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Abstract—The development of machine learning methods for
onboard satellite processing is important in order to facilitate
the filtering of collected data samples to maximize the use of the
device’s limited resources. Land cover classification can be used
to focus the collected data on certain terrain types by utilizing
classification methods to determine the class probabilities of
individual pixels in a collected satellite image. The importance
of the accuracy of the segmentation model used for such a task
is important in order to avoid the trashing of data samples
that offer significant information and the prioritization of data
samples which offer less in terms of usable information, which
in the case of land cover classification is determined by which
terrain features may be prioritized over others.

This study focuses on the U-Net segmentation architecture
and performs an experimental study on the effects on two
aspects on the training of a segmentation model for increased
performance. This includes the division of the images in the
dataset into smaller patches and the replacement of the CNN
encoder of the segmentation architecture. The changes made to
the baseline model introduced an increase in the IoU score from
0.68 to 0.7273.

Index Terms—computer vision, edge computing, land cover
classification, nanosatellite

I. INTRODUCTION

There have been numerous developments in satellite tech-
nology, including the development of smaller and more
cost-efficient satellites. These nanosatellites allow space re-
search and technology to be more accessible by reducing
the material requirements to create a functional satellite [3].
Unfortunately, the tradeoff is in the satellite’s capabilities.
With a smaller size, the physical constraints of a satellite
limits its total power capacity, computing power, and size
restrictions, preventing the use of technology that may be
too resource-intensive [1].

One common application for satellites is its use in Earth
observation. This involves the collection of satellite images

from orbit for various purposes. The main problem with this
is that a small satellite can’t always store all the information
that is collected by an imaging sensor [1]. Satellites have a
limited time and bandwidth in downlinking any new data that
may have been collected during this orbit, and satellites only
have a very limited storage for storing this data in between
downlinking sessions.

An onboard classification system intends to mitigate this
problem by having a structured computational solution for
the efficient allocation of resources and memory for storing
any collected images [2]. Land cover classification involves
the use of a segmentation algorithm that helps identify
terrain features in a satellite image to provide information
about these images that would be considered as important
information.

In the preprocessing of satellite images, false positives
could lead to the use of resources on data that is less needed,
and false negatives could lead to the trashing of data samples
that could have been very important. The accuracy of the
model to be used in preprocessing satellite image data before
transmission is important to avoid such cases, and ensure that
the majority of resources are used to transmit useful data and
no useful samples are lost in the process. Therefore, there is
a need to consistently develop and improve the potential of
onboard classification so that these nanosatellites are able to
provide high-quality data with the limited resources that they
have.

Previous methods involved the use of U-Net [19] or
a UNet-based model for onboard image segmentation in
nanosatellite applications demonstrating that the model is
viable for such an application. Leong et al. developed an
Image Classification Unit (ICU) intended for a CubeSat
which utilized a U-Net model for cloud detection using image
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segmentation [8]. The CloudScout segmentation model used
in the Φ-Sat-1 CubeSat was another segmentation model for
cloud detection serving as the next iteration of the Cloud-
Scout model [5], was said to be derived from the encoder-
decoder structure of U-Net [9]. Another example was the
MobU-Net developed by Zhang et al. as a lightweight version
of the U-Net model intended for CubeSats using depthwise
separable convolutions [6].

The use of a basic U-Net model by Leong et al. in their
ICU demonstrated the viability of a U-Net architecture for
onboard satellite image processing [8]. This model was im-
plemented on an STM32 microcontroller after some compres-
sion techniques such as quantization, simulating its viability
for use with the hardware restrictions of a nanosatellite.
This was considered for this study after it was mentioned
that a previous iteration of the ICU was implemented on
a microcontroller circuit developed for the BIRDS 4 1U
CubeSat. This study makes the assumption that the U-Net
architecture can be used as a baseline for onboard image
segmentation and therefore will focus on developing the
model’s performance upon a U-Net model as a baseline.

The development of this classification system will involve
the development of a segmentation model that will be adapted
for this type of application. The main contributions of this
paper are as follows:

• The preprocessing of existing satellite data for land
cover classification.

• The retraining of a UNet-based model for the specific
purpose of land cover classification.

• The evaluation of this model on the DeepGlobe 2018
challenge dataset on land cover classification.

The scope of this study will be limited to the software
development of an satellite image segmentation model.

II. REVIEW OF RELATED LITERATURE

A. Convolutional neural networks
An artificial neural network was modeled on the structure

of a biological neural network which focuses on a network
of interconnected neurons sending signals to each other. This
provides a computational model that can handle larger and
more complex mathematical tasks that would be too much
for a standard algorithmic solution. In the use of neural
networks in various types of machine learning tasks, the
development of the convolutional neural network significantly
improved the computational efficiency of artificial neural
networks with a greater focus on local connectivity allowing
for more effective feature representations [16]. The convolu-
tional layers significantly reduced the number of connections
and therefore the number of computations when performing
machine learning tasks.

A core concept in supervised learning is the fact that the
capabilities of the network can be limited by the amount
of annotated data used in training. It is highlighted that
the general rule when it comes to neural networks is that
the larger and deeper networks provide the ability to solve
more complex computational tasks. Although, in order to
compensate, a larger number of data samples would be
needed to minimize the training loss of the network. The
more samples that are available, the more efficient the training
process [11].

B. CNNs for Image Segmentation

The task of image segmentation is similar to image classi-
fication, except the classification method is done at a pixel-
level instead of the image-level [23]. Whereas the output of
a classification model is a probability value or vector of the
possible classes of the image, the corresponding output for a
segmentation model is a map of an image with classification
probabilities of each pixel. The fully convolutional network
(FCN) allowed the use of convolutional neural networks in
image segmentation, by using convolutional layers to gen-
erate a segmentation mask by replacing the fully connected
layers in the classifier head [18].

One of the more conventional types of CNN-based seg-
mentation are the encoder-decoder models. This usually
involves an encoder backbone, which is often the first few
layers of a CNN like VGG or ResNet, and a corresponding
decoder, a similar group of layers that comes after the encoder
but with deconvolution and upsampling instead [23]. Some
examples of segmentation architecture which followed this
format include DeconvNet [20], SegNet [21] and U-Net [19].

U-Net was a segmentation model that was intended for
the purpose of medical image segmentation [19]. It had two
paths, a contracting path to capture context and an expanding
path for the precise localization. The structure of the U-
Net architecture relies on data augmentation to learn from a
very small set of annotated images, a similar problem which
can occur in satellite image datasets due to the difficulty of
collecting satellite images.

A common technique used in datasets for image segmenta-
tion, but also in other deep learning methods is the use of data
augmentation to artificially increase the number of samples
in a dataset [23]. Data augmentation usually involves the
physical modification of the image samples such as cropping,
rotation, or flipping. The use of data augmentation can help
avoid the problem of overfitting, which is when there is a
significant discrepancy in performance occurs when a model
is introduced to new data as compared to its performance
on the training set of the data. Data augmentation can help
decrease the potential of overfitting, as well as leading to
faster convergence and improving the overall robustness of
the model [23].

C. Orbital edge computing

The physical constraints of satellites gives a limitation to
how many images can be stored and eventually transmitted
back to the ground station [2]. With such a small window for
downlinking, there is little opportunity to send good, high-
quality images that may have been captured. Because of this,
there is a need to prioritize the transmission of images back to
Earth, since there is a limited capacity to store and transmit.
For smaller satellites in particular, you have less power which
significantly limits downlink transmission.

The collected data is sent to a place with more computing
power to analyze the data, but an argument can be made
for the onboard processing [1]. Akin to conventional sensor
systems, local processing can be used over sending raw data
back to an external location. While the latter utilize faster
computing processes, it is severely limited by the capacity of
the network used for transmission.
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D. Machine learning for onboard satellite processing

One of the earlier uses of machine learning was the on-
board image classification used in the IPEX CubeSat mission.
The IPEX CubeSat mission involved the use of complex
operations for onboard instrument processing [7]. This took
on the form of two applications, the classification of satellite
images and salience image analysis. The image classification
made use of a random forest classifier for its machine learning
component.

Deep learning is known for the heavy computational re-
quirements, but also for their capability to perform com-
plex operations. One study implements a two step process
involving a JPEG2000 image compression scheme and the
processing of these compressed images in optimized ver-
sions of segmentation networks using lightweight layers [6].
MobU-Net and MobDeconv-Net were the products of these
solutions which utilized depthwise separable convolutions
utilized in MobileNets to the segmentation networks of U-Net
and Deconv-Net. The networks have reduced memory costs
and increased inference speeds at the cost of slight decreases
in accuracy.

The CubeSatNet networks were ultralight CNNs intended
for use in 1U CubeSats [10]. A Cubesat imagery dataset
was created from CubeSat images from all sources, nadir-
pointed Google Earth thumbnail images, and ISS Horizon
images. The network is constructed using a conv layer, FC
layer and output layer. Two versions of the network were
used with version 2 using a global pooling layer between the
convolutional layers and the FC layers instead of the flatten
layer used in version 1.

The CloudScout algorithm was implemented to perform
onboard cloud detection on hyperspectral images [5]. It was
developed to be implemented on the Eyes of Things board
using a Myriad 2 Vision Processing Unit (VPU). It was used
for binary image classification in which it determines whether
a given satellite image was cloudy or not. The CloudScout
algorithm was used again in the Φ-Sat-1 mission where it
was adapted into a customized segmentation network [9].

One study focused on the implementation of an Image
Classification Unit (ICU) for onboard use of a segmenta-
tion model [8]. The ICU focused on the development of a
microcontroller based circuit intended for running an image
segmentation algorithm to be used onboard a satellite. This
study utilized a U-Net segmentation model with quantization
trained for cloud detection using a custom dataset made from
LandSat 8 images while using the SPARCS cloud assessment
dataset for evaluation. The model was then compressed
and quantized to be uploaded onto an STM32F746BGT6
microcontroller.

III. METHODOLOGY

A. Hardware Restrictions and Feasibility of Study

Cubesats are composed cube modules measuring around
10x10x10 cm3 and weighing around 1.3 kg [3]. A 1U
CubeSat would have one of these cubes, a 2U CubeSat would
have two and would measure around 10x10x20 cm3, and so
on. However, the restricted size of these cubes, despite being
more cost-efficient, leads to limited functionality compared
to conventional satellites [4].

The aim of this study is to simulate the machine learning
methods that were used in a previous study intended for a
CubeSat application. The Image Classification Unit devel-
oped by Leong et al. [8] involved the use of a microcontroller
circuit with a usable memory capacity of 2 MB. The model
that was developed in that study was a U-Net, converted into
a C++ char array and quantized, reducing the model size from
2.25 MB to 867 KB.

Dealing with the uncompressed versions of the model will
lead to model sizes that will be larger than appropriate for
practical usage. Although, this study aims to test the effects of
changing model architectures to the model size before it has
undergone compression techniques. Future studies involve the
compression of already smaller models to potentially discover
smaller and even more feasible model sizes.

B. Dataset

The dataset used is the land cover classification dataset
from the DeepGlobe 2018 challenge [24]. This involves satel-
lite images with corresponding segmentation masks high-
lighting which parts of the image belong to which terrain type
including: urban, agriculture, rangeland, forest, water, barren
and unknown. Some sample images and their corresponding
segmentation masks can be seen in Figure 1. The dataset was
processed with a 90/10 training/validation split. A separate
dataset was derived from this base dataset, in which each
image was separated into four smaller patches, from a size
of 2048x2048 into 1024x1024 pixels.

Evaluation of the created model would involve the use of
a pixel-wise Jaccard index (Intersection over Union), which
can be seen in Eq. 1,

IoUj =

∑n
i=1 TPij∑n

i=1 TPij +
∑n

i=1 FPij +
∑n

i=1 FNij
, (1)

where IoUj refers to the IoU score for each pixel belong-
ing to class j to a total number of n images. TPij , FPij ,
and FNij refers to every true positive, false positive and false
negative pixels of class j in each image i [24]. The final score
is the average IoU among classes, which is expressed in Eq.
2,

mIoU =
1

k

k∑
j=1

IoUj , (2)

where k is the total number of classes [24].

C. Model Architecture and Training

The model used is a U-Net segmentation model with
an encoder model of VGG16 [13] or MobileNet v2 [15],
both of which has been pretrained on ImageNet. It was
implemented in PyTorch using the Segmentation Models
library for PyTorch [25]. The images were cropped to a size
of 1024x1024 and the training images were augmented with
horizontal and vertical flips. The model is trained over 5
epochs using Adam as an optimizer. Dice loss, which can
be seen in Eq. 3, is used as the training loss function [22].
Dice loss is equivalent to the F-score between the ground
truth and the predicted result.
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Fig. 1. Samples from the land cover classification dataset in the DeepGlobe
2018 challenge.

DiceLoss (y, p) = 1− (2yp+ 1)

(y + p+ 1)
(3)

Fig. 2. Diagram of the U-Net architecture.

IV. RESULTS AND DISCUSSION

Fig. 3. Graph showing measure of IoU after each epoch of training.

The results of the experimental trials show that from the
lowest peak accuracy of 0.68, the model can be improved
to up to 0.7273 by opting to use MobileNet v2 [15] as the

encoder instead of VGG16 [13] and the images be processed
into smaller patches. A sample result through inference can
be seen in Figure 4. The accuracy comparisons for the various
setups can be seen in Figure 3. The scores presented by this
figure were the validation scores obtained after each epoch of
training through an evaluation process on the validation set.
The overall graph shows how this metric changes between
epochs.

Fig. 4. Sample accurate result from model inference with the actual image
(left), the ground truth mask (middle) and the predicted segmentation map
(right)

It is important to note that the training was done through
Google Colaboratory for the immediate availability of GPU
computing power. Because of this, each session could have
varied training times. Although, any stated differences be-
tween training times between training setups was a trend that
was observed after multiple trials and would require a more
controlled experimental setup to be strongly conclusive.

MobileNet v2 [15] as an encoder has resulted in reduced
training times compared to VGG16 [13]. This is probably
because the use of bottleneck residuals in MobileNet v2
architecture. This development made use of the depthwise
separable convolutions in MobileNet v1, which had a sig-
nificant effect on increasing computational efficiency [14],
and also utilizing inverted residual connections, which were
shown to be more memory efficient [15].

Although, while the patches have yielded higher accu-
racies, it would also lengthen the total training time. This
shows how accuracy and training time would both increase
if the images were separated into patches rather than simply
resizing the raw images, which overall reduces the number
of samples and causes a loss in information. While it is
possible the diversity in the sample images persists in simply
resizing the images, it is worth considering if the small
accuracy increase is worth sacrificing for a faster training
time, especially if the model is to be trained on limited
hardware.

Aboard a satellite controlled environment, another thing
important to note that the model will be trained on the
ground and that the only necessary components for the
implementation would be the model itself and its weights
after training. In this environment, it will be subject to
a number of other physical factors which could affect its
operation and would also depend on the quantity and quality
input images provided by the corresponding satellite. To
evaluate this, further testing would be required on a simulated
environment with a compressed version of the model.

V. CONCLUSION

The study has shown that both aspects have resulted in
improvements in accuracy. Three things could be shown
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in the result, the encoder CNN affects the effectiveness of
the segmentation model, the size in which the images are
processes affects the accuracy of evaluation while lengthening
the training time, and both of these factors could have a
significant effect when considering the cost to accuracy ratio
of a developed model for processing satellite images. The
dataset used was intended to be representative of the satellite
images that could be collected while maintaining a healthy
diversity of terrain types, but could be different in terms of
clarity and resolution of images that may be collected in
real-time so this could be a point of consideration for future
research.

VI. RECOMMENDATION

For future studies, the refinement of the U-Net encoder
can be further explored through the inclusion of other CNN
architectures. The use of other segmentation architectures
could be explored and doesn’t have to be limited to an
encoder-decoder structure. The use of these other models can
also lead to other evaluation metrics such as memory usage
and inference speed. Other datasets can be used to train and
evaluate the proposed models as mentioned before, in order
to focus on the robustness of any future proposed models.

The model can be expanded to scale up to the full
application. Future studies could explore methods that would
make the model more lightweight for edge applications,
like quantization, and make the model more appropriate
for implementation in hardware suitable for nanosatellites.
In addition to this, a full-fledged control system could be
developed that could extract information from the generated
segmentation maps and be used to facilitate an image storage
system for any collected satellite images.

A method could be determined to pool the results from
patches belonging to the same image to represent the eval-
uation of a full-sized image with the pooled result. This
could be done to retain the potential effect on the weight
of the positional relationship between certain images on the
final segmentation result. While the image could be analyzed
more effectively, there is a possibility that splitting them up
could affect the results at the edges in which the images were
separated. Other patching constraints could be adjusted, like
expanding the patch dimensions to include overlap between
neighboring patches to avoid this problem.
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