
 

Bridging Exercise Monitoring System Using  
RGB Camera for Stroke Rehabilitation
Khemwutta Pornpipatsakul 

Department of Mechanical Engineering 
Chulalongkorn University 

Bangkok, Thailand 
6470007521@student.chula.ac.th 

Ronnapee Chaichaowarat * 
International School of Engineering 

Chulalongkorn University 
Bangkok, Thailand 

ronnapee.c@chula.ac.th 

Wasutha Chuengwutigool 
International School of Engineering 

Chulalongkorn University 
Bangkok, Thailand 

6338197921@student.chula.ac.th 

Anchalee Foongchomcheay 
Department of Physical Therapy 

Chulalongkorn University 
Bangkok, Thailand 

anchalee.f@chula.ac.th 

Abstract—Bridging exercise is a widely applied training for 
stroke rehabilitation to improve balancing ability on weight-
bearing activities. Aiming to reduce the workload of physical 
therapists and enable the systematic recording of motion data, 
this paper presents an affordable rehabilitation monitoring 
system using an RGB camera. For predicting the correctness of 
the bridge posture, the MediaPipe framework is applied for 
detecting the human body segments which are used as the 
input data of the decision tree classifier instead of using a 
complex neural network. The model was trained using the data 
collected from five healthy participants performing the correct 
and Wide Knee postures when the knees are separated 
laterally. The experimental results show that nearly 100 
percent accuracy can be achieved in confirming the correct 
posture and identifying the Wide Knee posture. The time 
performance of the decision tree classifier trained by the 
different number of frames is also evaluated. This system is 
very promising to help therapists monitor patients and provide 
feedback for improving the effectiveness of the rehabilitation. 

Keywords—Rehabilitation monitoring, bridging exercise, 
posture recognition, machine learning 

I. INTRODUCTION 
In most regions worldwide, the population aged over 65 

is growing faster than the total population. Physical 
deterioration is inevitable and stroke risk increases with age 
[1]. The advances in physical human–robot interaction e.g., 
impedance control [2]–[5] and robotic actuators with 
adjustable intrinsic properties [6]–[9] for rehabilitation offer 
an opportunity to increase the amount of motor practice 
required to relearn motor skills lost while potentially 
reducing therapist participation. 

For improving the balance ability of stroke patients, 
bridging exercise is widely applied for rehabilitation [10]. 
The exercise has a positive impact on weight-bearing 
activities such as lifting the pelvis in bed and sit-to-stand 
motion [11], which requires large hip and knee extension 
moments [12]. The muscular activities vary with the posture 
and are strongly relied on the technique of bridging exercise 
[13]–[15]. Appropriate monitoring of the human posture is 
important for providing feedback and improving the 
effectiveness of the exercise. 

Cameras have been used in previous studies for stroke 
rehabilitation  therapies.  The   camera-based   mirror   visual  

feedback (camMVF) system can be set up using an RGB 
camera to improve the effectiveness of traditional mirror 
therapy [16]. Serious games were developed with motion-
capture systems, using different types of cameras, to gamify 
the rehabilitation process [17]. However, most systems are 
developed primarily for the upper body rehabilitation. The 
system proposed in this paper emphasizes the lower body 
recovery. 

Machine learning is a powerful tool that affects many 
industries including the medical field. The machine learning 
techniques were applied for assistive devices [18], [19] and 
for enhancing the clinical protocols on homecare 
rehabilitation [20]. The position and orientation of an 
ultrasound probe can be observed by using an RGB-depth 
camera to track the hand gesture [21]. Human activities can 
also be classified based on the 2D skeleton data by using the 
supervised model [22]. The neural network models and the 
Support Vector Machine [23] were commonly used for 
human activity recognition, body language recognition, and 
falling detection. 

Aiming to reduce the workload of physical therapists on 
observing rehabilitation using bridging exercise and enable 
the systematic capturing of motion data, this paper presents 
an affordable rehabilitation monitoring system using an RGB 
camera. The MediaPipe framework is applied for detecting 
the human body segments which are used as the input data of 
the decision tree classifier (instead of a more complex neural 
network) for predicting the correctness of the bridge posture. 
Instead of classifying different postures, the error of posture 
(as compared to the ideal motion) is our focus. The model 
was trained by using the data collected from five healthy 
participants performing the correct posture and the “Wide 
Knee” posture when the knees are separated laterally. The 
time performance of the decision tree classifier trained by the 
different number of frames is also evaluated. 

This paper is organized as follows: Section II provides 
the overview of system architecture consisting of posture 
detection and machine learning for posture classification. 
Section III describes the experimental setup and method for 
recording, training, and validating data for detecting and 
classifying the correctness of the prediction. Section IV 
discusses the results of experimental validation. Section V 
discusses the ongoing effort and Section VI summarizes the 
key findings. 

The first and second authors contributed equally to this work.  
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II. SYSTEM ARCHITECTURE 

A. Posture Detection 
For monitoring the bridge stand rehabilitation, detecting 

the position and orientation of the human body elements is 
the most important requirement. The Intel RealSense D435 
RGB-Depth camera is used in this study. Aiming to provide 
an affordable solution for practical adaptations, our proposed 
technique only uses the RGB array of the camera. The data 
captured from the camera is in the camera frame, which is 
inconvenient to be compared in the world frame. One of the 
useful methods for mapping images between two different 
frames is the ArUco marker detection [24]. The ArUco 
method can return a transformation matrix that can be used 
to map the 3D array data in the camera frame to the desired 
frame. The three ArUco markers were placed at the corners 
of the bed, see Fig. 1, to optimize the accuracy of the 
transformation matrix. The output frame is parallel to the 
human body for convenient calculation in further steps. 

The camera was located at the position where all three 
ArUco markers could be observed. Although there are many 
possible positions where the camera can be placed, there are 
two major concerns while using the system. First, the camera 
angle should not come from the foot due to the comfortable 
feeling of the patient while bridging. Second, the camera 
may not be placed from a patient's head because the patient's 
hip and knee will block the ankle, so the ankle position 
cannot be detected. Then, the camera should be in the left or 
right-side view instead. 

For human detection, human pose estimating using 
MediaPipe [25] was used. The resulting position data is 
represented as a 3D array, relative to the camera frame. On 
the other hand, all three ArUco markers were used to 
generate transformation matrices for mapping the camera 
frame to the bed frame. Finally, the position data was 
multiplied to be respected to the bed frame for further 
calculation. 

Even though the system is composed of the ArUco and 
the MediaPipe, the difference in body segment detected 
value can be observed because of the estimated position and 
function in the background, and the visibility of each ArUco 
and the body segment. The easy way to handle these 
problems is to set a visibility threshold for each function. The 
thresholds that were optimized by considering the prediction 
accuracy and speed are as follows, respectively: 

• The minimum perimeter rate for detecting each of 
ArUco is 0.2 where the actual size of all ArUco 
markers is 0.181 m. This setting increases accuracy 
in all transformation matrices from the ArUco. In 
addition, the camera is also semi-fixed due to this 
constraint because it may not detect the marker if 
the camera is far away. 

• While all three ArUco markers are detected, the 
calibration process is started. The duration of 
detecting the markers for recording transformation 
matrices was around five seconds. Once some 
marker is not detected, the calibration process will 
be restarted when all the markers are detected again. 
After that, the recorded matrices were averaged to 
get a single transformation matrix for each marker. 
This process was invented to ensure the correctness 
of the transformation matrices before use. 

 

 
Fig. 1. The rehabilitation monitoring system uses an RGB camera with 
three ArUco markers. 

 
Fig. 2. The state flow of the system from start to end. 

• The minimum human detection confidence and 
tracking confidence of the MediaPipe was set to 
0.75 which the Static image mode was not used. 
Another threshold that convinces the accuracy of 
the model is the visibility of all necessary positions. 
Then, if the visibility of any observed position is 
less than the threshold, of 0.8, the system will not 
use the captured data for predicting the correctness 
of the current posture. 

For a better understanding of the system, Fig. 2 shows a 
state chart of the system from the beginning to the end. 

B. Posture Classification 
 The data output from the posture detection is eight three-
dimensional position data. In this paper, the focus is on 
detecting errors in the areas of the hips and knees during the 
process of performing the bridging exercise. Thus, the 3D 
coordinates of the shoulders, hips, knees, and ankles are 
extracted using the aforementioned MediaPipe in the frame 
of reference of ArUco makers. Taking into account both 
right, and left sides, and time, 25 float-type data are 
collected: x-coordinates, y-coordinates, and z-coordinates of 
both right and left joints. 

This research is done to deploy a model to assist a 
physical therapist’s diagnosis in real time. The artificial 
intelligence model should be able to correctly identify the 
correctness of the posture during the static hold phase of the 
bridging exercise.  

The goal of this paper is to correctly classify a patient’s 
posture into two categories: “Correct”, where the knees are 
properly aligned with the hips and ankles during the static 
phase of the exercise (Fig. 3); and “Wide Knee”, where the 
knees extend outward, away from the hips and ankles (Fig. 
4). Furthermore, when deployed, the model should maintain 
roughly 10 frames per second. 
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The problem at hand is a classification problem based on 
numerical inputs. To ensure the delivery of the minimum 
viable product, the decision tree model is selected for its 
faster rate of computational speed relative to neural network 
models. Furthermore, there is the choice to use input from 
multiple frames together as the input for the decision tree 
model. 

More advantages of the decision tree model include: easy 
implementation to rapidly validate the data collection 
methods; easy visualization of the model, easier 
communication with the physical therapy department to 
validate the research result, and may assist in training any 
new physical therapist. 

III. COLLECTING, TRAINING, AND VALIDATING DATA 

A. Data Collection 
All the data used to train for the model was collected in-

house. Each data collection session lasts 10 seconds in only 
the static position. For each session, only the time and x-y-z 
position data of the eight landmarks are considered. During 
each session, the data that fell below the confidence 
threshold is not collected. 

The model used in this paper was trained using data 
collected from five participants. The five participants’ ages 
ranged from 19 years old to 23 years old. There are one 
female and four males. The height of the participants ranges 
from 158 cm to 173 cm. Each participant performed the 
correct posture and the “Wide Knee” posture, both knees 
were forced to be far from the other side, varying five times 
for each. In the end, a total of 25 sessions were recorded. All 
the x-y-z position data were in the frame of reference of three 
ArUco sensors, the bed frame. The recorded x-y-z data in the 
transformed coordinate from a trial are shown in Fig. 3 for 
the correct posture and Fig. 4 for the wide knee posture. 

B. Data Processing 
 Despite the position data being collected, using the data 
as input for the decision tree model is likely to lead to 
overfitting issues. Thus, further data needs to be derived to 
serve as the input of the decision tree model. The knee joints 
behave similarly to a revolute joint; thus, an angle can be 
calculated from each knee. The hip joints behave similarly to 
a ball joint; thus, three angles can be calculated from each 
hip. A total of eight angles can be calculated for each given 
frame which are the knee, yaw, pitch, and roll angle of each 
leg. For getting the mentioned angle, all of the eight raw data 
points which are the transformed data respected to the bed 
frame were used to calculate the position data comparing to 
the body origin point (Org) such as left and right shoulder 
(ShoulderL,R), hip (HipL,R), knee (KneeL,R), and ankle (AnkleL,R) 
position of each side via the following equations. Each point 
can be observed in Figs. 3 and 4, where the Org positioned at 
the center point between the left and right. 

 Org    = 
�HipL_Raw+HipR_Raw�

2
 (1) 

 ShoulderL,R = ShoulderLraw,Rraw  - Org (2) 

 HipL,R = HipLraw,Rraw
 - Org (3) 

 KneeL,R = KneeLraw,Rraw  - Org (4) 

 AnkleL,R = AnkleLraw,Rraw  - Org (5) 

 
Fig. 3. The x-y-z data of the correct posture in the transformed coordinate. 

 
Fig. 4. The x-y-z data of the Wide Knee posture in the transformed 
coordinate. 
 
 Then, the necessary vectors for determining body vector 
(BV), the vector from the left shoulder to the right ankle 
(ShoulderL2AnkleR) and from the right shoulder to the left ankle 
(ShoulderR2AnkleL) were calculated via the following equations: 

 ShoulderL2AnkleR = AnkleR-ShoulderL, (6) 

 ShoulderR2AnkleL = AnkleL-ShoulderR. (7) 

 BV = ShoulderL2AnkleR× ShoulderR2AnkleL, (8) 

where the × represents the cross product. 

The BV was further used to determine the roll angle of 
both legs. The roll angle was defined by the angle between 
the body vector and knee vector (KV) which can be found by 
using the thigh (ThighL,R) and shank (ShankL,R) vectors via the 
following equation: 

 ThighL,R=KneeL,R-HipL,R      (9) 

 ShankL,R=KneeL,R-AnkleL,R  (10) 

 KVL,R=ThighL,R×ShankL,R (11) 

 The other vectors that are required for finding yaw and 
pitch angles are the projected thigh (ThighLProj,RProj) which are 
the thigh vector in the hip level in each side, vector from the 
left to the right hip, and the right to the left hip (HipL2R,R2L). 

 ThighLProj,RProj={ThighL,R(x), ThighL,R(y), HipL,R(z)} (12) 

 HipL2R,R2L=HipR,L-HipL,R (13) 

 All the mentioned vectors were used to determine knee 
angle (KAL,R), yaw angle (𝜓𝜓𝐿𝐿,𝑅𝑅 ), pitch angle (𝜃𝜃𝐿𝐿,𝑅𝑅 ), and roll 
angle ( 𝜑𝜑𝐿𝐿,𝑅𝑅 ) for both sides of the leg by the following 
equations. Finally, all the calculated angles were further used 
for creating a machine-learning model. 

 𝐾𝐾𝐴𝐴𝐿𝐿,𝑅𝑅 = ThighL,R⨂ShankL,R (14) 

 𝜓𝜓𝐿𝐿,𝑅𝑅 = ThighLProj,RProj⨂HipL2R,R2L (15) 
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 𝜃𝜃𝐿𝐿,𝑅𝑅 = ThighLProj,RProj⨂ThighL,R (16) 

 𝜑𝜑𝐿𝐿,𝑅𝑅 = BV⨂KVL,R (17) 

where the ⨂ represents the finding of an angle between the 
vectors: 

 a⨂b= cos-1 � a·b
‖a‖‖b‖

�, (18) 

where a·b is the dot product and ‖a‖ is the norm of a vector. 
All the vectors and angles are displayed in Fig. 5. Note that 
for reducing complexity, the figure only presents the vector 
and angle in the left leg. The 𝜑𝜑𝐿𝐿 represents the angle between 
the Bv vector and KVL,R vector, but for easy understanding, the 
projected Bv is displayed in Fig. 5 for visualizing the 𝜑𝜑𝐿𝐿 instead 
of Bv. 

C. Model Creation 
The objective of the model proposed in this paper is to 

classify a static posture. To avoid any data fluctuation due to 
the inaccuracy of posture detection, three models are created 
and trained on one, five, and ten frames of data respectively. 

For the model that is trained on only one frame, the 
dataset is simply the data from each individual frame from 
all 25 sessions combined.  

For the models that are trained on five and ten frames, 
separate datasets are created. For the model with five frames, 
every five consecutive frames are stitched together as one 
input in the new dataset. The dataset for the ten frames 
model is prepared similarly.  

Then, 80% of the data from each dataset are used as a 
training dataset, while the rest of the data are used as a 
testing dataset. 

The best decision tree model is selected using the area 
under ROC curve scoring. Other parameters such as max 
depth and minimum sample splits are used to avoid 
overfitting issues. 

IV. RESULTS AND DISCUSSION 

A. Data Observation 
Despite recording the data with the correct posture, 

where both sides are symmetrical across the median plane of 
the body, a discrepancy is observed between the angles 
calculated from both sides, evident in Fig. 6. This error in the 
observed angle is the result of posture detection with 
MediaPipe. MediaPipe is trained and created such that the 
camera facing directly in front of humans yields the best 
accuracy [26]. As previously discussed, to avoid patients 
feeling uncomfortable in front of the camera, the camera is 
placed with an offset to the left side, thus creating the 
discrepancy of the observed angle. Noting the relationship 
between the camera angle and MediaPipe accuracy, this 
paper will not investigate this subject further. 

B. Models Performance 
Despite the accuracy problem with coordinates obtained 

from MediaPipe, the result of the machine learning model is 
promising. Every model is tested two times: first tested with 
the testing dataset split from the training dataset, and second 
tested during deployment. During the deployment, a new 
camera angle that is still capable of detecting all three 
ArUco markers is set up. The testing result still returns a 
nearly perfect result, proving the whole setup valid.   Table I  

 
Fig. 5. All the vectors and angles in the data processing section for a 
machine learning model.  
 

 
Fig. 6. Comparison between right and knee angles in the correct posture 
(expected the two angles to be the same). 
 

 
Fig. 7. Atomic prediction time of each model per instance. 
 
shows the results of both tests. The models appear to be 
strong learners, capable of distinguishing the difference in 
posture easily. No further tweaking, such as boosting or 
random forest, of the models is needed. 

TABLE I.  PERFORMANCE EVALUATION OF MODELS 

Evaluation 
Models 

1 Frame 5 Frames 10 Frames 

Testing 
Dataset 

Sample size 2561 2521 2471 
Accuracy 1.00 1.00 1.00 

Deployment 
Sample size 1097 1081 1061 

Accuracy 0.98 0.99 0.98 

Prediction Time 1 ms 1.68 ms 2.32 ms 

 
Since the three models have insignificant differences in 
terms of accuracy, the deciding factor of the model used is 
based on the prediction latency. Figure 7 shows the 
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prediction time of each model. This time is collected with 
atomic predictions with 1,000 trials. As expected, the more 
frames used, the longer the prediction latency is. 

 

C. Model Deployment 
The model trained on a single frame is chosen to be 

deployed due to its fast prediction time and similar 
prediction accuracy. 

Figure 8 shows how the single frame model predicts. 
The most important feature in this model is the right knee 
angle. Figure 9 provides the mean value and standard 
deviation of right knee angle in both correct posture and 
wide knee posture collected over the 25 sessions. 

Before the deployment of the model, the program could 
run at 20 fps with MediaPipe and ArUco. When the machine 
learning model is deployed, the program can predict at the 
rate of 10 fps. 

The result of prediction is solely based on one frame, 
allowing the program to quickly pick up any changes in the 
posture. However, this one frame input also introduces some 
instability to the prediction, as it is possible for the program 
to quickly flicker between different categories. When this 
case does happen, a fusion layer can be added after the 
machine learning model. When tested with other subjects in 
real-time, no instability was observed. 

D. Discussion 
However, data collected from 25 sessions with only one 

camera angle is still a very small sample size. Much larger 
datasets need to be acquired for the model to be generalized 
with patients of all sizes with cameras from all angles. This 
paper emphasizes highlighting the capability of the decision 
tree model to carry out such posture correction tasks. 

The dataset used in this paper is collected in-house and is 
relatively small: only a total of 2,561 frames of data is 
collected. A previous study on real-time human activity 
recognition using similar techniques is trained on 16,520 
frames, roughly 6.5 times larger [22]. Another study on real-
time sign language recognition using similar techniques is 
trained 179,352 still images, roughly 70 times larger [23]. 
Both studies utilized different machine learning models: 
SVM, KNN, Decision Tree, Naïve Bayes, ANN, MLP. 
Despite the differences in applications, varying categories of 
classification, and varying dataset size, both papers achieve 
roughly similar accuracy: around 96 to near 99 percent 
accuracy for the best model. The accuracy obtained from this 
paper is 98 percent, which is in line with the results from 
these two papers. The two papers mentioned did not inform 
the average prediction time of the model. 

 While the result of this paper is promising, a potential 
issue may arise in the future when more categories of posture 
need to be detected. The current model is trained on angles 
manually computed from the coordinates of body landmarks. 
This requires the researcher to have a deep understanding of 
the correctness of the posture to identify the key features to 
be computed [27]. When scaling the model to accompany 
other different types of posture errors, it may be a time-
intensive and complicated task to manually identify the key 
features to be computed. 

Larger datasets and data from different camera angles are 
necessary to generalize the model's performance with 
patients of varying sizes and camera configurations.    Future  

 
Fig. 8. Decision tree plot of the model trained with one frame. 
 

 
Fig. 9. Right knee angle in correct and knee posture. 
 
work should focus on expanding the dataset, incorporating 
data from multiple camera angles, and comparing the 
performance of the decision tree model with neural network 
models and Support Vector Machine. Additionally, 
optimization techniques can be explored to improve 
prediction speed and further enhance the system's 
capabilities. 

V. FUTURE WORK 
This paper serves as a review of the possibility of the use 

of machine learning models in the application of medial 
posture correction. There is a lot of work left unfinished to 
make the model to be more reliable and scalable. 

First, the current model is trained in five subjects with 
similar physical statures. More data need to be collected to 
ensure the model can be generalized to a greater audience. 

Second, the current dataset is collected from a fixed 
camera angle. When the camera angle changes, it is likely for 
the model to perform worse. Thus, the model shall also be 
trained on data collected from multiple camera angles. 

The speed of the current prediction speed can still be 
improved and there are multiple approaches toward it. 

a) The current model is built with the sci-kit learn 
library. The sci-kit learn library is optimized for bulk 
predictions. A lower prediction latency can be achieved by 
rewriting the prediction function. 

b)  Another method to optimize the time is optimizing 
the model with the targeted hardware.  

Other techniques such as body parts normalization [23], 
humanoid models [25], and convolution neural networks can 
be used to ensure the better accuracy of posture estimation. 
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Lastly, due to the inherent insatiable nature of the 
camera, subject to environmental factors such as lighting and 
clothing, implementing data from sensors should make the 
models much more reliable [22], [28]. 

VI. CONCLUSION 
This paper presented a rehabilitation monitoring system 

that combines an RGB camera with a machine-learning 
model to predict the correctness of patients' bridge stand 
posture. The system architecture involved posture detection 
using the Intel RealSense D435 RGB-Depth camera and 
ArUco marker detection for mapping 3D array data. Human 
pose estimation using MediaPipe was utilized for detecting 
body elements, and visibility thresholds were set to ensure 
accurate data collection. The posture classification focused 
on detecting errors in the hip and knee areas during the static 
hold phase of the bridging exercise. Data processing 
involved calculating angles from the coordinates of joints, 
and decision tree models were trained on one, five, and ten 
frames of data. The models demonstrated near-perfect 
accuracy and were capable of distinguishing between correct 
and wide knee postures. The deployment of the model 
trained on a single frame was chosen due to its fast 
prediction time and similar accuracy. The program achieved 
a prediction rate of 10 frames per second, allowing for real-
time detection of posture correctness. 

Overall, this research highlights the potential of machine 
learning models in assisting physical therapists with real-
time posture correction tasks. The decision tree model 
presented in this paper provides a foundation for further 
advancements in rehabilitation monitoring systems and the 
development of enhanced clinical protocols. 
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