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Abstract— Edge-enabled Deep Learning (DL) solutions for
Predictive Quality Inspection (PQI) of products in Industry 4.0
are mostly designed for static manufacturing environments.
In general, modern manufacturing processes are dynamic in
nature. In this context, continual learning-based model re-
training accommodates the dynamism for PQI of multiple
processes (tasks) using a single DL model. However, the impact
of the task ordering in sequentially arriving tasks and solution
to reduce this impact on the overall PQI is yet to be solved.
To this end, a novel mechanism using a light-weight similarity
analysis module is introduced in the quality prediction system
at the resource-limited edge. Sequential training of tasks above
a similarity threshold (γ) is preferred, and dissimilar tasks are
overlooked to train a separate model. This enables a PQI system
to hover over training efficiency and model sustainability. The
experimental results validate the impact of task order and the
effectiveness of the proposed similarity-based analysis to reduce
this impact by 70% on the model’s overall performance in the
real-world use case of plastic bricks.

I. INTRODUCTION

Edge-enabled DL solutions act as key enabler for real-
time data-driven quality prognosis of manufactured products,
i.e., Predictive Quality Inspection (PQI), in Industry 4.0
driven smart manufacturing. PQI follows a Digital-Physical-
Digital (D2D) loop, which involves sensing and data collec-
tion (physical-to-digital conversion), data analysis (digital-to-
digital conversion), and actuation (digital-to-physical conver-
sion) for real-time quality predictions and provoking correc-
tive measures based on it [1], [2]. DL-based PQI methods
are much trumpeted in literature for quality inspection and
prediction utilizing process and machine data [3], vision-
based data [4], [5], acoustic signals [6], etc. Additionally,
these solutions are also attaining attention in manufacturing
processes like laser machining [7], additive manufacturing or
3D printing [8], and many more.

Most DL-based PQI mechanisms are traditionally de-
signed for static manufacturing environments under surplus
data availability [9], [10]. However, current industries are
adopting flexible production processes and manufacturing
solutions to chase and fulfil customers’ demands. These so-
lutions are subject to continuous changes in the process data,
intending varying relationships among the process parameters
and predictive quality parameters. Thus, these static DL
models become obsolete and usher in poor-quality prediction
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over the new process data that in turn hampers application
performance.

To this end, one possible solution is to train the model with
all the new and old process data, but training from scratch
becomes infeasible under the constraint of inaccessible old
process data due to industry regulations or corporate policies
[11] and limited storage availability (at the edge) [3]. An-
other solution is collecting enormous process data to train
new quality inspection models for each possible production
process. Nonetheless, it turns expensive, time-consuming and
limits the sustainability of DL-based PQI of manufactured
products. Propagating to the sequential training of a single
DL model on new data, i.e., finetuning, leads to forgetting
old task knowledge (catastrophic forgetting).

In this context, Continual Learning (CL) schemes address
given research gaps and efficiently train a signal neural
network across varying production tasks. The use of CL
schemes in industrial applications is in its infancy; for
instance, Lesort et al. [12] and Dehghan et al. [13] adopted
these strategies to incrementally acquire knowledge in robotic
systems, and Maschler et al. [14] intended their use for fault
prognosis of engines. Regularization-based CL schemes are
more prevalent in the literature, as need not to access old
data, have frozen storage requirements not growing with
tasks, and accommodates significant number of tasks [15].
Therefore, Tercan et al. [3] presented a regularization-based
CL scheme, Memory Aware Synapses (MAS), to ensure the
trained model acclimates the current training task as well as
maintains performance across all the previous tasks.

However, the proposed solutions [3], [12], [13], [14] in
the literature don’t discuss the impact of task order on the
sequential training of multiple tasks in the MAS scheme for
the quality prediction of manufactured products. This gives
rise to two Research Questions (RQs):

• RQ-1: Does a task order impact overall model training,
and if it does, how to reduce it?

• RQ-2: Should all newly arriving tasks be accommodated
in a single DL model in continual training?

In light of the above discussion, this paper first analyses
the impact of task order or sequence on the performance
of a CL scheme like MAS. Analysis indicates that different
task orders have different performances (refer to Section VI-
A for detailed description), and some tasks influence the
overall sequence more than others. Figure 1 illustrates the
impact of task ordering on the overall quality inspection
system. The final DL-model learns different final input-
output relationships for different sequences. Additionally,
RQ2, motivates to rethink a solution to maintain trade-off
between continually training a single DL model for N tasks
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Fig. 1. Illustration of the impact of task ordering on the final input-output relationship learned by DL model for PQI

over traditionally training N models for N incrementally
arriving tasks at the cost of storage.

The key component of any manufacturing industry is to
ensure pre-defined quality measures and tolerances through
efficient inspection and maintenance of manufactured prod-
ucts [16], [17]. Therefore, this work proposes a mechanism
to improve the overall performance of continual training
tasks by determining whether to accommodate or not any
sequential task within the existing model and to diminish the
impact of the task order. Consequently, a similarity module
is proposed to minimize the impact of task orders and better
maintain the trade-off between training efficiency and model
sustainability. Following are the three key contributions of
the paper:
• Analyses the impact of task ordering on the performance

of the MAS scheme for incorporating new PQI tasks
within the same DL model.

• Proposes a solution to minimize the impact of task
orders on MAS and to better maintain the tradeoff
between training efficiency and model sustainability at
resource-limited edge.

• Presents practical application of the proposed solution
in the real-world use case of injection molding for PQI.

The remaining manuscript is arranged as follows: Section
II describes the two-tier system model for PQI. Section III
briefly introduces MAS based CL scheme and similarity
measures. The proposed methodology is provided in Section
IV. Experimental background, use-case description followed
by results are recapitulated in Section V and VI. Finally,
Section VII briefs the conclusion and an outlook on future
research.

II. SYSTEM MODEL
The following work adopts a two-tier architecture for the

data-driven quality prediction of products using in-process
manufacturing data. The overall PQI system consists of a
sensory device layer, communication links, and a computing
layer [11], [18]. Fig. 2 depicts the two-layer predictive quality
inspection system in manufacturing industries.
• Device Layer: This layer captures and collects the

process parameters from various sensory assets (such
as, temperature, pressure, vibration sensors) during the
manufacturing process. Additionally, some quality pre-
diction parameters are collected from the finished prod-
ucts. These devices fuse and transmit the data to the

Computing Layer

Edge Computing

Device Layer

Cloud Computing

Sensor

Wireless communication link

Edge server

Cloud server

Edge computing node

Fig. 2. A two-layer edge-enabled PQI system in smart manufacturing

computing layer over a wireless communication chan-
nel.

• Computing Layer: This layer performs the data cleaning
and processing of the process parameters collected from
the device layer. It comprises two computing platforms:
edge computing and cloud computing. The edge com-
puting [18] platform encloses on-site devices such as
single-board computers, industrial PCs, etc., whereas the
cloud computing platform contains remote data centres.
Using the DL-based PQI models, this layer produces the
quality prediction of the manufactured product. Edge
devices are preferred as introduces enhanced security
and latency but have resource-limited devices.

III. PRELIMINARIES

A. Memory Aware Synapses (MAS)

MAS [19] is a regularization-based CL scheme wherein
the importance values are determined for each parameter of
the neural network. The importance value, ΩP,i of a model
parameter, θP,i is calculated by accumulating the sensitivity
of the estimated output value to change in this parameter over
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given u data samples X j
P, j = 1,2, ...,u of Task P as given in

(1).

ΩP,i =
1
u

u

∑
j=1
|
δ l2

2(OP(X
j

P),0)
δθP,i

| (1)

where, OP is the output of the model for X j
P. For the continual

training of Task Q, with training data Xk
Q, k = 1,2,3, ...,v, the

overall loss function for the MAS strategy is presented in (2).

L(θQ,i) = LQ(θQ,i)+λ ∑
i

ΩP,i(θQ,i−θP,i)
2 (2)

where, λ is a real positive hyperparameter to control reg-
ularization, and θQ,i are updated model parameters when
training Task Q. At the time of training of Task Q, the
parameters change, i.e., (θQ,i− θP,i), is penalized according
to the importance value ΩP,i. It ensures averting important
knowledge being forgotten corresponding to previous Task P
after the training of Task Q. Similarly, it can accommodate
new tasks sequentially within the same model.

B. Similarity Measures

In order to determine the similarity among the two tasks,
first, a similarity measure [20] is to be selected. The lit-
erature is flooded with tremendous similarity techniques,
however computationally lightweight schemes are preferred
for edge devices. Two lightweight similarity measures, i.e.,
Cosine similarity and Euclidean distance are introduced. Let
P = (p1, p2, p3, ..., pn) and Q = (q1,q2,q3, ...,qn) be two n-
dimensional data features, then the Cosine similarity and
Euclidean distance are calculated as follows:

1) Cosine Similarity: The Cosine similarity (refer to (3))
for real-valued vector spaces P and Q is Csim(P,Q).

Csim(P,Q) =
P ·Q
‖P‖‖Q‖

(3)

where, ||P|| and ||Q|| represent the Euclidean norm of data
features P and Q, respectively. The Cosine similarity is
between [0, 1], where higher values (close to 1) validate that
the vectors are more similar, and lower values (close to 0)
express dissimilarity.

2) Euclidean Distance: Euclidean distance is the most
common distance measure functional for similarity analysis
of the numeric attributes/features. Its numerical formulation
is given in (4).

d(P,Q) = ||P−Q||0 =

√
n

∑
i=1

(pi−qi)2 (4)

d(P,Q) is same as the L2 norm and a positive integer value,
where high values denote higher dissimilarity and vice-versa.

IV. PROPOSED METHODOLOGY

As aforementioned, Tercan et al. [3] proposed a MAS-
based CL scheme for learning multiple tasks in a single
quality inspection DL model. However, the impact of the
task order is not conferred when sequential tasks arrive.
Any task order can significantly impacts the model’s overall
performance when trained over sequentially arriving tasks
(refer to Section VI-A). Finding the best task order also,
may not solve the problem, since storing the data of any

tasks for later training violates the underlying assumption
(no access to old data) of CL. Therefore, in this context, a
Cosine similarity-based module is added before training any
new task sequentially in a DL model. The methodology of
the proposed similarity-based model maintenance mechanism
is shown in Fig. 3 for the PQI.

Let us assume Task 1, Task 2, and Task 3 arrive sequen-
tially at any time instance, t0, t1, and t2. At the arrival of
any new Task, a similarity analysis module determines the
similarity value, α , between new and old tasks. The similarity
value is determined from the mean feature vector of the data
samples of each task using a Cosine similarity scheme. A
Cosine-based similar measure is adopted as it gives a similar-
ity value between [0, 1]. As shown in Fig. 3, given tasks with
similarities above a similarity threshold (γ) are allowed to be
trained continually using the MAS scheme. This similarity
threshold depends upon the required quality standards of the
industry and the application. In this study, we determined

Retraining Task
(Task 3)

MAS based
Continual Learning

Previous Quality
Inspection Model

(M)

Task 2 Task 1

Task Similarity
Measure

Quality Inspection
Model (M')

Updated Quality
 Inspection Models 

(M'/M")

Prepare Seperate 
Inspection Model

(M")

Training Data 

Above Similarity 
Threshold (  ) ?

Mean Training
Data Vector 

Task 1
Task 2

Task 3

Fig. 3. The proposed similarity-based model maintenance mechanism

that similar sequential tasks (based on similarity measures)
have better overall performance after training multiple tasks
in comparison to varied tasks (similar and dissimilar tasks).
Consequently, tasks with low similarity measures from all
other previous tasks are trained separately in a new DL
model for maintaining the better overall performance of all
the quality inspection tasks. In this manner, the impact of
the task ordering on the overall performance is reduced as
all tasks are analysed (based on similarity) before training
a single DL model. Thus, this work attempts to provide a
tradeoff between model’s sustainability and performance.

V. EXPERIMENTAL BACKGROUND

Injection molding is an important production process for
manufacturing products from thermoplastics within a single
manufacturing step [21]. It follows pouring or injecting the
viscous plastic melt into the closed mold and extracting the
finished product from the mold after cooling. This process
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involves complex relationships among various process vari-
ables (such as temperature, pressure, melt flow, etc.), and
the relationship deviates when encompassing varying product
designs. This work employs the plastic bricks dataset1 [3]
for the experimental analysis. The ten important features
are demarcated using the correlation analysis among the
available features, and the maximum deformation under the
load is the target quality variable to be determined.

Five task formulation is accomplished from the available
dataset based on the height (namely, Flach, Fach, Lego,
Hoch, and Gedrittelt represented as Fl, Fa, Le, Ho, and Ge,
respectively throughout the article) of the plastic brick for the
continual training of tasks. Therefore, five quality inspection
tasks with varying process parameters are considered. For
better assurance, consecutive training of tasks was performed
for five different task sequences and 25 different data shuffles.
Any task order is represented by the sequence of task arrival
denoted by their representation; for instance, LeGeFaHoFl
has a task order as Lego, Gedrittelt, Fach, Hoch, and Flach.
The summary of dataset and the experimental parameters are
provided in Table I.

TABLE I
SUMMARY OF DATASET AND THE EXPERIMENTAL PARAMETERS

Plastic brick use case
Studs on brick top 1 or 2 rows, (1, 2, 3,

4, 6, 8) in each row
Total plastic bricks types 60
Samples of each brick 77
Tasks based on height 5

Neural Network
Specifications

Number of layers 3
Neurons in hidden layer 20
Learning rate 0.001
Activation function and
Optimizer

ReLU and ADAM

MAS Hyperparameter λ 1000

Average Overall Loss, Lol is a performance measure that
gives the average mean squared error of all the tasks after
continually training a sequence of n tasks. Mathematically,
it can be represented as in (5).

Lol =
1
n

n

∑
m=1

Ln,m (5)

where, Ln,m gives the mean squared loss of Task m after train-
ing of n tasks. Thus, Lol represents the overall performance
of the single DL model after coordinating a sequence of n
consecutive tasks.

VI. RESULT AND DISCUSSION

This section provides experimental verification to show the
impact of task orders, and the proposed solution is validated
for reducing its impact. Initially, the performance of the MAS
scheme (with single output (MAS-SH) head and multiple
heads (MAS-MH)) is examined over the baseline finetuning
scheme. Table II shows that the overall loss of the finetuning
scheme is very high for each task order since it has no
regularization on the performance of previous tasks. Thus,
their overall performance (Lol) degrades over continual
learning of new tasks. whereas MAS-SH accomplishes little

1https://github.com/tmdt-buw/continual-learning-mas-cloning-injection-
molding.

TABLE II
AVERAGE OVERALL LOSS AFTER TRAINING OF 5 TASKS USING

DIFFERENT TRAINING SCHEMES

Task Order Finetuning MAS-SH MAS-MH

LeGeFaHoFl 3.598 3.590 0.044

GeFaFlHoLe 3.537 3.518 0.067

FlLeHoGeFa 15.945 15.726 0.038

HoFlLeFaGe 4.969 4.853 0.140

FaGeFlLeHo 3.755 3.429 0.014

better than finetuning, but MAS-MH performed the best since
it maps the output function appropriately by learning the
new output head corresponding to each task. This signifies
the capability of the MAS scheme to learn new knowledge
without forgetting past knowledge. Therefore, in further
studies, MAS-MH CL scheme is considered by default unless
specified.

Further, this section validates the problem from the exper-
imental results, examines the vision of task similarity, and
investigate performance improvement and deduction of task
ordering impact from the proposed scheme.

A. Problem Validation

This section aims to illustrate the impact of task orders
on MAS-based training of a single PQI model for the real-
world use case of plastic bricks. Figure 4 gives the Average
Overall Loss (Lol) after training five different task orders
with a succession of five consecutive tasks. It reflects that

LeGeFaHoFl GeFaFlHoLe FlLeHoGeFa HoFlLeFaGe FaGeFlLeHo
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Fig. 4. Impact of task ordering on overall model performance (Lol )

after training all five tasks in different orders, the overall
performance differs; for instance, Task order FaGeFlLeHo
has minimum Lol of 0.014 in comparison to Task order
HoFlLeFaGe with maximum Lol of 0.140. This validates
the issue that the different task sequences converge the model
parameters to different final values, affecting overall model
performance extremely.

B. Motivation to Similarity Analysis and Task Similarities

To further investigate the reason behind varying Lol due
to different task orders, analysis on the Lol after training
of each task was done. The results for this are formulated in
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Table III using MAS-SH and MAS-MH schemes. In the Task
order, LeGeFaHoFl, the Lol increases abruptly from 0.202
to 14.018 after training Task 3 using the MAS-SH scheme.
The identical behaviour can also be seen in other task orders,
highlighted (in red) in Table III. This unanticipated increase
in Lol is more prevailing in MAS-SH; however, MAS-MH
suppresses these behaviours but cannot completely remove
them. Further analysis shows that this unforeseen increase

TABLE III
AVERAGE OVERALL LOSS AFTER TRAINING OF EACH TASK IN A GIVEN

TASK SEQUENCES

Task

Scheme Task order 1 2 3 4 5

MAS-SH

LeGeFaHoFl 0.001 0.202 14.018 4.069 3.590

GeFaFlHoLe 0.000 11.656 5.823 4.0136 3.518

FlLeHoGeFa 0.001 0.003 0.035 0.327 15.726

HoFlLeFaGe 0.002 0.041 0.022 12.817 4.854

FaGeFlLeHo 0.026 11.424 6.003 4.299 3.430

MAS-
MH

LeGeFaHoFl 0.001 0.006 0.068 0.052 0.044

GeFaFlHoLe 0.000 0.175 0.119 0.092 0.067

FlLeHoGeFa 0.001 0.003 0.007 0.0054 0.038

HoFlLeFaGe 0.002 0.011 0.010 0.164 0.140

FaGeFlLeHo 0.024 0.017 0.014 0.012 0.014

results only at the arrival of Task Fa in any task order.
This suggests moving towards the similarity analysis of the

tasks to investigate this behaviour further. The similarity anal-
ysis using Euclidean distance and Cosine similarity is done
on each task’s mean training data vector, and the similarity
values corresponding to all possible task pairs are shown
in Table IV. Lower Euclidean distance and higher Cosine
value (near one) imply similar tasks and vice versa. Clearly,
Task Le and Fl have a minimum Euclidean distance of 21.92
and a maximum Cosine similarity of 0.9988, suggesting that
Task Le and Fl are highly similar. In contrast, Task Fa has
the highest Euclidean distance from Ge of 4249.08 and a
minimum Cosine similarity of 0.1213, suggesting they are
highly dissimilar. This can further be seen from Task order
HoFlLeFaGe in Table III that tasks with higher similarities
(highlighted in green) do not increase Lol extensively over
sequential training.

Additionally, it can be seen that Task Fa has a minimum
similarity value of 0.4576, 0.4478, 0.4356, and 0.1213 with
Ho, Le, Fl, and Ge, respectively, and therefore shows a
sudden surge in Lol at its arrival in a sequence (highlighted
in red in Table III). This suggests it is a highly dissimilar task
and influences the overall performance of a task sequence.

C. Improved Performance

The proposed scheme signifies similarity analysis to be
performed among tasks before sequentially training various
tasks to a single DL model to reduce the impact of the task
order. The similarity threshold (γ) considered for the given
use case is 0.9, and tasks having a higher similarity value
than γ with any other task are trained sequentially; otherwise,
a separate DL model is prepared for them. Based on the

TABLE IV
SIMILARITY ANALYSIS AMONG TASKS BASED ON EUCLIDEAN AND

COSINE SIMILARITY MEASURE

Task P vs Q Euclidean Distance Cosine Similarity

Le vs Fl 21.920 0.9988

Le vs Ho 25.871 0.9984

Fl vs Ho 47.717 0.9949

Fl vs Ge 170.731 0.9323

Le vs Ge 175.073 0.9292

Ho vs Ge 182.842 0.9236

Ho vs Fa 4083.833 0.4576

Le vs Fa 4089.806 0.4478

Fl vs Fa 4096.376 0.4356

Ge vs Fa 4249.084 0.1213

proposed scheme, the Lol for the five task orders is given
in Fig. 5, wherein for given sequences Task Fa is trained
separately.
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Fig. 5. Reduced impact of task ordering and performance improvement
using proposed scheme

It is evident from Fig. 5 that from the proposed training
mechanism, the Lol almost remains constant for all the task
orders. In contrast, the impact of task ordering is high in
the MAS scheme. The overall impact of the tasks ordering
is reduced by 70% using proposed scheme. Therefore, the
proposed scheme ensures better quality inspection of all
products by sharing a single DL model for similar tasks and
a separate DL model for dissimilar tasks using light-weight
similarity module.

VII. CONCLUSION
Smart manufacturing is embracing flexibility in manufac-

turing processes and efficient quality inspection using DL
solutions on edge devices. CL caters the solution for training
a DL model sequentially over multiple tasks. However,
overall performance suffers greatly due to the task ordering.
To this extent, MAS-MH suppresses this impact of the task
order to a certain extent, but both MAS-SH and MAS-MH
have its influence. The proposed lightweight similarity-based
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mechanism reveals that certain tasks in the continual training
sequences are highly dissimilar to others. Therefore, while
maintaining the tradeoff between model sustainability and
performance, continual tasks are trained with similarities
above a threshold (γ). Additionally, the similarity analysis
module reduced the impact of task order on the overall
performance of the DL model while ensuring the effective
PQI of changing manufacturing processes. In the future, the
applicability of the proposed scheme can be validated in other
application scenarios, and the overhead in finding similarities
between new and each previous tasks can be reduced.
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