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Abstract—The limited physical constraints of nanosatellites
due to their size, hinders their ability to transmit large amounts
of image data. Because of this, the use of machine learning
methods to filter data onboard has become more prominent to
increase the bandwidth efficiency of these devices. By having
an Al-based classification system for the images, the bandwidth
necessary to transmit all these images and the tradeoff when it
comes to storage, can potentially be offloaded through having
a system which generates metadata that can indicate the data
samples which offer the most usability, thus freeing up more
space and bandwidth for these more important samples.

This study explores the task of land cover classification, by
utilizing one of the more prominent image segmentation models,
U-Net. The model is implemented and evaluated using Pytorch
using the DeepGlobe 2018 land cover classification dataset,
achieving an average class IoU score of 0.68. This study seeks
to support the viability of such a solution and is intended to
support any future work which seeks to implement a fully
automated data prefiltering system for satellite imagery.

Index Terms—computer vision, edge computing, land cover
classification, nanosatellite

I. INTRODUCTION

Remote sensing can be expensive, especially when it in-
volves the remote transmission of any data it needs to process.
For example, an observation satellite trying to transmit image
data from orbit would require a considerable and limited
amount of resources to maintain, but also to work concerning
its intended objective [1].

In the field of data gathering, it is important to know which
data would provide the most amount of value in a specific
project. For example, in a lot of computer vision applications,
it takes a large amount of data to train and evaluate models
[2], data which takes a significant amount of time and
resources to annotate and preprocess before it is ready for
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use. Therefore, people have taken to developing methods
that involve the identification of which data samples would
provide the most amount of information, mostly through the
compilation of diverse data instead of trying to approach it
through quantity.

When it comes to satellite operations, the efficient allo-
cation of the platform’s limited resources is important to
manage the equipment that is onboard and to consistently
keep them operational as much as possible [3]. When it
comes to orbital transmissions, the distance that is needed
to transmit signals between a satellite and a ground station is
often considerably more than transmissions between stations
on the Earth’s surface, and thus, could take more power.
Therefore, it is worth exploring the idea of the onboard
processing of data if it means that the power spent processing
data and transmitting processed data is less than the power
it would take to transmit all the raw data that was collected
by the satellite .

The problem we aim to solve is to create the potential for
an autonomous data collection system that could discriminate
between data files and accurately judge their usability. In
this paper, we specifically look into satellite image data to
accurately determine land cover and help produce land image
data that would contain a substantial amount of agricultural
land.

The main contributions of this paper are as follows:

o The preprocessing of existing satellite data for land
cover classification.

e The retraining of a UNet-based model for the specific
purpose of land cover classification.

o The evaluation of this model on the DeepGlobe 2018
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challenge dataset on land cover classification.

II. REVIEW OF RELATED LITERATURE
A. Convolutional neural networks

Convolutional neural networks are one of the most promi-
nent systems used in deep learning for various computer
vision tasks [4]. Neural networks were modeled from the
way that a biological neural network processes information,
resembling multiple layers of interconnected neurons. CNNs
improve upon this structure by involving multiple layers of
convolutional filters. This application improved upon fully
connected networks, like multilayer perceptrons, by making
use of local connections to be more computationally efficient
in feature analysis.

Since the introduction of classic CNNs, such as LeNet [5],
AlexNet [2] and VGG [6], CNNs have undergone a long
series of developments, with the general trend of making
deeper and more complex network to achieve higher accu-
racies. Although, some more recent developments focused
more on its compression and resource efficiency, to the
point that CNNs were slowly becoming more accessible for
use in applications which require lightweight processing.
The introduction of MobileNets in particular showed the
capability of neural networks for compression enough to be
justified for use in mobile and edge applications [7]. Another
such example is the development of EfficientNets, which
improved upon the ability to scale networks effectively [8].

B. CNNs in image segmentation

The introduction of fully convolutional networks was an
attempt to use convolutional networks to the task of im-
age segmentation [9]. This involved the replacement of the
classifier head of a CNN with additional convolutional and
upsampling layers in order to transform the final output
from a single probability value/vector into a classification
heatmap. After this, segmentation networks were derived
from this concept until it created a more standard structure
which would contain a CNN encoder and a corresponding
decoder. Such architectures which would employ such a
method include DeconvNet [10], SegNet [11] and U-Net [12].

C. Orbital edge computing

In the process of scaling down satellites, the physical
constraints of nanosatellites have made data transmission
more difficult [3]. In addition to other factors, such as limits
on power consumption and ground station availability, other
methods need to be considered for satellite communication.
Akin to modern sensor systems, local processing instead of
transmitting data for centralized processing is considered.
While such methods might yield faster data processing, the
capability of a system to work in such conditions is limited
by the capacity of its network [1]. The justification for orbital
edge computing is necessary to accommodate the limited
downlinking capabilities of smaller satellites.

One example of an attempt at remote processing is the
IPEX CubeSat mission featuring TextureCam, utilizing a
random forest classifier and decision tree model ensemble for
classifying pixels in captured images into a few set classes
[13]. It also involved the salience analysis of images, which
used a pixel-based algorithm to assign a salience score for
individual pixels.
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D. CNN-based classification for satellite imagery

Besides the IPEX mission, one of the more popular tasks
to arise in onboard processing was the use of these machine
learning algorithms to detect clouds in any collected image
data. The proposed networks of MobU-Net and MobDeconv-
Net involved the adaptation of conventional segmentation net-
works for use in edge computing in CubeSats [14]. Another
such example was the CloudScout project which involved
the use of the Eyes of Things (EoT) board and a Myriad 2
Vision Processing Unit to run the CloudScout CNN, a cloud
detection network designed to assess hyperspectral images
for cloud coverage [15].

An Image Classification Unit (ICU) was designed as an
onboard processing circuit for CubeSats [16]. The circuit
involved the use of an STM32 microcontroller to run a model
based on U-Net, which was trained on Landsat 8 images. The
U-Net model is tasked to run a cloud detection task, which
was evaluated using the SPARCS cloud assessment dataset.

III. METHODOLOGY

This section will explain the implementation of the U-Net
model for use in land cover classification of satellite imagery.

A. Dataset

This study implements a sample from the dataset in
the DeepGlobe 2018 Challenge [17]. The sample involves
803 satellite images containing eight classes of terrain. The
dataset has a 90/10 train/validation split. Each image has a
corresponding segmentation mask classifying each pixel to
one of seven types of terrain, including: urban, agriculture,
rangeland, forest, water, barren and unknown. Figure 1 shows
three samples from the dataset with a satellite image and its
accompanying mask. The mask features a segmented image
with the different terrain types in the image highlighted by a
difference in color.

Fig. 1. Samples from the land cover classification dataset in the DeepGlobe
2018 challenge.

B. Model Comparison and Selection

This study focuses on the use of the U-Net segmentation
model [12] for this image segmentation task. U-Net has
been used in previous literature for similar nanosatellite
applications [14], [16], supporting the viability of the model,
and this was the main reason that it was used for this specific
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application, which is land cover classification. Another reason
that this was chosen was due to its ease of implementation,
since it was available in the Segmentation Models for Pytorch
library [18], which was used in this study.

Although, other models were also put into consideration
for potential future versions of the application. One of the
two that was considered was SegNet [11], which shared a
lot of similarities with the U-Net encoder-decoder structure.
Another one was the DeepLab system of segmentation mod-
els [19], which offered another alternative with its use of
atrous convolution. As part of the scope of the study, the
experiments were still eventually limited to using U-Net for
the application.

C. Model Architecture and Training

The specific version of the model used is a U-Net seg-
mentation model with a base encoder model of VGGI16,
which has been pretrained on ImageNet [12]. Figure 2 shows
a diagram of the U-Net segmentation architecture. It is
characterized by its encoder-decoder structure, where the first
component uses convolution and downsample the image, and
the second component uses deconvolution and upsamples the
features into an output mask.

The model was implemented in PyTorch using the Seg-
mentation Models library for PyTorch [18]. The images were
cropped to a size of 1024x1024 and the training images were
augmented with horizontal and vertical flips. The model is
trained over 5 epochs using Adam as an optimizer.

Fig. 2. Diagram of the U-Net architecture.

Dice loss, which can be seen in Eq. 1, is used as the
training loss function [20]. Dice loss is equivalent to the F-
score between the ground truth and the predicted result.

(2yp +1)
(y+p+1)
IV. EVALUATION

To evaluate the model, the Jaccard index [17], [21] will
be measured on the validation dataset. The Jaccard index, or
IoU, will be used as the accuracy metric for the predicted
results. It is a common metric used in segmentation tasks,
and is defined as the ratio between the total amount of
true positive values over the sum of the true positive, false
positive, and false negative values. In an image segmentation

DiceLoss (y,p) =1 — (1
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task, this is defined as the overlapping area of the predicted
and ground truth masks over the total area covered by the
predicted and ground truth masks. Evaluation of the created
model would involve the use of a pixel-wise Jaccard index
(Intersection over Union), which can be seen in Eq. 2,

o 2o TPy
IOU] = oy n n ) (2)
Zi:l TP+ Zi=1 FPj + Zi:l F'Nij

where IToU; refers to the IoU score for each pixel belong-

ing to class j to a total number of n images. T'F;;, I'P;;,

and F'N;; refers to every true positive, false positive and false

negative pixels of class j in each image ¢ [17]. The final score

is the average IoU among classes, which is expressed in Eq.
3’

k
1
mloU = + ; IoUj;, 3)

where k is the total number of classes [17].

V. RESULTS AND DISCUSSION

The performance on the U-Net model is shown in this
study using the validation set. The model was trained over
five epochs and resulted in having a best result after reaching
a minimum Dice loss of 0.2604 at epoch four, as shown in
Figure 3. In this figure, the Dice loss is tracked over the five
epochs of training with the blue curve represents the training
loss over time and the red curve representing the validation
loss over time. It can be seen that there was a downward trend
for the loss, and no significant evidence of overfitting due to
the similarity between the training and validation results.

Fig. 3. Graph showing measure of dice loss after each epoch of training.

The model was also shown to achieve a peak validation
IoU score of 0.68, which can be seen in Figure 4. This graph
shows the recorded score for training and validation over the
five training epochs. Again, there is more evidence to support
an improvement in performance after training, as the curves
have an upward trend.

As for the visual evaluation of the images, Figures 5, 6
and 7 show some sample predictions by the model. In a
sample prediction from Figure 5, it can be seen that the
model is able to capture correct classes for objects in the
image while managing to roughly estimate accurate contours
in the images.
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Fig. 4. Graph showing measure of IoU after each epoch of training.

Fig. 5. Sample accurate result from model inference with the actual image
(left), the ground truth mask (middle) and the predicted segmentation map
(right)

Although, this is not always the case, such as in Figure
6, where while the model manages to predict the shapes
of the terrain, it could misclassify the type of terrain it
actually is. This could indicate an error in the classification
abilities of the model. There might be an error in there having
similar results between some classes that should be noted.
Both in Figure 5 and 7, the model still makes mistakes in
accurately judging the quantity of pixels belonging to a class.
This might also be a similar problem where the contours of
different classes are blending together due to their similarities

Fig. 6. Sample result with misclassification with the actual image (left), the
ground truth mask (middle) and the predicted segmentation map (right)

Fig. 7. Relatively accurate sample result with size error with the actual
image (left), the ground truth mask (middle) and the predicted segmentation
map (right)
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in features. It might be important to note that this problem
might be less of an issue if certain classes are merged in order
to suit a more specific application (e.g. urban and non-urban).

VI. CONCLUSION

This study explores the use of a U-Net model for use
in land classification in nanosatellites. The dataset from the
DeepGlobe challenge was used to accurately represent the
model in potential space applications in an edge device.
Overall, the model was functional and was able to produce
usable results. Although, as seen from a few samples in the
results, the model still has limitations in either accurately
identifying the right pixels belonging to a certain class
(misjudging the size of the area of a certain terrain type)
or identifying the right class for a certain group of pixels
(misidentifying the terrain type of a certain area).

VII. RECOMMENDATION

For future studies, it is recommended that other seg-
mentation models could be used to improve the accuracy
of a proposed system. It is also potentially worthwhile to
attempt to make the model lighter and more efficient for
use in orbital edge devices. These orbital devices carry less
processing power and total memory storage, so exploring
different techniques to compress models to be able to run on
smaller processing devices will be ideal when transitioning
to more practical applications.

On the data side, other datasets could be used, especially
ones that are more representative of the image capturing
capabilities of a nanosatellite. Some more complex issues can
be introduced, such as lower resolutions and cloud coverage,
to train the system to be more robust for more complex inputs.
The classification system of the model can also be expanded
to include more terrain types or more varied locations.

Finally, an integrated control system could potentially
be proposed using the model in this study to create an
entirely functional system that takes in input images, and a
storage system that adapts itself depending on the usability of
current stored images. Additional evaluation metrics could be
explored for classification, such as the presence of interesting
subjects, quality and clarity of the image, or the total diversity
of classes in an image.
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