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Abstract—Feature extraction is an essential process for re-
moving the unwanted part and interference of the Electromyo-
graphy (EMG) signal, and to extract the useful information
hidden in it. Inorder to obtain high performance of Myoelectric
Control (MEC), the choice of features plays an important
role. The studies carried out earlier to overcome force level
variation have used features which are redundant, affecting
the robustness and the classification performance. This study’s
main objective is to assess a database’s performance consisting
of nine upper limb amputee subjects with EMG data recorded
at three different force levels when six motions were classified
using twenty different time domain features that are frequently
found in the literature. Training is carried out at one force
level, and the other two unknown force levels are used for
testing. Out of the twenty features, the one that is the most
stable is displayed for each force level. The results show that
root mean square (RMS) feature outperformed other features
for training at low and medium force levels, and Wilson
amplitude (WAMP) feature for training at a high force level,
when compared with the most widely used linear discriminant
analysis (LDA) classifier. The average classification accuracy
for the nine amputee subjects trained with the RMS feature
at low and medium force levels was 42% and 51.78% percent,
respectively. For high force level, when trained using WAMP
feature, an accuracy of 46.78% has been obtained. The features
are verified using histogram plots. This study will help select
those features which are not important for robust classification
of hand movements.

Index Terms—force level variations, feature extraction, robust
classification, upper limb amputees, myoelectric control

I. INTRODUCTION

There is a fast improvement in the field of upper limb
prosthesis due to sensors, motors, digital controllers, and
rapid fabrication and prototyping [1]–[3]. The primary source
of control for electrically powered prostheses is the Elec-
tromyography (EMG) signal, and this control is referred
to as Myoelectric Control (MEC). The subject’s intended
movement is classified with the help of Pattern Recognition
(PR) scheme, where a set of features from the EMG signal
for a movement is extracted and given to the classifier for
making the decision [4].

Myoelectric control is used for discriminating patterns of
EMG signals generated at different hand movements. For
each action, a unique pattern of EMG signal is created,
and this is used as a control command in the myoelectric
controller [5]. The various steps in MEC based PR are a)
Pre-processing; b) Feature Extraction; and c) Classification.

Useful information hidden in the signal is only extracted via
feature extraction, which removes the undesirable portions of
the signal. Three crucial characteristics are anticipated for the
features that were derived from the EMG signal. Maximum
class separability, noise resistance, and low complexity are
the three criteria. Studies have demonstrated that feature
redundancy has an impact on classification accuracy [6], [7].

The major challenge is to use a prosthetic hand with the
same degree of freedom as a biological hand [8], [9]. EMG
signal is extracted from the stump of the amputee to extract
movement commands. There are numerous restrictions on
the techniques created in the ideal laboratory environment.
However, research so far has been predominantly directed
to obtain high accuracy in a laboratory setting rather than
encountering the practical factors that affects the algorithm
performance during the clinical application of PR. During
daily life activities, the classification performance of the PR
changes. This change is mainly due to the variation in force
level, wrist orientation, muscle fatigue, limb position, and
so on. Many research works in the literature have made
efforts towards tackling this problem [10], [11]. The effects
of force variation have been highlighted in some recent works
[12], [13]. The data used for training is derived from one
or more force levels, and when tested at a different force
level, the accuracy of classification during training varies
greatly. Few studies have looked at the effects of force
variation, and those that have mainly examined the method’s
effectiveness on healthy people rather than amputees. Daily
activities involving different force levels alter the time-
frequency and probability function properties, which results
in alterations to the EMG pattern. This variation will degrade
the classification performance during the practical use [14]–
[16].

Many studies evaluated the EMG classification perfor-
mance on healthy participants rather than on amputees and
employed a variety of training techniques to mitigate force
variation. Generalization of results of earlier work carried on
healthy subjects is not known on amputee subjects, and this
is due to the change in muscle structure after amputation.
This will lengthen the training period and restrict the use in
clinical settings. Hence, the main aim here was to perform a
study on the invariant features against force level variations
on amputee subjects. This will help in making the PR robust
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and reduce the training time. The frequency domain, time
domain, or time-frequency domain are all possible EMG
feature representations. The former are used in this context
since they don’t need to be transformed, unlike the frequency
domain characteristics, which do. Additionally, this reduces
MEC’s total computational complexity. This facilitates real-
time implementation while having little impact on classifica-
tion accuracy.

The aim of this study is to examine how varying force
levels affect the performance of MEC and identify features
that remain consistent despite these variations. By identifying
such features, the robustness of the PR system can be
improved. To achieve this goal, a) the EMG dataset from
nine amputees has been used, performing six classes of hand
motions (here the analysis is carried out on grip and finger
movements) at three different force levels, b) Eight channels
are used to extract twenty EMG features in the time domain
at each force level, c) the performance evaluation is done
through histogram plot. The classification performance of the
features is evaluated using an LDA classifier with training
data from the individual force level and test data from the
other two unobserved force levels. The results of this study
may be used to select the appropriate time domain properties
for an EMG-based PR system in the presence of force level
variations.

The paper is organised as follows: Section 2 explains the
technique, Section 3 gives the experimental findings and an
analysis, and Section 4 gives the paper’s conclusion.

II. METHODOLOGY

A. Subjects and Data Collection

The Al-Timemy et al. (2016) [12] database was used in
this analysis. The EMG signals from nine amputee people
between the ages of 19 and 57 constitute the database.
Eight Ag/AgCl electrodes from the amputed hand were
used to capture the EMG signals.The data were recorded
using a specially made multi-channel collection device with
a sampling rate of 2 kHz. Al-Timemy et al. (2016) [12]
contains the electrode locations and a thorough explanation
of the database.

B. Experimental procedure

Six classes of movements were performed: a) thumb
flexion (M1), b) index flexion (M2), c) fine pinch (M3),
d) tripod grip (M4), e) hook grip (M5) and f) spherical
grip (M6). Before beginning the experiment, the subjects
were introduced into a training session. Six hand motions
were executed by the subject, each with three distinct levels
of force (low, medium, and high). During the experiment,
participants were tasked with observing electromyography
(EMG) signals on a screen with visual feedback from Lab-
view. The amputees had trouble exerting various amounts of
force, but were told to visualise making the necessary action
with an undamaged hand while exerting the necessary force.
Instead of recording the EMG signals at the usual force level
used by amputees to operate their prosthetics, the main goal
was to imitate force level variation throughout daily use by
recording the EMG signals at lower and higher levels of
force. The experiment involved three trials for training each
movement class, with the remaining two to five trials used

to test the classifier. Total number of trials performed = (3
force levels) × (6 actions) × (No of trials for each action).

C. Pre-processing and Segmentation

A Butterworth filter and a 50 Hz notch filter have been
used to filter the EMG signals within the 20-450 Hz range
and eliminate power line interference, minimising the impact
of crosstalk and artefacts caused by electrode movement. The
time-series data captured by the sensors have been divided
into 200 ms disjointed windows. This window size was
selected to ensure real-time decision-making within 300 ms
[17], [18].

D. Feature Extraction

The feature vector is a concise representation of the fea-
tures extracted from raw EMG data. This process is essential
because it assists in extracting relevant information for the
classifier while simultaneously reducing the impact of noise
in the data. Three groups are used to categorise the fea-
tures: time domain, frequency domain, and time-frequency
domain. Time domain characteristics were included in this
work because they are computationally effective and may be
acquired straight from the raw EMG without any processing.
This study employed a total of twenty time domain features,
which are presented in Table I along with their citations.

TABLE I: Twenty time domain features with abbreviation
and references

Feature extracted Abbr. References
Average amplitude change AAC [6], [7]

Difference absolute standard deviation value DASDV [6], [7]
Kurtosis Kurt [6], [7]

Log detector LOG [6], [7]
Mean absolute value MAV [6], [7]

Root mean square RMS [6], [7]
Sample entropy SampEn [6], [7]

Simple square integral SSI [6], [7]
Variance VAR [6], [7]

Waveform length WL [6], [7]
Skewness Skew [6], [7]

Modified mean absolute value type 1 M1AV [6], [7]
Modified mean absolute value type 2 M2AV [6], [7]

Wilson amplitude WAMP [6], [7]
Zero crossing ZC [6], [7]

Slope sign change SSC [6], [7]
Integrated absolute value IAV [13]
Higuchi fractal dimension HDF [13]

Absolute value of temporal moment AVT [13]
Mean absolute deviation MAD [13]

E. Classification

Due of its robustness and low processing cost, linear
discriminant analysis (LDA), the most popular classifier on
EMG data, is utilised here [6], [7], [19], [20]. Classification
accuracy is computed by averaging the results across nine
amputee subjects. Only one feature is taken at a time to
check the classification performance and the feature that
gives the best classification performance is considered as the
best candidate for the PR based MEC.

III. RESULTS

Figure 1 shows the EMG signals obtained from one
particular channel for hand near movement at three different
force levels, namely medium, high, and low. For the same
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Fig. 1: EMG signal recorded at 3 force levels for hand close
movement

movement, it can be seen that the envelope’s shape varies
for the first three contraction levels.

The EMG properties given in Table 1 have been used to
evaluate the effect of force variation on the PR of MEC.
The training data is taken from the first two trials of the
particular force level, while the test data is derived from
the remaining trials from the other two force levels. The is
carried out with a 200 ms disjoint window. The reason for
choosing this window size is that the segment length contains
sufficient information for generating a decision. For real-time
operation, a segment length of less than 250 ms is adequate
for making a decision. Window size greater than 250 ms
will lead to an increase in computational cost and delay
for decision. This study examines how each distinct attribute
affects the classification accuracy of hand movements. Figure
2 displays the average classification accuracy for the twenty-
time domain features provided in Table 1 for nine amputee
patients.

A one-way ANOVA was carried out between classifica-
tion accuracy for the three force levels and the traits. The
threshold for significance was fixed at 0.05. The obtained
value for p was 0.0008, which is less than 0.05. Comparing
the three force levels for 20 features shows that there is a
considerable difference in categorization accuracy. RMS and
WAMP features are suggested because to their considerably
improved classification performance, which can be inferred
from the findings. Across all force levels, the SKEW feature
appears to be performing least well.

A. Evaluating redundancy of EMG features using histogram
plot

Figure 3 shows the histogram plot of the better performing
features such as RMS and WAMP and is compared with the
poorer performing SKEW feature.

IV. DISCUSSIONS

The EMG pattern recognition performance should be
invariant against diverse circumstances to allow for practical
use of the prosthesis. Finding a reliable set of features to
improve the accuracy of EMG pattern categorization was
the main goal of this study. Three different force level
adjustments were examined for the consistency of EMG fea-
tures. When force levels vary, PR-based MEC operates less
effectively. Amputees find it challenging to train the classifier
using data from all force levels, and data analysis takes
longer. This study analysed feature performance across three
force levels to find a trustworthy feature and enhance the
overall classification performance for practical application.
It has been found that training with medium power level
improves feature performance. The study’s benefit is that it
may be a means to distinguish between hand movements
without training at all force levels. This reduces the amount
of time an amputee must spend in training.

From Figure 2, it can be inferred that by using a single
feature it is difficult to obtain high accuracy. In the future,
multiple EMG feature set could be employed for obtaining
high classification accuracy. The dissimilarity in accuracies,
as shown in Figure 2 might be due to the difference in
relevant information among features.When training data from
one force level are paired with testing data from the other
two force levels, as shown in Figure 2, the average cate-
gorization performance among nine amputee individuals is
further examined. The standard deviation is reflected in the
error bars. The results demonstrate that the effectiveness of
EMG categorization is sensitive to different degrees of force.
The classification accuracy is lowest when training is done
at a low force level and the classification is confirmed using
the data from the other two force levels. When provided
at a medium force level, high classification accuracy is
seen. It is to be noted that while performing hand motions,
amputees have reported difficulty in creating movements with
high and low force levels. It is also reported that in some
cases, specifically while trying high force levels produced
tremor for some subjects [12]. Classification accuracy may
be improved further by incorporating data from all force
levels for training. All features were affected by the change
in force level. The study suggests that RMS feature is a
good candidate for training at low and medium force levels
whereas WAMP feature is suited for training at high force
level. The SKEW feature is observed to be the poorest
performing feature for this dataset across all force levels.
The EMG patterns collected using RMS and WAMP features
may have the strongest repeatability. The low classification
accuracy at low and high force levels may be due to the
interfering force that alters the EMG patterns. As a result,
categorisation accuracy performs worse.

The forearm’s gravitational pull from the hand and various
muscle fibres’ differing force-transmission properties could
both contribute to the EMG variation observed [10]. The
force level change has a substantial impact on the PR
performance when compared to EMG variations brought on
by the wrist, hand position, electrode shift, etc. One may
think about including training data from all three force levels
to get a strong categorization. In comparison to those in
the literature, the overall classification accuracy reported in
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(a)

(b)

(c)

Fig. 2: Average test classification accuracy (%) across ten amputees when training data is from a) low force, b) medium
force, and c) high force level for twenty features represented in bar-plot with standard deviation
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(a)

(b)

(c)

Fig. 3: Histogram plot for a subject at a) low force level for RMS and SKEW, b) medium force level for RMS and SKEW,
and c) high force level for WAMP and SKEW
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this research is often lower. This is because it might be
difficult to categorise the hand gestures made by amputee
patients, especially when varied forces are applied. While
training in this study, we only used data from one force
level; however, adding training data from additional force
levels may enhance classification accuracy. However, adding
information from all force levels lengthens the classification
process and makes it more difficult, which reduces prosthetic
usage and amputee acceptance. Low generalisation capacity
is indicated by the low classification accuracy attained in this
work, which accurately reflects the actual condition.

The data distribution of histogram plot for RMS and
WAMP is narrow, and for SKEW it is wide. This indicates
that the distance within the class is less for RMS and WAMP
than for SKEW. The results across six classes also show that
the mean values of the distribution change for RMS and
WAMP feature, whereas it is not changed for SKEW.

This study points out to the fact that many features that
perform well for an EMG based PR system might do poorly
in the presence of force level variations. It might also be
wiser to work further on different training schemes to make
the algorithm more robust to these conditions. Finally, it is
possible to broaden the analysis to take into account both
frequency-domain and time-frequency domain properties. At
the cost of increased computing complexity, this might help
to get over the inherent constraint of interference suscepti-
bility that the time domain characteristic provides.

V. CONCLUSION

This study investigates the resistance to changes in force
levels of various time domain features used in pattern
recognition-based myoelectric control of prostheses. The
findings indicate that the accuracy of classifying six cate-
gories of hand movements is impacted by modifications in
force levels. Therefore, it can be inferred that the impact
of changes in force levels must be taken into account when
classifying EMG hand movements for transradial amputees.
The results indicates that training at all force levels can
result in good categorization accuracy. Among the twenty-
time domain features, the RMS feature was found to be the
least affected when trained at low and medium force levels,
while the WAMP feature was the least affected at high force
levels. In future studies, real-time classification should be
conducted to assess the actual performance of the prosthetic
hand.
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