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Abstract—Visible light positioning(VLP) has gained promi-
nence as a highly accurate indoor positioning technique. Few
techniques consider the practical limitations of implementing
VLP systems for indoor positioning. These limitations range
from having a single LED in the field of view(FoV) of the image
sensor to not having enough images for training deep learning
techniques. Practical implementation of indoor positioning tech-
niques needs to leverage the ubiquity of smartphones, which
is the case with VLP using complementary metal oxide semi-
conductor(CMOS) sensors. Images for VLP can be gathered
only after the lights in question have been installed making
it a cumbersome process. These limitations are addressed in
the proposed technique, which uses simulated data of a single
LED to train machine learning models and test them on actual
images captured from a similar experimental setup. Such testing
produced mean three dimensional(3D) positioning error of 2.88
centimeters while training with real images achieves accuracy
of less than one centimeter compared to 6.26 centimeters of the
closest competitor.

Index Terms—Visible light positioning, blender simulation,
machine learning, neural network, visible light communication,
single LED

I. INTRODUCTION

THE indoor positioning systems (IPS) have been
researched extensively both commercially and in

academia owing to the wide array of applications it caters to.
While there are several extant positioning techniques, VLP
has a unique set of advantages, which makes it viable for
further study. The indoor positioning problem consists of two
steps, identifying the location of the LED and estimating the
receiver location with respect to the LED. Radio fingerprint-
ing [1] and optical camera communication(OCC) [4] have
been used to solve the first part.

Several techniques have been used to estimate receiver
location using VLP, of which most still use geometric
processing and computer vision for localization. A single
LED positioning system for circular LEDs was proposed in
[5] and a similar computer vision technique was proposed
in [6] for rectangular LEDs but both techniques fail when
the shape of the LEDs change. While machine learning
has been used for receiver tilt correction [7] and regression
neural networks have been used for positioning [8] both
techniques fail to provide for data augmentation and require
cumbersome geometric processing for feature extraction. The
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use of simulation for data augmentation has been explored
in [9], but they fail to take the transmitter details such as
luminous intensity and receiver details such as exposure into
consideration and end up with a 2D shape projection. This
work proposes a single LED VLP technique using simple
feature extraction to employ tree-based machine learning
techniques. The dearth of data for training and cumbersome
data collection was addressed through simulation, which can
also be used for other deep learning models. The proposed
technique was shown to outperform standard computer vision
and neural network based models.

II. METHODOLOGY

A. Proposed Structure

The proposed structure outlined in Fig. 1, shows the two
major parts of the technique, offline and online process. The
first step of the proposed structure is the image simulation us-
ing Blender [10], where from features are extracted. Feature
extraction is used to convert the image into a list of points,
which become the input features of the machine learning
model. This simple step removes the need for deep learning
models which perform advanced feature extraction from
unstructured data such as images. The tree-based machine
learning models are then trained using the list of points
as input and the 3D location as the output. The trained
machine learning model is then used to test performance on
the real images captured from a smartphone camera. This
produces the location of the light in the receiver coordinate
system(RCS). This however is only a part of the entire
process, since the location of the light is needed to identify
the receiver location in the world coordinate system(WCS).
This is achieved using the high switching rate of LEDs. A
unique ID is assigned to an LED and the ID is encoded using
differential manchester encoding and beamed to the receiver
using on off keying(OOK) and due to the rolling shutter
effect of CMOS sensors, a temporal record of the different
states of the transmitter are captured in a single image. This is
then decoded using the technique proposed in [4]. The focus
of this work is on 3D location estimation of the receiver with
respect to the transmitter since the demodulation technique
produces hundred percent detection over the range tested.

B. Experimental setup

The experimental setup for data collection to train and test
the proposed technique is shown in Fig. 2(a), where a grid is
made on the ground using tape covering 2m by 2m with each
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Fig. 1. Overall flow of proposed structure.

line in the grid, both horizontal and vertical being spaced 20
cm apart. This grid will act as a reference for accurate data
collection using smartphones since it is done by placing the
camera on the tripod with the screen facing the light. The
light is 256 cm from the ground and by controlling the height
of the tripod the distance from the light is controlled. The
images were collected for a 1.2 m by 1.2 m grid at four
different heights, 1.23 m, 1.3 m, 1.6 m and 1.66 m away
from the transmitter. Here again ten images were collected
at each of the 49 locations for both heights with the device
orientation and tilt being changed randomly for all images to
provide a wide dataset for testing generalization of trained
networks.

Fig. 2. (a) Experimental setup (b) transmitter components

The components used to transmit the ID using the LED
are shown in Fig. 2(b), where the STC12C5A60S2 board
was used as the micro controller unit(MCU) which encodes
the ID and sends the signal to the n-channel MOSFET,
which turns on or off the supply from the DC driver to
the LED based on the input signal. A buck converter was
used to step down the LED supply to power the MCU.
Since manual control of the exposure settings was required
an Android application was developed to capture images as
shown in Fig. 3(a), where the gray scale image of the LED

transmitting an ID is seen in the viewfinder. Owing to the
high shutter speed, we can see the clear separation of the
light and the background. The features of interest are the
corners of the light, which can be extracted using the Shi-
Thomasi corner extraction technique [11]. In the case of
images with the transmitted ID as in Fig. 3(a), the image
was dilated to combine the bars which can then produce
corners. The parameters of interest in this case are shutter
speed which determines the maximum frequency a device
can decode, where it is important to note that the shutter
speed must be higher than the frequency of operation since
the lights are usually at the ceiling at least a couple of meters
from the user and the image captured from such distances
will have the light cover a small portion of the image. The
other parameter of interest is the ISO, which is a measure
of the sensitivity of the CMOS sensor to light hitting it.
If this number is high, it will pick up low intensity lights
which could lead to multipath effects from reflections due to
windows or even on walls if this parameter is high enough
making it difficult to identify the light bounding box in the
image. These values can be modified to suit the problem
space using the smartphone application developed as shown
in Fig. 3(b). In this study using the Redmi Note 9 Pro front
camera the exposure time and ISO take the values of 68
microseconds and 100 respectively throughout for all images
unless mentioned otherwise. The plus and minus buttons
next to the parameter on the camera settings overlay to be
changed can be pressed to change them and the current value
is displayed between the buttons.

Fig. 3. Receiver Android application

The next step is capturing the images which can be
done by clicking the capture button on the bottom of the
screen. A sample of an image in the view finder of the
application is shown in Fig. 3(a), with the parameters set
at the aforementioned exposure time and ISO values which
yields a clear image of the strides of an eight-bit long code at
ten kilo hertz frequency. The captured image can be named
by entering the location coordinates on both sides of the
capture button since this also serves the purpose of image
collection for training and testing data in the case of intra-cell
positioning using a single transmitter. The captured image
is then to be processed to decode the location ID being
transmitted by the LED, which can then be matched to a
database of known location IDs to identify the transmitter
location. For each of the grid locations ten images were
captured at each height of which two were selected as test
data and the remaining eight were used as training data.
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C. Image simulation

Data augmentation techniques are generally employed in
standard deep learning-based classification problems. These
range from scaling, rotating to inverting images which in this
case would make the image unusable. However, this is one
of the challenging applications for data generations since it
will be a three-dimensional regression problem eventually
when defined as a camera relocalisation problem with a six
degree of freedom quaternion as its output. Since collection
and labelling of images accurately is time consuming and a
seemingly endless amount of data can be collected depending
on the accuracy of detection expected simulation using
Blender was used to augment data collection.The simulation
screen from Blender is shown in Fig. 4, where an area light
was modelled to replicate the specifications of the LED
used for testing. A 59.5 cm square LED panel from Lite
Unite, DWUGR606036 was used for testing producing 3600
lumen with a color temperature of 4000K. The area light was
modelled as a plane with an emission shader as shown in the
bottom panel, where the color temperature was replicated
using a blackbody node with the temperature set to the
appropriate value and the polar curve of luminous intensity
was used to produce an illuminating engineering society(IES)
file to model the throw pattern. The IES node was used to
set the appropriate signal strength of the emission shader.

Fig. 4. Blender simulation screen

The image simulated from this technique is shown in the
left panel in Fig. 4, where the black background is obtained
by setting a low exposure value. Since the shutter speed
for VLC and reading the ID from the coded light module
must be very high only the brightest parts of the image,
which in this case is the light, are seen with all background
features being lost. This also ensures that feature extraction
from the image becomes much easier owing to the simpler
image and also enables reuse of the image for all lights with
the same shape since the background features are ignored.
However, the pattern formed from images transmitting the
ID is not simulated since the corners of the lights are the
only features being used for training the machine learning
model. The camera used for rendering images in Blender was
placed at different positions and at different orientations in
the space below the light controlled by location and rotation
values. The images were generated with a 3:4 aspect ratio,
which is the most common choice for smartphone sensors,
at the same resolution, 1728 X 2304, as the test image to
ensure compatibility between simulated and test data. The

data was simulated at the same grid locations at two of the
same heights 1.3 m and 1.66 m from the light with two
more heights different from the experimental data capture
at 1.76 m and 1.56 m from the transmitter, which will be
used to test the generalizability of the trained model. The
receiver orientation was swept in complete circles on roll,
pitch and yaw values in increments of 45 degrees with
only the images where all four corners of the light were
in the FoV of the camera were retained, which produced
7982 images for all four heights. Since these images were
simulated, the corners were also labelled using ray casting to
be the appropriate points corresponding to the LED corners
which can be cumbersome in the actual data gathering
process. The LED panel used here is a square and without
any background features the images will look similar along
any of the four sides leading to erroneous results without
additional information. The simulation process simplifies this
allowing the 3D position to be estimated without pose or
orientation information.

III. RESULTS AND DISCUSSION

A. Model selection

The corners were extracted from both the simulated and
real datasets and ordered with the list of points ordered in
the same sequence manually in the case of real images with
simulated images being generated with the corners labelled.
The real dataset will be used as the test set in this section.
Here, the images at 1.3 m and 1.66 m from the transmitter
were split into train and test sets with 2 images at each grid
location for the latter and the rest for the former. The test set
has 196 images and train set has 784 images in the real image
dataset. All the simulated images were used for training,
which was 1163 at 1.3 m and 2516 at 1.66 m, totals to 3679
images. The simulated dataset is 4.6 times the real dataset
owing to the ease of collecting and labelling data. Three
models were trained on the real dataset and tested at 1.66
m from the transmitter. Two tree-based ensemble techniques,
random forest [12] and extreme gradient boosting(xgboost)
[13] were tested along with a multi layer perceptron [14].

Fig. 5. CDF of 3D positioning error for different models

The 3D positioning error is the Euclidean distance between
the estimated location and the actual ground truth. The
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cumulative distribution function(CDF) of the 3D positioning
errors is shown in Fig. 5, where the tree-based techniques
outperform the neural network. The models were imple-
mented using the scikit-learn package [15], with default
values for all parameters apart from number of estimators
for the tree-based techniques, which was changed to 150 and
for the neural network five hidden layers with 200 nodes in
each were used. The 3D positioning error using the neural
network for 90% of points is shown to be less than 40 cms
while random forest, which is the worse of the tree-based
techniques, has all points less than 10 cms. The marked
improvement is expected since the images are converted to
a list of points making it a structured dataset. The tree-based
techniques are shown to outperform neural networks across
multiple structured datasets [16].

Fig. 6. 3D positioning error for tree-based models

Among these tree-based techniques, the mean 3D position-
ing error at each grid location is shown in Fig. 6, where the
xgboost model is marked with asterisk and the random forest
model is marked with cross. The results of the random forest
model shows that most of the error comes from outermost
points in the grid and some from points closer to the center,
with multiple points producing more than 5 cm of error.
In the xgboost model all the errors are in the outermost
points with only one point producing more than 5 cm error.
This explains the better overall performance in the case of
the xgboost model over the random forest model. The 3D
error CDF also shows that though both models have similar
maximum errors, the error for xgboost is lower across all
the points in the test dataset. Thus, the xgboost model was
chosen for subsequent testing.

B. Effect of simulated data

The simulated dataset was used to train a xgboost model,
which was tested on the real dataset. The results of the same
are to be compared with a xgboost model trained and tested
on real images and the closest competitors technique used
on the real test dataset. The closest competitor is marked
sota in Fig. 7 to indicate the state of the art(sota) results
reported by the same [6]. The sota uses computer vision to
identify geometric relations between the four points in the
image plane, camera coordinate system and world coordinate

TABLE I
MEAN 3D POSITIONING ERROR RESULTS

Train Test Distance from light (m) Mean 3D error (cm)
1.66 3.11

Simulated Real 1.3 2.65
1.6 5.32

1.23 4.9
1.66 0.29

Real Real 1.3 0.104
1.6 1.32

1.23 1.17
1.66 6.35

state of the art 1.3 6.17
1.6 8.13

1.23 6.07

system. They also use a photo detector(PD) to identify the
location of the light in the world coordinate system.

Fig. 7. CDF of 3D positioning error for data at 1.66 m

The model trained on the real dataset produces the best
results of the three techniques though it was trained on four
times fewer data points as observed from the CDF of 3D
error at 1.66 m from the light in Fig. 7. This however, fails
to take into consideration the time intensive labelling process
of the corner points. The maximum error produced here is
less than 10 cm when trained and tested with real images.
The maximum error rises to 12 cm in the case of training
with simulated images and testing with real images. The sota
performs the worst with maximum errors of upto 40 cm.
However more than 90% of the points have less than 10 cm
of error in all three cases.

The CDF of 3D positioning error at 1.3 m from the light
is shown in Fig. 8, where the maximum errors for both
models trained on simulated and real images decreases but
the maximum for the sota increases to 90 cm while the 90%
performance improves slightly indicating that there are out-
lier grid points in the sota affecting the overall performance.
The mean 3D positioning errors are listed in table I, with
the train and test columns indicating the training dataset and
testing datasets used. The mean errors are consistent with
the CDF observed at these two heights, as we move closer
to the light the overall positioning error decreases. Though
the positioning accuracy achieved in the simulated dataset is
lower than the real images, it still is better than the sota by
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Fig. 8. CDF of 3D positioning error for data at 1.3 m

more than 3 cm for both the heights indicating the similarity
of the simulated images to real images.

C. Performance generalization

The results reported thus far have used either simulated or
real images from the same heights for training the models.
However, this is not a good indicator of the model having
learnt the relationship between corner points of the light in
the image and the 3D coordinates of the receiver location
with respect to the light. In order to test if the model
has learnt this relationship two different heights of the real
images were used as test datasets at 1.6 m and 1.23 m from
the light. These are just 6 cm and 7 cm away from the original
training locations, in order to truly test the generalization of
performance on the height axis, two more sets of images were
simulated at 1.76 m and 1.56 m from the transmitter. Though
the test set at 1.6 m is still close to one of the datasets,
the 1.23 m test set can be used to gauge consistency of
results since it is further from both the datasets. The number
of images for this simulated set has changed owing to the
change in distance from the light, with 2683 images at 1.76
m and 1620 images at 1.56 m, to 4303 images. The real
dataset however was kept at 1.66 m and 1.3 m owing to the
difficulty in data collection and labelling. Since the proposed
technique involves the use of simulated images rather than
real images a new real image training set was not created for
the new heights at which images were simulated.

The CDF of the 3D positioning error for test data at
1.6 m from the light is shown in Fig. 9, where the model
trained on real images performs the best with the maximum
error still lower than 10 cm. The model trained on simulated
data shows a marked decrease in performance owing to the
new dataset further away from test points and has a higher
maximum error than the sota in this case. However, 90% of
the points have less than 15 cm error in the simulated dataset
while the sota has the same mark at less than 25 cm. This
marked difference in performance is observed owing to the
distance from the light being higher for this dataset and the
simulated points being further away on average from the test
points.

Fig. 9. CDF of 3D positioning error for data at 1.6 m

Fig. 10. CDF of 3D positioning error for data at 1.23 m

The CDF of 3D positioning error in the case of test data
at 1.23 m from the transmitter is shown in Fig. 10, where the
model trained on the simulated dataset performs better with
a marked reduction in the maximum error from 25 cm to
less than 18 cm. The sota achieves similar maximum error
but more than 90% of the points are observed to have an
error of less than 10 cm which once again indicates outliers
in the case of sota causing performance issues compared to
the simulated results in [6].

The CDF of individual deviations of the estimated loca-
tions from the ground truth on all three axes is shown in Fig.
11, where the sota performed worse on all three axes. The
simulated data observes a higher error on the x and y axis
than the z axis indicating the robustness of the relationship
learnt by the model. The x axis produces highest error for all
three techniques with only the model trained on real images
managing a 90% mark less than 5 cm error. In both the other
axes almost no error is observed in the real model, but the
simulated model performs better than the sota in all three
axes individually producing the lowest error in the z axis.

The CDF of individual deviations for the data 1.23 m from
the light is shown in Fig. 12, where the z axis error is the
lowest for all three models owing to the receiver’s proximity
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Fig. 11. CDF of three axis errors for data at 1.6 m

Fig. 12. CDF of three axis errors for data at 1.23 m

to the light. The maximum errors are produced in the x
axis once again but this time both sota and the simulated
model perform much closer to the real images model on the
x and z axis with the y axis producing the highest difference
between them. From the table I, the mean positioning error
is also consistent with the observed results thus far, the
model trained on real images performs the best across the
board for all heights but this data collection strategy is
not scalable when applying to deep learning models. The
simulated models perform much better than the sota by 3
cm at 1.6 m and 2 cm at 1.23 cm, which apart from the
proximity to the transmitter is also driven by anomalies in
the test dataset at 1.6 m which causes an increase in error
across all three models but the most pronounced errors in
sota. This cannot be due to height generalization testing since
the sota employs a computer vision based technique and does
not rely on data for modelling.

IV. CONCLUSION

We proposed a tree-based VLP technique using simulated
data for single LED indoor positioning without the need for
data collection and labelling. The model trained on simulated
images was shown to perform better than the closest com-

petitor and within 3 cm of mean 3D positioning error from
the model trained on real images. The similarity of results
obtained between the simulated and real images indicates the
photorealism observed in the simulation. The conversion of
images to a list of points reduces the unstructured images to
structured data enabling the superior performance compared
to the closest competitor. The superior performance of tree-
based models on structured data is leveraged to obtain
these results. The generalization of the models was tested
by simulating images further from the test points and the
models were shown to perform best on the z-axis with the
lowest error among the three axes. The pose estimation and
point labelling with sensor fusion will be explored further in
subsequent works.
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