TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA1J.2

A Privacy-Preserving Approach for Big Data Mining using
RainForest with Federated Learning

Dipu Saha!, Mainul Karim!, Suriya Phongmoo? and Dewan Md. Farid!

Abstract—Federated Learning (FL) in Machine Learning (ML)
has become very popular nowadays because it trains classifiers
across multiple decentralized devices without transferring data
to a central server. It is a decentralized learning approach that
amalgamates several different nodes into one. In 2016, Google
introduced the concept of FL. when the use and misuse of
personal data were gaining global attention. In this paper, we
have proposed a privacy-preserving approach for mining big
personalized data employing scalable decision tree induction
with FL. The concept of the RainForest framework refers
to addressing big data challenges via a Decision Tree (DT)
classifier. The proposed method does not share the data or
personal information with the central server. It only transfers
the local models’ parameter values to the central server. Each
individual device or node trains its own local DT classifier and
shares the prior and conditional probability values with the
central server. We have tried to simulate the proposed concept
using five benchmark datasets. The results of the evaluation
indicate that the model exhibits exceptional performance and
accuracy.

Big Data; Machine Learning; Federated Learning; Decision
Tree; RainForest Learning

[. INTRODUCTION

Throughout the last several decades, ML has evolved from
a laboratory curiosity to a real technology with extensive
commercial use. This pervasive and powerful form of artificial
intelligence is changing every industry by analyzing big data,
identifying patterns in big data, and making decisions without
human intervention. A 2020 Deloitte survey [1] found that
67% of companies are using ML, and 97% are planning
to use it in the next year. But due to constant changes in
technology and strict government regulations, many questions
are being raised about the standard process of ML. Following
the implementation of the General Data Protection Regulation
in the European Union in 2018, an agreement is mandatory
before an institution or organization can use someone’s private
data [2]. However, since the client’s data is shared directly
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with the developer in a single framework in the standard
ML process, there is a possibility of it being misused by
the developer himself or stolen by an intruder. Also, clients
regularly interact with the server to complete the forecast-
ing process, which negatively impacts the user experience
owing to accessibility, network latency, power consumption,
and other unanticipated concerns. Moreover, standard ML
algorithms have challenges in the application of big data since
the data is either too large to store in a centralized location
or too complicated to be dealt with by typical data-processing
application software [3]. Google came up with FL in 2016
to solve these problems [4]. The goal of this evolving ML
project is to solve the problem of data privacy. The core idea
behind FL is decentralized learning, where client data is never
shared with or sent to a central server. Clients are regarded
nodes in a network and may communicate with one another
either directly or through a server [5]. Individual participants
execute their own training processes. The model only transmits
its learnt parameters (weights, biases, etc.) to the server where
a master model is constructed. The quantity of data exchanged
is minimized along with any associated privacy problems using
this method [6]. Even the central server can operate with
relatively little power and storage [7].

The most well-known techniques for representing classifiers
for data classification are thought to be DT classifiers. It uses
a tree-based approach, where every route starting at the root is
defined by a data-separating sequence until a Boolean result
is reached at the leaf node [8], [9]. It excels at handling large
and complex datasets without necessitating a sophisticated
parameter structure. It shows how nodes and connections in
a network of knowledge relate to each other in a hierarchical
way. Nodes stand in for purposes when relations are employed
to categorize [10]. The RainForest Tree Model is a form of
ensemble learning approach that entails the construction of
several decision trees during training, followed by the use of
their aggregate predictions when making final outputs [11].
The model is named after the rainforest ecosystem, as it mim-
ics the natural diversity and complexity of such environments
by using many diverse decision trees. Each DT in the ensemble
is trained on a different subset of the training data and may
use different features and decision rules. During prediction,
the RainForest model aggregates the output of each DT to
make a final decision. It is a powerful and flexible algorithm
that is well-suited for big data analysis due to its ability
to handle large and complex datasets, parallel processing,
ensemble learning, and feature importance.

Based on our previous research work [12], we present
the notion of incorporating FL into the RainForest model in
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this study. By implementing this, privacy, performance, and
scalability of the RainForest model can be improved in several
ways, as follows:

« Data privacy: As FL allows multiple parties to collab-
orate on training a ML model without sharing their data
with each other, this can be particularly beneficial for
datasets that contain sensitive or confidential information,
such as medical or financial data.

« Distributed data: FL can be used to train the RainForest
tree model on distributed data sources, such as devices
or sensors. In Internet of Things (IoT) applications and
similar use cases where data is created locally but has to
be processed in real time without being transferred to a
central server, this approach might be helpful.

o Model aggregation: FL can be used to aggregate the
individual models trained on different devices or data
sources and combine them into a more accurate and
robust global model. Since the individual models can
be trained on distinct subsets of the data and features,
this can help alleviate the problem of overfitting in the
RainForest tree model.

e Model personalization: FL. can also be used to per-
sonalize the RainForest tree model for individual users
or devices by training separate models for each user or
device based on their specific data and preferences. This
may help increase the model’s precision and applicability
to various users or devices.

o Communication cost: Since FL only requires trained
statistical models to be sent to the server rather than com-
plete data, communication costs are drastically reduced.

The content of this paper is organized as follows: In

section II, there is a discussion of related works. Section III
introduces the framework and specific technical details of the
proposed methodology, whereas section IV provides a syn-
opsis of the experimental results. Lastly, section V concludes
the paper, mentioning the advantages and suggesting future
research directions.

II. RELATED WORKS

Since FL is still in its early stages, there is a lot of research
and discussion on its practical application. Alferaidi et al.
explained FL in their paper [13] by discussing its architectural
and operational mechanisms, classification based on indepen-
dent research objects and their different distribution character-
istics, optimization strategies, current development status, and
notable difficulties and solutions. In order to provide general
readers with an understanding, a study [14] on the prevalence
of FL in big data applications and services was published by
Gadekalu et al. In their study [15], Pati et al. established the
FL’s performance at such size and complexity as a paradigm
shift for multisite collaborations, therefore eliminating the
need for data sharing. Zhao et al. developed an enhanced FL
algorithm in their paper [16] for the mining of industrial big
data to protect the confidentiality of data and users. At first,
they lessened the privacy leakage by updating just a subset
of participants and parameters in each iteration. In addition,
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they used a proxy server to shield clients’ identities from the
FL server and lighten its communication load. Furthermore,
they used a Gaussian technique for differential privacy on
shared parameters to provide complete confidentiality and
implement a self-termination mechanism. All of their state-
ments have been validated by experimental evidence. Even
their approach is more resilient than other similar schemes
and adds nothing to the computational expense. A common
problem with data abundance is receiving irrelevant informa-
tion. In their paper [17], Doku et al. proposed a strategy that
combines the advantages of the blockchain with FL to retain
the most relevant data discovered by users when engaging
with their devices. They devised a unique network sharing
method known as Interest Group. Interest groups consist of
nodes that have similar interests. They did so by introducing
a decentralized method of data storage that decreases the risk
associated with centralized data storage and by proposing a
consensus process known as the Proof of Common Interest. It
assures the legitimacy of data by ensuring that data submitted
to the ledger is relevant.

Aivodji et al. generated an all-new architecture [18], IOTFLA,
for FL-based smart homes, where ECIPAP should be imple-
mented for secure data aggregation. This enables scenarios in
which all smart home devices can use FL, none can, or a
combination of both. This allows for a well-functioning smart
home network with improved efficiency over time in a privacy-
preserving manner by ensuring that only updates made to the
models are transferred to allow the global model’s update.
Zhang & Jiang proposed a data augmentation strategy [6]
called FedDA, based on WGAN-GP, to overcome the small
amount of overlapped data. Learning the characteristics of
just a handful of overlap data and the abundant nonoverlap
data allows for the generation of a greater number of training
samples when using this technique. It also passively enhances
data quality, reduces iterations, and improves outcomes. Tsai
et al. proposed a vision-based IoT technology [19] based on
FL to boost productivity and optimize revenues for small
and medium-sized firms. In order to locate and recognize
edge nodes, it examines regional low-level properties. An
embedded camera is used to construct the edge node, which
monitors machines and processes data locally. The results
from their test revealed that after 50 days of continuous
operation, the proposed technique reduced the delay by nearly
1.4 hours. Leroy et al. came up with a method [20] based on
FL that will let voice-assistance apps recognize wake words
without putting sensitive user data at risk. They conducted an
extensive empirical study of the federated averaging algorithm
based on a crowdsourced dataset. Specifically, they showed
experimentally that the number of communication rounds
needed to attain goal performance can be drastically reduced
by switching to an adaptive averaging technique inspired by
the Adam optimizer rather than the traditional weighted model
averaging.
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III. METHODOLOGY

A. Federated Learning

The increasing computational power of even small devices
nowadays makes frequent implementations of FL possible. It is
possible to carry it out in either a centralized [21] or decentral-
ized [22] configuration, depending on the preferences. In the
centralized FL architecture, clients train an initial model sent
from the central server on their own devices with their local
data. Only the encrypted gradients of those trained models are
sent back to the central server, with which the server updates
the model by performing aggregation or pruning as needed.
Participants carry out the iterative training procedure based
on this new global model. This procedure goes on until the
target performance level is reached or the allotted number of
communication rounds is exceeded [23]. Fig. 1 shows the basic
structure of the centralized FL. To protect one’s anonymity
even further, a secure aggregation mechanism was devised
where the server pairs up clients with others in a buddy system,
and their data is aggregated with some random values before
being forwarded to the central server, therefore increasing
their anonymity. Clearly aware of the values transmitted to
the buddies, the server cancels them out in order to retrieve
the payload. This trick obfuscates the data while it is in transit
to the server. In a centralized FL setup, the mode of data flow
between the server and the edge devices might be synchronous
or asynchronous. The central server is in charge of notifying
the edge devices about the commencement of the training
process in a synchronous environment [4]. The server holds
off sending the revised settings until all of the edge devices, or
a substantial portion, forward their updated parameters. When
working in an asynchronous environment, an edge device may
initiate a fresh training pass whenever necessary [24]. The
latest parameters made accessible from all edge devices are
combined by the central server when it wishes to create a new
global model.

In the decentralized FL architecture, the integration of
a central server is not required. Instead, the devices com-
municate directly with each other to aggregate their model
updates. This can be done using various protocols, such as
gossip algorithms, where devices randomly exchange model
updates with each other, or hierarchical clustering, where
devices are organized into clusters and updates are aggregated
within each cluster before being sent to other clusters. As the
number of connected devices increases, the complexity of the
communication process also grows [25].

Data is usually stored in different nodes or entities in
the form of a feature matrix. Typically, the data will have
numerous instances, and the clients will be on the horizontal
axis with their characteristics on the vertical. According to data
partition mode, FL is commonly classified as Horizontal FL,
Vertical FL, and Federated transfer learning [26]. Horizontal
FL takes use of the fact that even while no two sets of
data are same in sample space, there is often overlap in
the attributes of data located at different nodes. By contrast,
Vertical FL is used in settings where the nodes share a
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similar feature space but a dissimilar sample space. Unlike
these two, sometimes data shares relatively small samples
and feature spaces. Consequently, a shortage of data labels
and low quality of data are the key issues in this situation.
To improve learning outcomes, Federated transfer learning
facilitates shifting information from the source domain to the
target domain.

B. Decision Tree

Behind DT’s popularity, the main reason is its explainability.
Anyone can understand this, even if they are from a non-CS
background, and generate some rules from it. It works with
any data format and can even deal with missing values. As
less pre-processing is required, it is also computationally fast.
It uses multiple algorithms like ID3, ID4, ID5, C4.5, C4.8,
C5.0, MARS, GUIDE, CTREE, CRUISE, QUEST, etc. to split
a node into sub-nodes [8]. The selection of the appropriate
algorithm is determined by the nature of the desired outcomes.
When there are several characteristics in a dataset, it might
be difficult to decide which ones belong at the top and which
ones should be nested deeper. Randomly selecting an approach
might have inaccurate and unfavorable effects. Researchers
worked on this issue and came up with various solutions. A
few criteria were offered, including Entropy, Information Gain,
Gini Index, Gain Ratio, Squared Error, etc. The Squared Error
is used for the regression cases.

Squared Error = (Predicted value — Real value)* (1)

Entropy is the measurement of disorder in a set. It is used
for classification cases. Entropy has a fixed value that ranges
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from O to 1. The closer the Entropy value is to O, the better
the splitting, and the closer it is to 1, the worse it is.

k
H(q) = - pilog,p; 2)
1=1

Information Gain computes the difference between the
Entropy before splitting and the average Entropy after splitting
of the dataset based on given attribute values. Among all the
attributes, the higher the Information Gain, the higher it will
go in the tree.

VI N
Gain (q,V) = H (q) = Y 3 H (i) 3)
i=1 "4

In practical life, many times unique classifications are seen
that are misleading. For these, the Entropy becomes 0. In that
case, many unimportant attributes will be selected. In such
a particular situation, the Gain Ratio is applied rather than
the Information Gain. Gain Ratio is obtained by dividing the
Information Gain by the Split Information.

Gain (g,V)
-4 ~- logy
The Gini index, used for classification cases, calculates the
likelihood that a randomly selected element from the set would
be erroneously identified if it were randomly assigned a label
based on how those labels are distributed in the subset. The

attribute with the lowest Gini Index will sit higher, followed
by the rest in order.

Gain Ratio =

“4)

k
Gini (q) = Zpi (1—p) (5)
i=1

C. RainForest Method

In this era of big data, data is too large and complex to
be dealt with. Of course, that huge amount of data cannot be
stored in a small memory or in any centralized location. At
this point, the RainForest Model concept comes in handy. It
is applicable to all DT algorithms and may adjust itself to the
amount of main memory that is available [27]. To represent the
training instances at each node of the tree, the approach keeps
an AVC-set (Attribute-Value, Class-label). The AVC set of a
given attribute A at a given node N provides the number of
examples labeled with a certain class for each possible value
of A. Fig. 2 shows the basic architecture of the RainForest
model. For example, if we consider Table I as the subdata set
di, then the AVC-set of the temperature attribute of d; will
be considered as mentioned in Table II.

D. Proposed Framework

This subsection illustrates the proposed approach for ad-
dressing privacy concerns and managing big data with the
RainForest model through the application of FL. Initially, the
central server leverages a simple k-means clustering method
to partition the vast amount of data it has stored into several
subsets. Subsequently, the server dispatches a unique subset
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and an initial model to each local node, where the nodes utilize
their own data in combination with the provided subset to
train the model. Each node constructs a DT by implementing
probabilistic C4.8 and producing an AVC table for each
attribute of the tree. All AVC tables are then transmitted back
to the central server, where they are combined through matrix
addition to form a global DT. The resultant model is then
conveyed back to the local nodes as the new initial model
for the subsequent iteration. Meanwhile, new data will be
generated on the local nodes, which will be employed to train
the next iteration. This iterative process continues until the
specified criteria are met. Fig. 3 shows the whole process of
the proposed method.

IV. EXPERIMENTS
A. Datasets & Experimental Setup

The complexity of our proposed model raises doubts about
its accuracy compared to traditional algorithms. Therefore,
we have divided our experimental setup into two parts. The
experiments were conducted on a machine equipped with an
Intel(R) Core (TM) i5-6500 CPU @ 3.20 GHz and 12 GB of
RAM, using the Visual Studio IDE to implement our solution
in Python. Our experiment involved five distinct datasets
obtained from the KAGGLE website, which are described
in Table III. The initial phase of our experiment involved
preprocessing the datasets and measuring their accuracy using
two traditional algorithms, namely the Decision Tree and
Random Forest. We then proceeded to the second phase,
where we evaluated the accuracy of our proposed model.
To conduct this phase, we utilized the Flower Framework, a
powerful tool for experimental analysis in FL. This framework
enables researchers and developers to test and implement
various FL algorithms and evaluate their performance under
different scenarios by creating multiple virtual nodes on a
single computer. For this experiment, we set up one main
server and four local nodes. The final readings were obtained
after waiting for up to three iterations.

B. Results and Discussion

By implementing the proposed model and comparing its
results against traditional algorithms using multiple datasets
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TABLE I
A SUB DATASET OF THE PLAYING TENNIS

Day Temperature | Humidity | Wind | Play
Day 1 Hot High Weak No
Day 2 Hot High Strong No
Day 5 Mild High Weak No
Day 8 Cold Normal Weak Yes
Day 9 Mild Normal Strong Yes

TABLE II
AV C-SET OF THE TEMPERATURE ATTRIBUTE OF TABLE I
Temperature | Yes | No
Hot 0 2
Mild 1 1
Cold 1 0

and replicating the process multiple times, we aimed to provide
a robust and reliable assessment of its accuracy. Table IV
presents the accuracy outcomes of all algorithms for each
dataset. Notably, the proposed model demonstrated superior
accuracy compared to the other two models for the Titanic,
Iris Species, and Palmer Archipelago datasets. For the breast
cancer dataset, the proposed model yielded an enhanced accu-
racy rate in comparison to the Decision Tree, and it achieved
the same accuracy rate as the Random Forest. However, for
the stroke prediction dataset, both the proposed model and
the Decision Tree produced the same accuracy, whereas the
Random Forest achieved 4% higher. These findings indicate
that the proposed model exhibits a promising approach for
enhancing the accuracy of classification tasks in contrast to
conventional models, particularly when dealing with big data.
Even if the accuracy is equal or marginally lower, it still holds
promise for privacy preservation or personalized modeling
purposes that traditional algorithms cannot.

V. CONCLUSION

This paper shows the merging of two different concepts,
Federated Learning and RainForest, which offer several advan-
tages when working together. In terms of privacy, time, mem-
ory, and power consumption, this approach is comparatively
more efficient. Moreover, the model shows better performance
due to the use of big data. In the future, there is scope to further
improve the proposed concept of using FL in the RainForest
model. One possible avenue for future research is to investigate
ways to enhance the privacy and security of the data trans-
mitted from edge devices during the FL process. This could
involve exploring new encryption techniques or developing
more secure communication protocols. Additionally, there may
be opportunities to optimize the FL process itself, perhaps
by exploring new aggregation techniques or investigating the
impact of different hyperparameters on model performance.
Finally, it would be valuable to compare the proposed concept
with other emerging techniques, such as Differential privacy,
Secure multiparty computation, Homomorphic encryption, and
determine its relative strengths and weaknesses in different
contexts.
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TABLE III
DATASET DESCRIPTION
Datasets No. of Attribute No. of No. of
attributes types instances | output
Titanic 28 Mixed 1309 2
Iris Species 6 Mixed 150 3
Breast Cancer 32 Mixed 569 2
Stroke Prediction 12 Mixed 5110 2
Palmer Archipelago 17 Mixed 344 3
TABLE IV
ACCURACY
Datasets Decision Random Proposed
Tree Forest Model
Titanic 0.82 0.86 0.88
Iris Species 0.93 0.96 0.97
Breast Cancer 0.94 0.95 0.95
Stroke Prediction 0.90 0.94 0.90
Palmer Archipelago 0.95 0.98 0.99
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