
NLDDPG Based Joint Optimization Decision
Scheme for Vehicular Network Offloading and

Resource Allocation
Hui Hu1, Bei Liu2, Xin Su3, Hui Gao4, Xibin Xu3

1School of Communication and Information Engineering, Chongqing University of
Posts and Telecommunications Chongqing, China

2Beijing National Research Center for Information Science and Technology, Tsinghua University Beijing, China
3Department of electronic engineering, Tsinghua University Beijing, China

4Department of electronic engineering, Beijing University of Posts and Telecommunications, China
Corresponding Author: Hui Hu Email: s210101046@stu.cqupt.edu.cn

Abstract—In response to the explosive growth of data com-
putation in vehicular terminals, computation offloading has
emerged as a viable solution to mitigate the limitations of
resources. Efficient offloading decisions not only meet the
demanding requirements of complex vehicular tasks in terms
of time, energy consumption, and computational performance
but also minimize competition and resource consumption in the
network. However, existing work on task offloading in vehicular
networks often exhibits certain limitations, such as incomplete
consideration of relevant factors or suboptimal utilization of
available resources. This research presents the construction of
a three-layer vehicular network environment, which is based
on cloud and edge computing paradigms. The design entails
the formulation of real-time vehicle location tracking and task
priority metrics, while also considering the challenges posed
by time-varying channels and signal blockage prevalent in
vehicular network environments. In this paper, a novel variant
of the Deep Deterministic Policy Gradient (DDPG) algorithm
NLDDPG is proposed to iteratively train the model, aiming to
optimize a weighted objective function. Simulation results show
that this algorithm can improve the efficiency and optimize the
task average utility.

Index Terms—Offloading decision making, Deep reinforce-
ment learning, Deep reinforcement learning, Cloud computing,
Edge computing

I. INTRODUCTION

The latest iteration of mobile communication network
technology has greatly contributed to the rapid development
and wide application of IoT. Among them, a large number
of smart vehicle applications have been developed, such as
autonomous driving, collision warning, virtual reality, etc.
However, all of them require a large number of computing
resources and strict quality of service (QoS) to achieve. Task
offloading decision is one of the core problems of vehicular
networks. Currently, offloading decisions usually consider
time delay, energy consumption, joint time delay and energy
consumption, system utility, or custom revenue as offloading
objectives to meet real-time requirements. Luo [1] proposed a
dynamic planning-based algorithm to achieve low time delay
and joint optimization of computation and communication
costs using available resources through collaborative comput-
ing of multiple edge servers and proximity communication at

This work is supported by National Key R&D Program of China,
No.2020YFB1806702

the edge. Ning [2] proposed a stochastic algorithm based on
sample average approximation to approximate the expected
future system utility. However, there are various uncertainties
as well as dynamic changes in the vehicular network, such
as vehicle mobility, network topology changes, and commu-
nication channel quality. Traditional static algorithms cannot
consider the above factors, so dynamic offloading algorithms
come into being.

Li [3] proposed a novel offloading strategy based on deep
Q networks (DQN) to dynamically adjust the offloading ratio
to ensure the joint optimization of task offloading time delay
and energy consumption to improve system performance. Dai
[4] designed a algorithm based on DQN to solve the joint
optimization problem of bandwidth, computational resource
allocation, and rental cost of heterogeneous servers. Wang [5]
proposed a mobile edge computing resource allocation and
offloading algorithm based on deep reinforcement learning
in the AHP-DQN framework to solve the problem of low
terminal storage capacity and to meet the diversification phe-
nomenon of network services during task offloading. Liu [6]
considered the dynamic requests of vehicles and time-varying
communication conditions and proposes a deep reinforcement
learning-based algorithm to achieve optimal decisions for
joint optimization of task offloading and resource allocation.
Li [7] proposed a joint optimization scheme based on Q-
learning to implement a real-time energy-aware offloading
scheme in vehicular edge computing. Although all the above
works consider the dynamic nature of vehicular networks,
most of the works only considered edge computing, while
tasks that are computationally dense but have low real-time
requirements in practical scenarios can be offloaded to cloud
server computing, and tasks that are time delay sensitive
or have small computation are suitable to be offloaded to
edge server computing, so the architecture of cloud-edge
collaboration is more applicable to practical scenarios. In
addition, most of the above works only consideed minimizing
time delay as the research goal, which is also not applicable
to practical scenarios.

In contrast to the existing work, this paper considers a net-
work of edge-cloud collaborative architecture with multiple
vehicles, multiple edge servers, and a cloud server. Where

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA1XP.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 90

each vehicle has one task in a time slot, and these tasks
can be computed locally or offloaded to the edge server and
cloud server for executing. In order to guarantee the QoS of
the network and minimize the utility of the system, the main
contributions of this study are summarized as follows:

• For the complex environment of vehicular networks, this
paper considers task priority, channel access, vehicle
mobility, time-varying channels, and signal blocking
based on the other works to obtain task offloading
decisions that are more applicable to real scenarios to
minimize the average task utility, where the average
task utility is defined as the weighted average of the
offloading delay and execution energy consumption of
all tasks.

• We propose an improved algorithm NLDDPG to train
the neural network model and obtain the optimal de-
cision for the optimization problem.NLDDPG adds
the LSTM (Long Short Term Memory) mechanism to
DDPG (Deep Deterministic Policy Gradient) to improve
the stability and convergence of the algorithm.We use
NLDDPG to implement joint optimization of task of-
floading and resource allocation decisions in vehicular
networks. Simulation results show that the model and
algorithm used in this paper can significantly optimize
the average task utility compared to other algorithms.

The framework for the content of this paper is described
next. In Section I, we introduce the background of this paper,
related works and the main contributions of this paper. In
Section II, we introduce the system model used in this paper
and the optimization problem of this paper. In Section III, we
describe the specific Markov process and the algorithm used
in this paper. In Section IV, we give the simulation parameter
settings, simulation results, and related analysis of this paper.
Finally, we concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network model

Fig. 1 shows we consider an environment of a macro Base
station(BS) with M small-cells, where each small-cell has a
small-cell BS, and each small-cell BS with one corresponding
MEC server that serves the vehicles in its coverage. The
coverage area of the small-cell BS is a circle and considering
the overlapping coverage area of adjacent BS, we use a square
inside the circle to approximate the coverage area of the BS.
The task offloading decision in this paper is represented as
follows:

xi,0 = 1 Local computing
xi,j = 1,∀j ∈ {1, 2, . . . ,M} MEC server computing
xi,M+1 = 1 Cloud server computing

(1)
where local computing denotes that the computation task

of the i-th vehicle is computed on the vehicle, MEC server
computing denotes that the computation task of the i-th
vehicle is computed on the MEC server, and Cloud server
computing denotes that the computation task of the i-th
vehicle is computed on the Cloud server.

vehicle

terminal

layer

MEC server layer

Cloud server layer

Cloud server

Macro BS

Cloud server

Macro BS

Small-cell

BS
MEC server

Small-cell

BS
MEC server

Small-cell

BS

MEC server

Fig. 1. Network model.

B. Communication model

Because the time delay and energy consumption of the
downlink transmission are small compared to the uplink, they
can be ignored [8]. The location of the server is fixed, so
the position of the RSU can be denoted as coordinate zj =[
zxj , z

y
j , Hj

]T
, where Hj is the height of the j-th RSU, and

the position of the vehicle is moving, so the coordinate of
the i-th vehicle of the t-th time slot is denoted as fi(t) =

[fx
i (t), f

y
i (t), 0]

T . Assuming that the direction of the vehicle
is constant during the time interval ∆t, the coordinate of the
vehicle can be denoted as:

fi(t + ∆t) = [fx
i (t) + v (t) ·∆t · cosβ (t) ,

fy
i (t) + v (t) ·∆t · sinβ (t) , 0]

T (2)

If the i-th vehicle is connected to the j-th RSU through
the n-th sub-channel, then the corresponding signal-to-noise
ratio can be expressed as:

γi,j [n] =
Pi,j [n]hi,j [n](

σ2 + di,j [n]Ploss + Ii,j[n]
)
· ∥fi(t+∆t)− zj∥2

(3)
where σ2 is the noise power, Pi,j [n] andhi,j [n] denote the

transmission power and the channel gain per unit distance
of the i-th vehicle to the j-th RSU respectively. The signal
blocking flag di,j [n] is added to distinguish the signal trans-
mission capability, and di,j [n] in0, 1, if di,j [n] = 1, it means
that there is signal blocking for the transmission from the i-th
vehicle to the j-th RSU through the n-th sub-channel, and
vice versa, di,j [n] = 0.

The interference channel from the i-th vehicle to the j-
th RSU through the n-th subchannel is denoted as Ii,j [n],
which can be expressed as:

Ii,j [n] =

UI∑
g=1

M∑
l=1,l ̸=j

sg,j [n] pg,j [n]hg,j [n] (4)

where l denotes the other RSUs that does not include the
j-th RSU.

Assuming that W is the bandwidth of each sub-channel,
therefore, if the i-th vehicle transmits information to the j-th

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 91

RSU through the n-th sub-channel, the corresponding uplink
transmission rate can be expressed as:

Ri,j [n] = W log2 (1 + γi,j [n]) (5)

Then, the total uplink transmission rate from the i-th
vehicle to the j-th RSU can be expressed as [9]:

Ri,j =

L∑
n=1

si,j [n]Ri,j [n] (6)

where si,j [n] ∈ 0, 1, and si,j [n] = 1 means that the i-th
vehicle transmits the information to the j-th RSU through the
n-th sub-channel to execute the task, and vice versa, si,j [n] =
0. In addition, the uplink communication rate used to offload
the computational tasks on the cloud server can be expressed
as follows [9]:

Ri,M+1 = max
j∈M

Ri,j (7)

Then, the time for the i-th vehicle to offload the task is:

T o
i =

M+1∑
j=0

ai
Ri,j

xi,j (8)

Therefore, the total communication time and energy used
to execute the task of the i-th vehicle are expressed as:{

T c1
i = T o

i + vxi,j

Ec1
i = P c

i T
o
i

(9)

where v denotes the transmission delay of the i-th vehicle
computing task between the MEC server and the Cloud
server.

C. Computation model

For local computing, since different vehicles may have
different computational capabilities, in addition, all vehicles
may execute computational tasks locally. Therefore, the time
delay and energy consumption for the local execution of the
computational task of the i-th vehicle can be expressed as:{

T l
i = ci

f l
i

El
i = θici

(10)

where f l
i denotes the computational capacity of the i-th

vehicle and θi is a factor indicating the energy consumed per
CPU cycle. For remote execution, the computational tasks of
the i-th vehicle will be offloaded and executed via a wireless
channel connected to an MEC server or via a wireless channel
connected to an MEC server to a Cloud server. The time of
the MEC server j or the Cloud server M + 1 to execute the
computational task of the i-th vehicle can be expressed as:T e

i = ci
fe
i,j

T c
i = ci

fc
i,M+1

(11)

where fe
i,j and f c

i,M+1 denote the computing power allocated
to the i-th vehicle by the MEC server j and the Cloud
server M+1, respectively. Resource allocation, which plays a
crucial role in optimizing system performance, is an essential
aspect that will be comprehensively examined and discussed
in this paper later.

D. Task priority

In this paper, we abstract a criterion for rating task pri-
orities to guide the development of task offloading policies.
Because task size and maximum tolerated delay of tasks are
important indicators affecting task offloading, linking the two
can better reflect the importance and urgency of tasks for task
scheduling and offloading and the priority of tasks can be
defined as [10]:

pi = psf
ci

Tmax
i

(12)

where psf is a scaling factor to adjust the degree to which
task size or time delay affects priority.

E. Resource allocation scheme based on task priority

When the task of the i-th vehicle is offloaded to the MEC
server j or the Cloud server M + 1 for processing, the
resource allocation factor for the corresponding task can be
expressed as follows, respectively:ρi,j =

pi∑
i∈mecj

pi

ρi,M+1 = pi∑
i∈mccM+1

pi

(13)

Where mecj denotes the set of all vehicles for task process-
ing at the MEC server j, and mccM+1 denotes the set of all
vehicles for task processing at the cloud server M +1. Then,
the MEC server resources or Cloud server resources allocate
to the task of the i-th vehicle for execution are denoted as
follows, respectively:{

fe
i,j = ρi,jF

e
max

fe
i,M+1 = ρi,M+1F

c
max

(14)

where F e
max denotes the maximum computing resource of

the MEC server j and F c
max denotes the maximum computing

resource of the cloud server M + 1.

F. Problem formulation

Based on the obtained formulas for time delay and energy
consumption, the total time delay and total energy consump-
tion for all tasks used to perform the i-th vehicle can be
obtained as:{

T c2
i = T l

ixi,0 + T e
i xi,M+1 +

∑M
j=1 T

e
i xi,j

Ec2
i = El

ixi,0 +
∑M+1

j=1 θxi,j

(15)

where θ is a constant indicates the energy consumed by the
vehicle in the idle case. Therefore, the total time delay and
energy consumption for the task of the i-th vehicle to be
offloaded and executed can be expressed as:{

Ti = T c1
i + T c2

i

Ei = Ec1
i + Ec2

i

(16)

On the basis of the time taken to offload and calculate the
task, combined with the consideration of energy consumption
the utility of vehicle i for task offloading can be obtained as:

ui = wt
iTi + we

iEi (17)

where both wt
i and we

i denote the preference coefficients of
delay and energy consumption for task offloading decision
by the i-th vehicle, respectively, indicating the importance of
delay and energy consumption by the user and satisfying the

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 92

constraints wt
i + we

i = 1, wt
i ∈ [0, 1] and we

i ∈ [0, 1]. Com-
bining the above analysis, the joint optimization objective of
task offloading and resource allocation is expressed in this
paper as follows:

min
xi,j ,ρi,j ,ρi,j

U =
1

N

n∑
i=1

ui (18)

s.t. :
M+1∑
j=1

Xi,j = 1 (18a)∑
i∈mecj

ρi,j ≤ 1,∀i ∈ N (18b)

∑
i∈mccj

ρi,M+1 ≤ 1,∀i ∈ N (18c)

0 ≤ γM+1 ≤ 1 (18d)
N∑
i=1

xi,M+1ci ≤ F c
max (18e)

N∑
i=1

xi,jci ≤ F e
max,∀j ∈ M (18f)

0 ≤ f c
i ,∀i ∈ N (18g)

0 ≤ fe
i ,∀i ∈ N (18h)

N∑
i=1

si,j [n] ≤ 1,∀j ∈ M, i ∈ N (18i)

f(t) ∈ [0 ∼ 1000, 0 ∼ 3000] (18j)

where U denotes the average utility of the task. In summary,
the optimization objective of this paper involves multiple
factors and several constraints, and is a multi-objective joint
optimization problem, which is difficult to solve by conven-
tional methods, so the NLDDPG algorithm is used to solve
the problem.

III. NLDDPG-BASED TASK OFFLOADING DECISION

Since traditional offloading decision-making schemes are
limited by manual design features and complex a priori
knowledge, etc., in this paper, we train the optimization
problem using a neural network that possesses a high degree
of adaptivity and nonlinear modeling capability; in addition,
the neural network can take into account the task features
and the network state so as to take advantage of the rich
information and achieve effective dynamic decision-making
on the task’s computational requests.

In this paper, we use an algorithm NLDDPG, which can
better extract the task specificity to eliminate the size dif-
ference of different state values. And this algorithm achieves
delayed updates by introducing a fixed-length empirical play-
back buffer, which reduces the correlation and oscillation of
updates and improves the stability and efficiency of learning.
Markov decision process (MDP) is a mathematical model
commonly used in decision-making [11]. In this section, the
three core components of MDP, i.e., state, action, and reward,
are first introduced, and afterwards the framework of the
algorithm is introduced.

A. State

The state space consists of various state information of
servers and vehicles that affect the offloading decision, in-

cluding Cloud server computing resources, individual MEC
server computing resources, task data size, coordinates of
vehicles, and block flags. Therefore, the state space of the
i-th vehicle at the t-th time slot in the vehicular network is:

si(t) =
(
F c
r (t) , F 1

r (t), F
2
r (t), . . . , F

m
r (t),

f1(t), f2(t), . . . , fn(t), a1(t), a2(t), . . . , an(t),

c1(t), c2(t), . . . , cn(t), d1(t), d2(t), . . . , dn(t))
(19)

where F c
r (t) denotes the remaining computational re-

sources of the cloud server at the t-th time slot
,F 1

r (t), F
2
r (t), . . . , F

m
r (t) denote the remaining computa-

tional resources of each MEC server at the t-th time slot,
f1(t), f2(t), . . . , fn(t) denote the coordinates of each vehicle
at the t-th time slot, a1(t), a2(t), . . . , an(t) denote the total
data size of the computational tasks that can be offloaded
by each vehicle at the t-th time slot, c1(t), c2(t), . . . , cn(t)
denote the priority of the computational tasks of each vehicle
at the t-th time slot, d1(t), d2(t), . . . , dn(t) denotes the block
flags of each vehicle at the t-th time slot.

B. Action

The i-th vehicle based on the state si(t) observed at the
t-th time slot, the vehicle outputs an action as the offloading
policy taken at the current time slot. The action ai(t) of the
i-th vehicle at the t-th time slot can be expressed as:

ai(t) = (x1 (t) , x2 (t) , . . . , xn (t)) (20)

where xi(t) (i ∈ N)denotes the task offloading decision of
the i-th vehicle at the t-th time slot. If xi(t) = 0, the task of
the i-th vehicle at the t-th time slot will be executed locally;
if xi(t) = 1, the i-th vehicle at the t-th time slot will be
executed at the nearby MEC server; if xi(t) = 2, the i-th
vehicle at the t-th time slot will be executed at the nearby
Cloud server.

C. Reward

At the t-th time slot, the environment gives back a reward
ri(t) immediately after the i-th vehicle gives the correspond-
ing action ai(t) based on the observed state si(t), since the
objective of this paper is to minimize the average utility of
the task, the reward can be set according to the (18) as:

ri(t) = −U (21)

D. NLDDPG algorithm

The purpose of the NLDDPG algorithm is to learn the
optimal policy for maximizing long-term gains. The inputs
to the NLDDPG algorithm are the vehicular edge computing
environment parameters and and the output is the optimiza-
tion decision. The NLDDPG algorithm process is shown in
Fig. 2, which begins with randomly initializing the online
policy network and online Q-network weights and copying
them to the corresponding target network parameters. Then,
the experience playback buffer is cleared and the iteration
minibatch is set. This is followed by entering the vehicle edge
computing environment and starting the iteration process. The
last is to obtain the optimal weights of the actor network after
the iteration is completed.

The specific implementation process of the NLDDPG
algorithm is as Algorithm 1 shows.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 93

Fig. 2. NLDDPG algorithm architecture.

Algorithm 1 NLDDPG Algorithm Process for Joint Opti-
mization Decision Scheme of Vehicular Network Offloading
and Resource Allocation
Input: Initialize the parameters θµ and θQ of the Actor

Network and Critic Network, target Actor Network θµ
′
,

target Critic Network θQ
′

and environment parameters.
Output: Optimal decision-making

1: Initialize vehicular environment, vehicle generation task
request

2: for episode = 1 to Max Episode do
3: For each time slot = 1 to T do
4: Normalize the state si to s′i
5: Get the action ai and execute it
6: Calculate the reward ri and get the new state s′i+1

7: Store quaternions
(
s′i, ai, ri, s

′
i+1

)
to the experience

replay R
8: Randomly select N sample from the R as a small batch

of training data
9: Processing through LSTM networks

10: Calculation Q value by online Q network:
yi = ri + γQ

(
s′i+1, µ

[
s′i+1

]
| θQ

)
11: Update the weights of online Q-networks using policy

gradients: L
(
θQ

)
= 1

N

∑N
j=1

(
yi −Q

[
s′i, ai | θQ

])2
12: Update the weights of the online strategy network:

∇θµJ ≈ 1

N

N∑
j=1

[
∇aQ (s, a | θµ)

∣∣∣∣
s=s′i,a=µ(s′i)|θµ

∇θµµ (s | θµ)
∣∣∣∣
s=s′i

]
13: Soft update for target networks
14: Use the ϵ-greedy to get the optimal task offloading

decision
15: end for

IV. SIMULATION AND ANALYSIS OF RESULTS

To verify the effectiveness of the algorithm, this paper
simulates a vehicular network environment using Python.
This environment has one Cloud server, three MEC servers,
and several vehicles, where each small-cell covers part of the
same number of vehicles. The parameters need to be set based
on the actual environment, and for the reference project [12]
and we set similar values in the simulation as TABLE I.

TABLE I
RELATED PARAMETERS OF NLDDPG

Simulation parameters Parameters Value
Small-cell BS coverage/(m2) 1000

Layers 4

Neurons 100,10,300,10

Batch size 64

Learning rate 6e-7

Soft update factor 0.01

Episodes 600

Maximum MEC calculation capability/(Gbit) 10

Maximum Cloud calculation capability/(Gbit) 50

Task size/(Mb) [1,2],[20,30],[100,150]

The CPU cycles needed to compute/(cycles/bit) 1000

0 100 200 300 400 500 600
Episode

100

200

300

400

500

Sy
st

em
 ta

sk
 a

ve
ra

ge
 u

til
ity

DDPG
DQN
NLDQN
NLDDPG

Fig. 3. System average task utility change using NLDDPG.

In this paper, we conduct experiments to evaluate the per-
formance of the proposed NLDDPG algorithm by comparing
it with three other popular algorithms, namely DQN, DDPG,
and NLDQN. The objective was to assess the average task
utility of the entire system, considering a scenario where a
small-cell base station covers a group of five vehicles. Fig. 3
shows that the use of the NLDDPG algorithm results in the
lowest average task utility and the best stability of the system
at the 400th episode as the number of iterations increases.
resources by exclusively assigning all computational tasks to
the server. The results obtained using the DQN algorithm
are the opposite of what we want to achieve in this paper
while using NLDQN gives better performance after the 247th
episode, but its stability and convergence are poor to get the
optimal results. After using the DDPG algorithm, the system
will get different results with the increase of episodes but its
optimality finding algorithm is poor because there are a large

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 94

number of tasks and vehicles in the complex vehicle network,
which exceeds the capacity of the neural network, therefore,
this paper adds LSTM to the neural network to extract the
environmental features.

1 2 3 4 5 6 7 8 9 10
Numbers of vehicle in each small-cell

0

1

2

3

4

5

6

7

8

Ta
sk

 a
ve

ra
ge

 u
til

ity

local computing
random computing
all offloading
average resorce allocation

NLDDPG
NLDQN
DQN
DDPG

Fig. 4. Task average utility using different methods.

To further validate the performance of the NLDDPG
algorithm, we further compare the full offloading, random
offloading, local computation and average resource allocation
strategies. Among them, the full offloading strategy implies
that all tasks of the vehicle are offloaded to the server
for execution, random offloading implies that the tasks are
offloaded to the local or the server for computation, and
local computing indicates that the tasks are processed entirely
using local resources.

Fig. 4 shows the variation in average task utility among the
different methods as the number of vehicles in a small cell,
and consequently the number of tasks, increases. Notably, the
performance of the local computation strategy is observed
to be the least favorable, exhibiting the lowest average
task utility. Conversely, both the NLDDPG algorithm and
the all-offloading strategy demonstrate superior performance,
displaying the highest average task utilities. However, it is
important to note that the all-offloading strategy disregards
the utilization of local resource.

Fig. 4 shows the variation of the average task utility
between the different approaches as the number of vehicles in
a small cell increases. In this, the local computation strategy
gives the poorest average task utility and shows the worst
performance. Whereas all offloading, random offloading, and
average resource allocation strategies all give relatively better
performance, it can be seen that the use of deep reinforcement
learning algorithms also gives relatively better performance.
Among them, the NLDDPG algorithm and the full offloading
strategy show the best performance, however, it is important
that the full offloading only utilizes the local resources, which
can lead to the waste of server resources as well as an increase
in latency, etc.

Furthermore, the algorithm proposed in this paper show-
cases an improvement in utility compared to the average
assignment algorithm. This improvement highlights the ef-
fectiveness of the priority-based resource allocation approach

presented in this study, which facilitates enhanced resource
utilization. By leveraging the prioritization mechanism, the
proposed algorithm optimizes the allocation of resources,
leading to increased task utility and more efficient utilization
of available resources.

V. CONCLUSION

To alleviate the contradiction between increasingly rich
in-vehicle applications and limited vehicle resources, this
paper constructs a cloud-side collaboration-based offloading
decision architecture for vehicular networks, and models the
task offloading problem as a Markov decision problem with
the average task utility composed of time delay and energy
consumption as the optimization objective, and proposes a
joint optimization scheme for task offloading and resource
allocation based on the NLDDPG algorithm. By considering
the task priority, the average task utility in the system is
optimized and the task processing latency is reduced. The
experimental results show that the proposed scheme in this
paper improves the effectiveness and accuracy of decision-
making to a certain extent and achieves the minimization of
the average task utility of the current policy.

REFERENCES

[1] J. Luo, X. Deng, H. Zhang and H. Qi, ”Ultra-low latency service
provision in edge computing”, Proc. IEEE Int. Conf. Commun. (ICC),
pp. 1-6, May 2018.

[2] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, et al., ”Dis-
tributed and dynamic service placement in pervasive edge computing
networks”, IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 6, pp. 1277-
1292, Jun. 2021.

[3] C. Li et al., ”Dynamic offloading for multiuser muti-CAP MEC
networks: A deep reinforcement learning approach”, IEEE Trans. Veh.
Technol., vol. 70, no. 3, pp. 2922-2927, Mar. 2021.

[4] P. Dai, K. Hu, X. Wu, H. Xing and Z. Yu, ”Asynchronous deep rein-
forcement learning for data-driven task offloading in MEC-empowered
vehicular networks”, Proc. IEEE INFOCOM Conf. Comput. Commun.,
pp. 1-10, 2021.

[5] J. Wang and L. Wang, ”Mobile edge computing task distribution and
offloading algorithm based on deep reinforcement learning in Internet
of Vehicles”, J. Ambient Intell. Humanized Comput..

[6] Y. Liu, H. Yu, S. Xie and Y. Zhang, ”Deep reinforcement lear‘ning
for offloading and resource allocation in vehicle edge computing and
networks”, IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158-
11168, Nov. 2019.

[7] X. Li, ”A computing offloading resource allocation scheme using deep
reinforcement learning in mobile edge computing systems,” J. Grid
Comput., vol. 19, no. 3, pp. 1–12, 2021.

[8] C. You and K. Huang, ”Multiuser resource allocation for mobile-
edge computation offloading”, Proc. IEEE Glob. Commun. Conf.
(GLOBECOM), pp. 1-6, 2016.

[9] L. Huang, X. Feng, L. Zhang, L. Qian and Y. Wu, ”Multi-server multi-
user multi-task computation offloading for mobile edge computing
networks”, Sensors, vol. 19, no. 6, 2019.

[10] J. Yu, L. Lingyun, and L. Xiang, ”Edge-cloud collaborative task
offloading mechanism based on ddqn in vehicular networks,” Comp.
Eng., vol. 48, no. 12, pp. 156–164, 2022.

[11] K. Wang, X. Wang, X. Liu and A. Jolfaei, ”Task offloading strat-
egy based on reinforcement learning computing in edge computing
architecture of Internet of Vehicles”, IEEE Access, vol. 8, pp. 173779-
173789, 2020.

[12] J. Li, H. Gao, T. Lv and Y. Lu, ”Deep reinforcement learning based
computation offloading and resource allocation for MEC”, Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), pp. 1-6, Apr. 2018.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 95

