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Abstract— The Cloud Radio Access Network (C-RAN) is an 

innovative technology with great promise for minimizing 

wireless network deployment and maintenance costs. In this 

study, our main goal is to reduce the costs associated with 

functionally placing the RAN while accounting for the 

computational expense and the front-haul bandwidth usage 

among various users. To achieve this, we propose to apply 

Particle Swarm Optimization (PSO) to achieve effective 

allocation of computational resources and the front-haul 

bandwidth, ensuring an efficient and cost-effective C-RAN 

design. Experimental results on different traffic have shown 

that the proposed PSO can provide cost-effective design of the 

C-RAN as compared to the optimal solution from the integer 

linear programing (ILP) approach. 

Keywords— Cloud RAN, Particle Swarm Optimization, Integer 

Linear Programming, Functional Split  

I. INTRODUCTION  

 The rapid growth of innovative services like Metaverse, 
Virtual Reality (VR), Augmented Reality (AR), self-driving 
cars, Internet of Things (IoT), cloud computing, and other 
cutting-edge technologies has been a significant factor in the 
exponential increase of mobile device traffic in recent years. 
Building a cost-efficient network that can guarantee high-
quality service delivery and use various architectural 
technologies is essential to overcoming these obstacles. A 
cloud radio access network is an architecture for radio access 
networks that is centralized, based on cloud computing, and 
supports 2G, 3G, 4G, and future wireless communication 
protocols. This strategy aims to create a RAN design that is 
both economical and energy-efficient. C-RAN architecture 
enables us to simplify Base Stations that share signal 
capabilities with numerous antennas [1]. This suggestion 
aims to reduce costs by optimizing the C-RAN functional 
splits. Enhancing the performance of the quality of service 
(QoS) is one of the objectives of RAN optimization, and 
discovering the ideal combination of RAN parameters is 
another [2]. It can be achieved by increasing flexibility and 
lowering the cost of infrastructure deployment by 
implementing the functional split in RAN. To reduce costs 
and optimize bandwidth utilization, we will propose the 
Particle Swarm Optimization method in this paper.  

 This paper contributes to the field of cloud radio access 
networks by exploring the utilization of particle swarm 
optimization for optimizing bandwidth and processing costs. 

The primary objective is to minimize the RAN functional 
placement cost, which encompasses computational costs and 
fronthaul bandwidth utilization across multiple users. 
Furthermore, the study highlights the importance of fine-
tuning the iteration parameter in the deployment processes to 
achieve desirable cost outcomes. By carefully adjusting the 
number of iterations, the deployment costs tend to stabilize 
and converge, providing insights into optimizing the PSO-
based process for reducing the cost of bandwidth and 
computing in C-RAN. 

II. RELATED WORK ( LITERATURE REVIEW) 

       The authors in [3] provide an end-to-end system 

analysis considering overall costs and energy usage. They 

suggest a mixed integer programming (MIP) formulation for 

the problem and use the IBM CPLEX Optimizer to analyze 

the impact of consumer delay requirements on decision-

making. However, their model's application is constrained 

by its singular user emphasis. The author in[4] provides a 

detailed explanation of the tele-traffic theory to analyze the 

allocation of resource periods and the resource allocation 

rate at the front-haul link. And then, based on this, the 

author explains in detail the purpose of saving energy and 

costs to realize a great deal for baseband processing sub-

units when front-haul or baseband processing resources 

become further expensive for an operator. Moreover, it 

proves that user traffic has a high impact on segregation. 

The author formulates the issue using the tele-traffic 

technique and uses OPNET, a discrete event-based 

simulator.  

           In a paper [5], the authors present a technique for 

achieving energy efficiency in the 5G infrastructure that 

utilizes integer linear programming and an LSTM-based 

neural network. Their strategy focuses on maximizing the 

functional split of optical transport to reduce overall energy 

consumption. It is crucial to remember that the split's 

deployment is generally cell-centric, which could limit its 

application in situations calling for flexibility or user-centric 

split setups. The authors of [6] propose an ILP formulation 

of the problem and use the Lagrangian relaxation algorithm 

to minimize the number of routes that may lead to the 

release of critical services delay while also optimizing the 

cost of using baseband processing, which uses across 

multiple websites. Despite the network calculus technique, 
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this function does not offer a quantitative standard method 

to calculate the cost of the requirements for each split. It is 

comprehensive to measure the delay on links on optical and 

wireless networks. The authors [7] focus on choosing 

functional divisions despite considering various types of cell 

interference. ILP and a heuristic approach solve the 

problem. They provide a novel heuristic technique to reduce 

the bandwidth used in the transport network and inter-cell 

interference. The functional split method performs at the 

cell level, which may have drawbacks in situations that call 

for a more fine-grained or user-centric approach.  

          In [8], the authors provide graph-based architecture, 

considering the advantages of the resulting path established 

by the front-haul connection and the latency requirements 

set by each of the cells to reduce the cost of computing the 

allocation of resources (RA) at two locations. Although the 

fundamental characteristics of natural systems reflect by the 

assumption of RA costs and latency constraints, The author 

formulates the problem using graph clustering and applies a 

genetic algorithm. The authors used a novel functional split 

orchestration scheme [9] to minimize the deployment cost of 

5G C-RAN. They use ILP to generate the cost function for 

each split and PSO to optimize the cost function for each 

functional split. They proved their solutions had better 

performance for the resolution time and total deployment 

cost. 

           The study by the authors [10] presents a user-split 

orchestration approach that aims to reduce the front-haul 

link's energy and bandwidth consumption. The model uses 

quantitative models to calculate computing and link needs 

for each split. This strategy, however, is based on an 

inaccurate split model that treats the platform control 

function, including the MAC scheduler, as a user-centric 

processing unit. The IBM CPLEX optimizer handles the 

optimization work and the problem construct using Mixed 

Integer Programming (MIP). In the paper [11], a 

comprehensive model introduces to optimize the total cost 

of ownership (TCO) of a fiber-based RAN with split 

baseband processing units (BBU). The model takes 

quantifiable resource requirements for computation and 

links into account. Although it generates a split for each 

connected user in a cell, this coarse-grained approach might 

need to be revised. ILP is used to define the problem, and 

the IBM CPLEX optimizer is used to resolve it. For RAN 

optimization and control, the author in [12] proposed deep 

reinforcement learning based on the double Q network. It 

focused on choosing the suitable schedule configuration for 

each real eNodeB. They proved that the network 

performance outperformed the existing rule-based algorithm 

by applying deep reinforcement learning to an entire RAN 

system. 

III. PROBLEM STATEMENT AND EXISTING ILP FORMULATION 

  This section describes an existing ILP approach [11] for  
optimizing the C-RAN architecture's front-haul bandwidth 
usage and computational costs for Remote Radio Units 
(RRU) and  Radio Cloud Center (RCC). The numerical 
evaluation outcomes are served as the benchmark against our 
proposed PSO methodology. In the problem, a set of K 
available splits made available to each of the total of N users 

to select from. Let 𝑥𝑖
𝑘 be a binary variable that is equal to 1, 

when user 𝑖 is assigned with split 𝑘; otherwise, 0. We 

describe the RRU as a set of data units, each of which has a 
computational capacity of 𝐶𝑅𝑅𝑈 GOPS, Power Consumption 
(𝑃𝑈) and weight factor (𝛼), and Power Usefulness 
Effectiveness (𝑃𝑈𝐸𝑈). Additionally, we also describe the 
RCC as a set of data units, each of which is capable of doing 
computations with the following: computational capacity of 
𝐶𝑅𝐶𝐶  GOPS, Power Consumption (𝑃𝐶), weight factor (𝛽), 

and Power Usefulness Effectiveness (𝑃𝑈𝐸𝐶).  𝐴𝑖
𝑘  (𝐸𝑖

𝑘) 
stands for the GOPS used at the RRU (or RCC) for the split 
k of user i, while is the front-haul bandwidth that the split k 
of user i generated. Front-haul link (FH) is used to connect 
RRU to RCC [9]. Thus, the problem can be formulated as 
follows: [11] 

Minimize: 

 𝛼. 𝑃𝑈𝐸𝑈 .
𝑃𝑅𝑅𝑈

𝑃𝑈
  + 𝛽. 𝑃𝑈𝐸𝐶 .

𝑃𝑅𝐶𝐶

𝑃𝐶
 + 𝛾.

𝐹𝐻𝑟𝑎𝑡𝑒

𝐵
 

Subject to:  

∑ 𝑥𝑖
𝑘𝐾

𝑖   = 1      ∀𝑖 ∈ 𝑁             (1) 

∑ ∑ 𝑥𝑖
𝑘𝑅𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ B               (2) 

       ∑ ∑ 𝑥𝑖
𝑘𝐴𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ 𝐶𝑅𝑅𝑈          (3)  

∑ ∑ 𝑥𝑖
𝑘𝐸𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  ≤ 𝐶𝑅𝐶𝐶            (4) 

𝑥𝑖
𝑘 ∈ [1] , ∀𝑖 ∈ 𝑁 , ∀𝑘 ∈ 𝐾 

Where: 

  𝑃𝑅𝑅𝑈 = (1/𝑃𝑓). ∑ ∑ 𝑥𝑖
𝑘𝐴𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  

       𝑃𝑅𝐶𝐶  = (1/𝑃𝑓). ∑ ∑ 𝑥𝑖
𝑘𝐸𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  

𝐹𝐻𝑟𝑎𝑡𝑒  = ∑ ∑ 𝑥𝑖
𝑘𝑅𝑖

𝑘𝐾
𝑘=0

𝑁
𝑖=1  

The constraint (1) states that each UE may only choose 
one split. The upper bound limit for the fronthaul link's total 
produced rate is expressed by constraints (2), (3), and (4), 
respectively, as well as the RRU and RCC computational 
resource requirements. After that, we determine the total 
amount of power used in RRU and RCC, respectively, 𝑃𝑅𝑅𝑈  
and  𝑃𝑅𝐶𝐶 . 𝐹𝐻𝑟𝑎𝑡𝑒  is used to evaluate the total generated rate 
of the Fronthaul link [16].  

  In a cellular network design, the baseband processing 
unit (BBU) and the radio unit (RU) are divided into different 
functional categories according to the 3rd Generation 
Partnership Project (3GPP) practical split idea. It outlines 
how the processing responsibilities are split between these 
two entities for a scalable and effective network operation. 
The concept of a functional split is especially applicable in 
the case of cloud radio access network (C-RAN) 
deployments, as the traditional baseband processing 
operations are split from the remote radio units and compiled 
in a BBU pool. This centralization enables enhanced 
coordination, better resource usage, and simpler network 
management. The 3GPP functional split offers a variety of 
alternatives for splitting the baseband processing tasks, 
allowing network operators and equipment suppliers to select 
the best configuration following their unique needs and 
deployment scenarios [2,6].In this paper, we assume that 
there are a total of seven split choices included in the 3GPP 
functional split, referred to as Splits 0 through 6. Within the 
Cloud Radio Access Network (C-RAN) architecture, each 
split choice denotes a certain arrangement of processing 
operations. The processing tasks carried out at the Remote 
Radio Head (RRH) level are included in Split 0. Processing 
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tasks are no longer carried out at the RRH but are 
subsequently offloaded to the cloud or Baseband Unit (BBU) 
as we progress from Split 0 to Split 6. A more centralized 
and adaptable strategy can be used as a result of the split of 
processing tasks, with the computational workload being 
handled by the cloud or BBU. The numerous split choices 
enable the C-RAN architecture to adapt to varied deployment 
environments and optimize utilization of resources [2,6].  

 Fig. 1(a) and (b) show the results of computational cost 
and front-haul bandwidth utilization. The users are divided 
into different functional groups to make assigning users to 
specific amenities easier, which are identified by split 
options from 0 to 6. Fig. 1(a) illustrates the distribution of 50 
N users across the other splits, and Fig.1(b) shows the costs 
of RRU, RCC, and FH, applying an ILP method. The 
objective function is to find a balance between the 
centralized and decentralized levels of the C-RAN. The 
centralized level is weighted by 𝛽 and takes into account the 
RCC, 𝑃𝑈𝐸𝐶  , and 𝑃𝐶 . The decentralized level is weighted by 
𝛼 and takes into account the RRU, . 𝑃𝑈𝐸𝑈 , and 𝑃𝑈 . The 
traffic load on the fronthaul is taken into account by 
calibrating the weighting factor 𝛾. 

 

       Fig. 1(a). User assigns in different split options 

  

Fig. 1(b). Total cost and computational cost of RRU, RCC 
and FH 

IV. PARTICLE SWARM OPTIMIZATION APPROACH 

         The optimization problem of the functional split, 

which was posed in the previous section III, is resolved in 

this section using the PSO algorithm. A population-based 

optimization technique, the PSO algorithm is motivated by 

the behavior of fish schools and bird flocks. Each particle in 

the population of particles used by the algorithm initially 

stands for one potential solution to the problem [13]. The 

three main characteristics of each particle in the PSO 

algorithm are position, velocity, and personal best (Pbest). 

While the velocity is the change vector that allows the 

particle to advance to the next position, the position 

represents the possible solution configuration. The particle's 

best solution configuration, as determined by its evaluation 

using a cost function, is stored in the Pbest memory 

function. The best solution configuration among all the best 

local solutions for particles is what we refer to as the global 

best (Gbest). It stands for the overall best answer any swarm 

particle has come up with. It compares the Pbest values of 

each particle in the swarm to arrive at this Gbest value and 

choose the configuration with the lowest cost. 

         The PSO algorithm enables particles to explore and 

optimize their solution configurations iteratively, seeking to 

converge towards the best feasible solution for the given 

problem, using these position, velocity, Pbest, and Gbest 

variables. After the algorithm has run through all steps, each 

particle iteratively works with the others to define its new 

velocity component [13]. (5) presents the procedure where 

the new velocity is created based on the old velocity of the 

previous iteration, Split P, Pbest, and Gbest. The 

coefficients 𝐶1  and 𝐶2  in (5) and inertia weight W are 

intended to enhance the process's randomness of evaluation. 

The random numbers 𝑟1 and 𝑟2 add a stochastic element to 

the velocity update equation, which helps prevent the swarm 

from converging too quickly to a local optimum [6, 13, 14]. 

The new position P is updated once the new velocity has 

been calculated using (6). 

 

𝑉𝑛𝑒𝑤 =   𝑊. 𝑉𝑜𝑙𝑑 + 𝐶1 𝑟1( 𝑃𝑏𝑒𝑠𝑡 −  𝑆𝑝𝑙𝑖𝑡𝑃) + 𝐶2 𝑟2( 𝐺𝑏𝑒𝑠𝑡 −
 𝑆𝑝𝑙𝑖𝑡𝑃)          (5) 

 

𝑆𝑝𝑙𝑖𝑡𝑃 =  𝑆𝑝𝑙𝑖𝑡𝑃 + 𝑉𝑛𝑒𝑤     (6) 

 

 

To initialize the random number generator with a predefined 

seed value for each execution in our implementation, we 

used the seed function. Controlling the seed value enables us 

to establish reproducibility in the generated random 

numbers, fostering consistent behavior across several 

program runs. The random number generator will reliably 

provide the same set of random numbers to this intentional 

initialization every time the application is run. PSO 

parameters are set to a population P of 10 particles and 

maximum iteration (MaxIt) is 10, 𝐶1  and 𝐶2  equal to 2. We 

assume the weight factor value for 𝛼 = 0.8, 𝛽 = 0.1 and 𝛾 = 

0.1, respectively[14]. 

 

TABLE I.  Simulation Parameters [16] 

 

Parameters Values 

P ( Particles)  10 

N ( Users) 50 

MaxIt (Max Iteration) 10,15,20 

K ( Split Option) 7 

𝛼 , 𝛽  , 𝛾 0.8,0.1,0.1 

B 1228 
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                     (a)Seed Value – 34342  

    

  Fig.2.Total Deployment Cost (MaxIt=10) 

 

 
 

                     (a)Seed Value – 34342  

    

  Fig.3.Total Deployment Cost (MaxIt=15) 

 
(a)Seed Value – 34342  

    

  Fig.4.Total Deployment Cost (MaxIt=20) 

 
 

(b) Seed Value – 52454 

 

 

 

 
(b) Seed Value – 52454 

 

 

 

 
(b) Seed Value - 52454 
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We conducted several runs using various seed values during 

the optimization process to look at the impact of 

randomness on the results. In particular, we defined a 

maximum iteration number of 10, 15, 20 and carefully 

chosen two random seed values: 34342 and 52454. 

 

TABLE II. Summarize the results of Deployment cost 

(P=10, N = 50) 

 

Seed Value Maximum Iterations 

10 15 20 

34342 0.4796 0.4779 0.4709 

52454 0.4879 0.4693 0.4693 

 

Table II offers a comprehensive summary of the deployment 

costs identified throughout the optimization process when N 

is set to 50. As we progressively increased the iterations to 

values of 10, 15 and 20, we observed a convergence in the 

deployment costs. These results were obtained through 

experimentation and analysis, allowing us to gain insights 

into the relationship between iterations and costs in our 

scenario. By visualizing this data, we can better understand 

the effect of varying iterations on the convergence of 

deployment costs. 

 

CONCLUSION 

Cloud Radio Access Network  shows significant potential for 
cutting wireless network construction and maintenance 
expenses. The baseband processing tasks of a wireless 
network are centralized by C-RAN, which can drastically 
reduce the number of base stations needed and the equipment 
required at each base station[2]. This may result from 
significant cost reductions, enhanced capacity, and 
performance. The placement of RAN functions must be 
optimized to reduce computational costs and bandwidth 
utilization. Our method is based on Particle Swarm 
Optimization, a metaheuristic method that has effectively 
solved various optimization issues[13]. As we demonstrate 
by evaluating our approach, the overall cost of building a C-
RAN network can significantly decrease. The outcomes of 
our research show that the PSO-based approach converges 
with the best options when comparing it to random search. 
Notably, the performance of PSO closely resembles the 
optimal result obtained by Integer Linear Programming as 
the number of iterations increases. This suggests that PSO 
can be a useful substitute for ILP for a range of optimization 
issues, particularly when the number of iterations is not a 
limiting constraint. We found that the deployment costs tend 
to stabilize and converge as the number of iterations expands 
through meticulous experimentation and observation. This 
result illustrates how crucial it is to optimize the iteration 
parameter in our deployment operations in order to get the 
desired cost results. We have shown the promise of the PSO-
based technique as a promising method for optimizing the 
bandwidth as well as computational costs in C-RAN 
environments. 
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