizes the error between
the network output and the desired output by the gradient
search method.The learning process of BP neural networks
consists of two main stages: the first stage is the forward
propagation of the network, where the input information of
the network is processed by the hidden layer; the second
stage is the backward propagation of the network [13]. In
the back propagation stage, when the output of the output
layer does not match the desired output, we calculate the
difference (error) between the desired output and the actual
output by recursively calculating layer by layer, and then
dynamically adjust the weight parameters according to this
difference. By continuously iterating this process, we can
obtain the ideal fusion data so that the output is gradually
close to the desired output.

The training process of the neural network is as follows:
the number of nodes in the input layer n, the number of
nodes in the hidden layer l and the number of nodes in the
output layer m are determined according to the input-output
sequence [X,Y ] , the connection weights from the input layer
to the hidden layer is wij , the connection weights from the
hidden layer to the output layer is wjk, the bias of the hidden
layer is aj , the bias of the output layer is bk, the learning rate
is η, and the activation function uses the Sigmoid function:

g (x) =
1

1 + e−x
(4)

The output of the hidden layer neurons as:

Hj = g

(
n∑

i=1

wijxi + aj

)
(5)

The output of the output layer neurons as:
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Ok =

l∑
j=1

Hjwjk + bk (6)

Yk denotes the desired output value of the neural network,
calculate the error between them as:

Ek = Yk −Ok (7)

Then, updated the connection weights and the bias, as
follows:

wij = wij + ηHj(1−Hj)xi

m∑
k=1

wjkEk (8)

wjk = wjk + ηHjEk (9)

For each sample, learning is performed by adjusting
the connection weights and biases until all samples have
completed learning. During each iteration, it is determined
whether the global output error function reaches a set con-
vergence limit. If the error function reaches the predefined
error, the iteration is stopped. In this way, it is ensured that
the error is gradually reduced during the learning process
until the desired convergence state is reached.

The loss function uses mean square error MSE:

MSE =

∑n
i=1

[
(xi − x

′

i)
2 + (yi − y

′

i)
2 + (zi − z

′

i)
2
]

n
(10)

where xi, yi, zi are the true values of the ith data in one
training, x

′

i, y
′

i, z
′

i are the predicted values given by the neural
network.

The error is back-propagated using a back-propagation
algorithm to update the neural network parameters. During
the training, we divide the data set into a training set and a
validation set, and use the validation set for model tuning in
order to avoid overfitting.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Parameter Setting

After several experiments, the parameter settings for run-
ning the program are shown in TABLE I:

TABLE I
COMMAND LINE PARAMETER

Parameter Value
chessboard height 9
chessboard width 6

chessboard square length 15
depth threshold (mm) 1000 (default)
color exposure (ms) 8000 (default)

powerline frequency (Hz) 60 (default)
Number of hidden layers 3

B. Experiment for Convinced Skeleton

In the three-view skeleton fusion system, information
related to Kinect sensors was provided by the proposed
method at 30 fps. The three-view skeleton fused in real time
after calibration synchronously with Kinect sensors.

If only a low confidence level exists for the joint, the
available data from other devices can be used. The pose
captured by a single camera may produce incorrect skeleton
positions due to occlusion, and with the addition of the
devices, the angles of the other devices can compensate for
the deficiencies of the single camera. As can be seen in Fig.
4 (a), after coordinate calibration, the skeleton output by the
two devices in the unobstructed case have largely overlapped,
and the hand have occlusions in Fig. 4 (b), thus resulting in
an inaccurate skeleton position output by one of the devices.

Fig. 5 (a) shows a system with three devices, where one leg
is occluded due to crossover, resulting in an inaccurate bone
position in one view. But overall, the leg occlusion in one
view has less impact in the overall system, and using three
devices will have more confident joint positions. Training
with a BP neural network requires the average of the skeleton
data collected by the three devices to be used as training
data. In the neural network, the weights of the occluded joint
points are reduced to obtain more accurate skeleton data. Fig.
5 (b) shows the skeleton prediction after the training of the
neural network, and it can be seen that the occluded hand is
still able to have good skeleton tracking position. Further, we
conducted more experiments and found that the three devices
can solve the occlusion problem of any part of the body.

(a) No occlusion (b) Hands occlusion

Fig. 4. Skeleton recognized by double Kinects.

(a) Three devices (b) Neural network prediction

Fig. 5. Skeleton recognized by three Kinects and prediction.
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This experiment verifies the effectiveness of the data fu-
sion algorithm based on BP neural network in compensating
the problem of poor recognition accuracy due to occlusion.
The hand coordinates were selected for the experiment, and
after the data were collected by the three Kinect respectively,
the corresponding predicted data were obtained by the data
fusion algorithm from the data after the coordinates were
unified, as shown in Fig. 6.

The data fusion of the three Kinect data is effectively fused
in the frames with missing and occluded data, and the pre-
diction generates a set of more continuous posture coordinate
data. The effectiveness of the data fusion algorithm in this
paper is demonstrated. At the same time, the credibility of
the acquired data is improved by data fusion, which makes
the human posture recognition more accurate.

C. Evaluation

During the experiment, we set the learning rate to 0.01.
According to Fig. 7, the root mean square error of the above
neural network training reached a satisfactory convergence
accuracy of about 0.00038993 after about 40 iterations. From
this experimental result, it is clear that the multi-Kinect
camera system solves the problem of insufficient view angle
of a single camera; meanwhile, the accuracy of data fusion
using BP neural network method is sufficient to meet the
requirements of virtual reality vision system.

CONCLUSION

In this paper, we propose a skeleton data fusion method
based on BP neural network, which aims to reduce the
occlusion problem during human skeleton tracking by using
Kinect devices to collect data from multiple viewpoints. To
achieve coordinate calibration of multiple cameras, we use
the tessellation method. Then, the skeleton data collected
from different devices are integrated by a BP neural network
training method to further improve the accuracy and real-time
of skeleton point tracking. The experimental results show that
the method can effectively render the skeleton motion of the
characters and provide reliable skeletal data for driving the
character models in virtual reality scenes. In the future, we
will further improve the method and apply it to more types
of virtual scenes or somatic rehabilitation training games to
enhance user experience and rehabilitation effects.
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