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Abstract—The COVID-19 pandemic has led to an over-
whelming volume of scientific publications as researchers strive
to address the crisis. To alleviate information overload, the
COVID-19 Open Research Dataset (CORD-19) was released
to help in analyzing large amounts of data and facilitate faster
response. Most existing tools based on CORD-19 use extractive
summarizers, which suffer from poor coherence and readability.
Thus more abstractive summarizers for COVID-19 are needed.
Specifically, using state-of-the-art (SOTA) transformers has
shown to be successful in summarizing biomedical datasets like
arXiv and PubMed.

In this study, we finetune two checkpoints of SOTA trans-
former PEGASUS-X on the CORD-19 dataset: PEGASUS-
XBASE-CORD19 and PEGASUS-XBASE-arXiv-CORD19. Our re-
sults highlight the importance of finetuning summarizers on
domain-specific datasets in the abstractive summarization of
COVID-19 research: checkpoints finetuned on CORD-19 out-
perform other existing checkpoints and transformers finetuned
on more general research datasets (e.g., arXiv and PubMed). Af-
ter stopword removal in evaluation, we observe that PEGASUS-
XBASE-arXiv-CORD19 surpasses PEGASUS-XBASE-CORD19 by
a small margin. Our checkpoints still fall behind earlier
sequence-to-sequence models; however, this limitation may be
due to our constrained GPU resources. Future works, with
access to more resources, can further improve our checkpoints
for COVID-19 research summarization.

Index Terms—COVID-19, natural language processing, ab-
stractive summarization, transformer

I. INTRODUCTION

The COVID-19 pandemic has driven the global research
community to publish increasing volumes of publicly avail-
able scientific papers to further understand and combat the
coronavirus [1]. The accelerated release of publications on
the disease leads to information overload, making it difficult
for health experts and policymakers to catch up with the
latest findings [2].

Artificial intelligence (AI)—through natural language pro-
cessing (NLP)—has the potential to alleviate health emer-
gencies, such as the current coronavirus crisis, by allowing
health experts to efficiently analyze enormous amounts of
data and ultimately make prompt responses [3]. Helpful

AI-powered techniques include automated text-mining tasks
such as summarization.

For the advancement of such AI tools in the fast-paced
field of COVID-19, the COVID-19 Open Research Dataset
(CORD-19) was released in 2020 [4]. This is a huge corpus
of scientific papers on COVID-19 and other related coron-
aviruses. Some impactful tools that were based on CORD-
19 involve tasks like summarization, search and discovery,
question answering, paper recommendation, claim verifica-
tion, and assistive literature review.

Most of these tools combine only elements of information
retrieval and extraction of text snippets [4]. COVID-ASK
is a question-answering system that only directly copies
snippets from documents that might answer a user’s ques-
tion [5]. In the area of summarization, there exist some
applications: GRETEL, which integrates transformer-based
and graph-based methods [6]; and SAPGRAPH, which takes
advantage of the research paper structure [7]. Other extractive
summarizers are pre-trained transformer-based models like
BERT, RoBERTa, BioBERT, and PubMedBert [6], and the
state-of-the-art (SOTA) BertSumExt [8]. These tools are all
extractive summarizers, which only copy and concatenate
select sentences from a document to generate a summary.

Extractive summaries have drawbacks as they do not
resemble human-generated summaries and lack sentence
connectivity, readability, and cohesion. Additionally, these
summaries can be lengthy, necessitating manual synthesis of
information [9], [10].

On the other hand, abstractive summarization can create
shorter and more readable human-like summaries—making
reading papers more efficient for biomedical experts and
more understandable for non-experts such as policymakers.
Unfortunately, in recent years, the research community has
been focused more on the extractive approach, rather than
the more complex task of abstractive summarization [10].
However, the emergence of state-of-the-art transformers has
made abstractive summarization more achievable. [11], [12].

With the limitations of extractive summarizers and the lack
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of abstractive summarizers, there is a need to push for the
progress of abstractive summarization in the specific domain
of COVID-19 and other related coronaviruses. There are var-
ious purposes for working on abstractive summarization for
COVID-19. This task can automatically provide researchers
with reliable draft abstracts as they finish writing their paper
as demonstrated by COVIDSum [1]. Moreover, abstractive
summarizers can be helpful for other NLP tools for COVID-
19 papers, like search engines and question-answering (QA)
systems. For instance, search engines like Vespa [2] and
CO-Search [13] use abstractive summarization to provide
a summary for papers they recommend. QA systems such
as CAiRE-COVID and CAVIDOQS also take advantage of
abstractive multi-document summarization. This can also
improve question-answering systems such as CAiRE-COVID
[14] and CAVIDOQS [15], which generate an answer to a
question by creating a summary from multiple documents.
These instruments help clinicians and clinical researchers
conduct systematic reviews faster [4].

This study aims to train a top SOTA transformer (i.e.,
PEGASUS-X) on CORD-19, to improve abstractive summa-
rization for COVID-19 and to leverage other NLP tools, like
question-answering and multi-document summarization. The
following are the main contributions of our present work:

1) We finetune the SOTA PEGASUS-X—which was
found to be successful on other well-known biomed-
ical datasets arXiv and PubMed—on CORD-19, and
produce two new checkpoints: PEGASUS-XBASE-
CORD19 and PEGASUS-XBASE-arXiv-CORD19.

2) We quantitatively compare the two PEGASUS-X
checkpoints finetuned on CORD-19 with previous
works via the ROUGE metrics.

Our research also highlights the following insights:
1) Finetuning on domain-specific datasets may enhance

the performance of a transformer in the abstractive
summarization of COVID-19 research.

2) Our PEGASUS-X checkpoints finetuned on CORD-19
outperform other checkpoints and transformers fine-
tuned on more generic research datasets.

II. RELATED LITERATURE

A. Summarization

Automated text summarization is the task of compressing
text to reduce its length while conserving key information
[16]. By generating a summary, a summarizer helps its users
capture the main ideas of a paper without reading the entirety
of a document, and thus save time and effort [10].

Summarizers can be classified based on various aspects
[10].

1) Summarization Domain: A summarizer can be catego-
rized as general or domain-specific [10]. General summariz-
ers can process documents from any domain, while domain-
specific summarizers are designed to summarize text from a
particular domain, such as COVID-19.

2) Summarization Approach: The approach by which
a summary is generated can differ: it can be extractive,
abstractive, or hybrid [10]. Extractive summarization is the
concatenation of the most important sentences in a document.
Abstractive summarization first understands the semantics of

the source by converting it into some intermediate represen-
tation and then generates a summary with novel sentences
that are not in the original document [17]. Summarizers have
also been made with hybrid approaches, which are a mix of
both extracting and abstractive models.

Extractive summarization is easier to implement and faster
to execute. But its summaries tend to have high redundancy,
low coherence, and conflicting information. On the contrary,
abstractive summarization can produce better and shorter
human-like summaries via paraphrasing, compressing, and
fusing sentences. In earlier years, it has been found to be
difficult to develop as it requires natural language generation,
which was still a growing field. Fortunately, abstractive
summarization has become more possible with transformers.

3) Input Length: Summarizers can be classified as either
short-input or long-input [10]. Short-input summarization
generates summaries from short documents like news arti-
cles, while long-input summarization focuses on summariz-
ing longer documents such as research papers. Traditional
summarizers have mainly been designed for short-input sce-
narios and struggle to process long sequences effectively,
resulting in less accurate summaries. Addressing this chal-
lenge, recent works like PEGASUS-X have aimed to extend
summarizers to handle long inputs more effectively and
efficiently [18].

B. Transformers

Recent text-to-text systems, such as summarizers, are
sequence-to-sequence (seq2seq) models that follow an
encoder-decoder architecture. The encoder acts as a language
model, processing input text and passing it to the decoder,
which generates output text one element at a time.

Traditional seq2seq models based on recurrent neural
networks (RNNs), have been successful but suffer from two
limitations due to their sequential nature: the inability to cap-
ture long-range dependencies and the lack of parallelization
[12].

Hence, the transformer was developed: this can overcome
the aforementioned two limitations by completely relying on
self-attention [12]. Self-attention maps dependencies not just
between the encoder and decoder but also within tokens of
an encoder or decoder themselves. This enables transformers
to capture global dependencies through traditional attention
and learn various contexts for tokens through self-attention.
Moreover, unlike sequential RNNs, self-attention can attend
to multiple parts of an input sequence simultaneously, allow-
ing for parallelization.

Despite its success, self-attention is not fully understood
by researchers and demands significant computational power,
particularly for larger models dealing with longer texts. How-
ever, advancements in hardware have enabled transformers
to showcase their potential. As a result, most state-of-the-art
deep-learning models for abstractive text summarization now
incorporate components of the original transformer.

Table I shows the top-performing models for the arXiv
and PubMed datasets.

To our knowledge, Top-Down and PEGASUS-X are the
leading models for abstractive summarization in the biomed-
ical datasets arXiv and PubMed, as shown in Table I. Out
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TABLE I
TOP TRANSFORMER-BASED AND RNN-BASED TEXT SUMMARIZERS

FOR ARXIV AND PUBMED

Model arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

Top-Down
(transformer) [19] 51.0 21.9 45.6 51.1 23.3 46.5

PEGASUS-X
(transformer) [18] 50.0 21.8 44.6 51.0 24.7 46.6

BART-LS
(transformer) [20] 50.2 22.1 45.4 50.3 24.3 45.4

LongT5
(transformer) [21] 48.4 21.9 44.3 50.2 24.8 46.7

DANCER LSTM
(RNN) [22] 42.7 16.5 38.4 44.1 17.7 40.3

DANCER RUM
(RNN) [22] 41.9 16.0 37.6 44.0 17.7 40.3

of these two, only PEGASUS-X is publicly accessible for
training. Hence, we chose to work with PEGASUS-X.

1) Pre-training: Pre-training a transformer involves learn-
ing language understanding via training on unlabeled data.
This helps the model adapt to specific tasks by learning
syntactic, semantic, and linguistic patterns between words
and sentences on [23], [24]. Large models are pre-trained
from scratch, like Google’s PEGASUS, which was trained
on 1.5 million mixed samples from C4 and HugeNews.

2) Finetuning: Finetuning a transformer involves learning
language usage via training on labeled data. This process
consists of updating the pre-trained model’s parameters for it
to adapt to specific tasks like question-answering, translation,
or summarization. For example, PEGASUSCNN/DailyMail is
created by finetuning the pre-trained PEGASUS model on the
DailyMail dataset, which contains new articles and their sum-
maries [25]. Therefore, the finetuned PEGASUSCNN/DailyMail
model is capable of news summarization. One can also
further finetune an already-finetuned model (i.e., checkpoint).

C. PEGASUS-X
Early transformers have been performant on short-input

NLP tasks, such as the abstractive summarization of news
articles and social media posts [18].

These models however still struggle with long texts [26],
especially those found in larger long-document datasets (e.g.
PubMed, arXiv, CORD-19). Training transformers to handle
lengthy sequences incurs high computation and memory
costs [27].

PEGASUS-X extends transformers for efficient long in-
put summarization, achieving SOTA performance on the
PubMed dataset [18]. It has two model sizes available for
use: PEGASUS-XBASE, which has 272M parameters; and
the memory-heavy PEGASUS-XLARGE, which has 568M
parameters.

PEGASUS-X’s success can be attributed to its global-
local architecture and novel pre-training objectives [18].
It employs staggered local attention with global tokens,
preventing quadratic memory growth of self-attention. As an
extension of PEGASUS, it uses Gap Sentences Generation, a
novel training objective imitating abstractive summarization.

D. CORD-19 Abstractive Summarizers
1) HITS-Based Attentional Neural Model: The HITS-

based attentional neural model modifies the traditional atten-

tion mechanism, which treats all sentences in a document as
equally important [28]. This study argues that the same words
in different sentences carry varying levels of importance.

Achieving higher ROUGE scores than the SOTA BERT-
SumAbs when evaluated on CORD-19, this model has
proven itself to be effective in synthesizing papers in the
biomedical field. However, its novel attention mechanism
is yet to be integrated into other pre-trained models, such
as the SOTA transformer-based summarizers for biomedical
documents.

2) UGDAS: The unsupervised graph-network-based de-
noiser for abstractive summarization in biomedical domain
(UGDAS) consists of a denoiser and a generator [29]. The
denoiser encodes sentences using a pre-trained language
model with domain knowledge, converting the document into
a graph network. Sentences are scored based on importance,
considering their position and node weight in the graph.
The top-scoring sentences are used by the auto-regressive
generator to create the final summary.

Since the denoiser utilizes domain-specific information,
the model is able to represent biomedical information more
effectively. However, it has only been used to summarize
a CORD-19 abstract to generate a paper title. Although
UGDAS has surpassed the baseline model BART on CORD-
19, its performance on the long-document summarization of
the actual content of a research paper is still unknown.

3) COVIDSum: COVIDSum is a model based on
BioBERT, which is specifically designed for biomedical
text. It extracts important sentences using sentence position
heuristics and creates word co-occurrence graphs. The model
also employs linguistic knowledge from BioBERT and con-
textual graph embeddings to generate abstractive summaries
with a transformer decoder.

With these techniques, COVIDSum outperformed other
CORD-19 summarization models like BERTSumAbs,
PEGASUS-LARGE, and BART. However, it has some draw-
backs, such as repetition and the usage of extractive summa-
rization as its first module.

While there have been outstanding technologies for
CORD-19, there is still a lack of works that build upon
other SOTA transformer-based models—especially those that
were already trained and evaluated on well-known biomed-
ical datasets (i.e., arXiv and PubMed)—to introduce long-
document abstractive summarizers in the specific field of
COVID-19.

III. EXPERIMENTAL SETUP

A. Preparing the Dataset
To train a transformer for the task of summarizing COVID-

19 papers, we chose the CORD-19 dataset. CORD-19
was loaded via the Hugging Face datasets library. Labeled
allenai/cord19 on Hugging Face, this is the most recent
version of the dataset, containing 368K samples. We filtered
out samples with no full text or abstract. As done in [1], we
divided the remaining 105,097 samples into a 90/5/5 training-
validation-test split. The training, validation, and test split
then contain 94,587/5,255/5,255 samples.

B. Choosing a Pre-trained Model
We chose two pre-trained PEGASUS-X models publicly

available on Hugging Face to finetune: PEGASUS-XBASE
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and PEGASUS-XBASE-arXiv. PEGASUS-XBASE-arXiv is a
checkpoint of PEGASUS-XBASE that was already fine-
tuned on arXiv. Both of these models were loaded us-
ing the Hugging Face transformers library. We used
the PegasusXForConditionalGeneration to load
the pre-trained weights and architecture of a pre-trained
model, and the AutoTokenizer class to load the
google/pegasus-x-large tokenizer, which converts
raw text into numerical tokens before feeding them for
finetuning or summarizing.

C. Finetuning

We used a single NVIDIA A100 80 GB Tensor Core
GPU, running on the Ubuntu operating system. We finetuned
the two aforementioned pre-trained models on the CORD-
19 dataset to generate two new models: PEGASUS-XBASE-
CORD19 and PEGASUS-XBASE-arXiv-CORD19.

To work with limited GPU memory resources, we set the
batch size to 8 and the number of gradient accumulation
steps to 1. To decrease training time, we set the number of
epochs to 8. Each finetuning period took around two days.

D. Evaluating

We compared the performance of our finetuned transform-
ers, alongside other previous models, via the Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) metrics [30].
It is the most commonly used evaluation method and was
thus accepted as a standard in measuring the performance
of summarizers [10], especially those that are based on
transformers.

ROUGE counts the number of overlapping units between
the computer-produced summaries and the ground truth
summaries written by humans [30]. There are various kinds
of ROUGE metrics. ROUGE-N (R-N) is an n-gram over-
lap measure between machine-generated and ground truth
summaries. For instance, R-1 measures unigram overlaps.
While R-2 measures bigram overlaps. ROUGE-L (R-L) is
the overlap measure of the longest common subsequences
(LCS) between a machine-generated summary and a ground
truth summary. ROUGE-L-Sum (R-LSum) is an extension
and the summary-level version of R-L such that newlines in
a text are interpreted as sentence boundaries, and the LCS
overlap between each pair of machine-generated and ground
truth sentences is computed [31].

We used the load_metric function from the Hugging
Face datasets library.

IV. RESULTS

We have the following hypotheses that we test in the
succeeding sections:

1) Finetuning on a specific dataset, such as CORD-19,
improves the performance of a transformer in the
abstractive summarization of COVID-19 research.

2) When it comes to abstractive summarization of
COVID-19 papers, our PEGASUS-X checkpoints that
have been finetuned specifically on the CORD-19
dataset perform better than other transformers fine-
tuned on more generic research datasets.

3) Transformers, like our PEGASUS-X checkpoints,
outperform earlier sequence-to-sequence works on
COVID-19 abstractive summarization.

A. Comparison of Training Datasets

To test our first hypothesis, we compare various check-
points of PEGASUS-XBASE, each of which was finetuned on
a different dataset: one was finetuned on the general research
dataset arXiv, another on the domain-specific dataset that
is CORD-19, and the other on both arXiv and CORD-19.
The results from this experiment show that PEGASUS-X
checkpoints finetuned on CORD-19 perform better than the
checkpoint finetuned on arXiv only, thus supporting our first
hypothesis.

To perform this experiment, we loaded the arXiv check-
point (i.e., PEGASUS-XBASE-arXiv) from Hugging Face. We
then finetuned PEGASUS-XBASE on CORD-19 to obtain
the CORD-19 checkpoint (i.e., PEGASUS-XBASE-CORD19).
We also finetuned the aforementioned arXiv checkpoint on
CORD-19 to derive the arXiv & CORD-19 checkpoint (i.e.,
PEGASUS-XBASE-arXiv-CORD19).

Results on the performance of these three checkpoints,
when evaluated on the CORD-19 dataset, are shown in
Table II. The two checkpoints finetuned on CORD-19 both
outperform the arXiv checkpoint. Additionally, the CORD-
19 checkpoint achieves the highest scores in terms of R-1,
R-L, and R-LSum scores. It surpasses the existing Hugging
Face arXiv checkpoint by 3.032 in R-1, 4.309 in R-L, and
5.109 R-LSum. It also performs 1.608/0.672/0.661 better
than the arXiv & CORD-19 in R-1/R-L/R-LSum. However,
the arXiv & CORD-19 checkpoint outperforms the other
models in terms of R-2 scores. We suspect that the presence
of stopwords is the reason why the ROUGE scores of the
CORD-19 checkpoint are not consistently higher than those
of the arXiv & CORD-19 checkpoint.

TABLE II
COMPARISON OF PEGASUS-X CHECKPOINTS AND OTHER

TRANSFORMERS ON CORD-19 SUMMARIZATION

Model Checkpoint CORD-19
R-1 R-2 R-L R-LSum

PEGASUS-X
(base) arXiv 36.65 12.84 21.14 21.13

CORD-19 39.68 17.15 26.25 26.24
arXiv &
CORD-19 38.07 18.22 25.58 25.58

PEGASUS arXiv 18.03 2.38 13.26 13.26
PEGASUS PubMed 25.66 4.22 15.52 15.51
Big Bird-
Pegasus (large) arXiv 18.69 2.41 12.81 12.81

Big Bird-
Pegasus (large) PubMed 26.21 4.20 14.88 14.88

TABLE III
COMPARISON OF PEGASUS-X CHECKPOINTS ON CORD-19

SUMMARIZATION (WITHOUT STOPWORDS)

Model Checkpoint CORD-19
R-1 R-2 R-L R-LSum

PEGASUS-X
(base) arXiv 26.01 9.86 16.72 16.72

CORD-19 30.57 14.86 22.53 22.51
arXiv &
CORD-19 30.81 16.19 22.88 22.90

Results on the performance of the three checkpoints when
stopwords are removed are shown in Table III. We find that
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the arXiv & CORD-19 checkpoint now overtakes the CORD-
19 checkpoint. This supports our suspicion that stopwords
may have greatly contributed to the scores of the CORD-
19 checkpoint. The summaries generated by the arXiv &
CORD-19 checkpoint seem to have more matches that are
not stopwords, implying that it may have been able to learn
COVID-19 terms and contexts better.

Since the difference in ROUGE scores between the
CORD-19 checkpoint and the arXiv & CORD-19 checkpoint
are relatively small in both Table II and III, it may be more
computationally efficient to finetune a model immediately
on a specific dataset, rather than finetuning it on a general
dataset first. Finetuning more datasets increase training time
when there are no publicly available checkpoints to continue
training from. Finetuning on a larger general dataset may
also require more GPU memory usage when batch size is
increased to decrease training time. Hence, when one has
limited time and memory resources, they may opt to focus
their efforts on finetuning a model on a smaller but more
specific dataset. If the lack of resources is not an obstacle,
performance may be improved by finetuning on a broad
dataset before a particular dataset, but this is not a top
priority.

Generally, we see that both the checkpoints finetuned
on the CORD-19 have higher scores than the checkpoint
finetuned on arXiv only. We then observe that when fine-
tuning a transformer for the task of summarizing papers in
a specific field like COVID-19, it is better to finetune on a
specific dataset such as CORD-19, rather than relying on
other models that have been finetuned only on a general
dataset like arXiv.

B. Comparison with Other Transformer-based Summarizers

To test our second hypothesis, we compare our two check-
points, PEGASUS-XBASE-CORD19 and PEGASUS-XBASE-
arXiv-CORD19, with other transformer-based summarizers.
The results from this experiment demonstrate that our two
PEGASUS-X CORD-19 checkpoints surpass previous trans-
formers that have been finetuned on more generic datasets,
thus validating our second hypothesis.

Table II shows the ROUGE scores of the two PEGASUS-
XBASE checkpoints and other transformer-based summarizers
on CORD-19. It can be seen that the models finetuned on
CORD-19 perform better on all ROUGE measurements. This
further displays the need for finetuning models on CORD-
19. Moreover, we observed that PEGASUS and Big Bird-
PegasusLARGE finetuned on PubMed have higher scores than
if these were finetuned on arXiv. This may be an effect of
PubMed consisting of scientific text in the biomedical field,
which covers the domain of COVID-19 and is more specific
than the general scientific domain of arXiv.

We predict that for domain-specific tasks, finetuning trans-
former models on smaller and more specific domains will
yield better results than on general domain datasets. Future
work can further finetune a PubMed checkpoint on CORD-
19 if it is available. Otherwise, we recommend finetuning
PEGASUS-XBASE on PubMed and then on CORD-19 to see
if there would be any improvements.

TABLE IV
COMPARISON OF PEGASUS-X CHECKPOINTS AND PREVIOUS

SEQUENCE-TO-SEQUENCE WORKS ON CORD-19 SUMMARIZATION

Model CORD-19
R-1 R-2

COVIDSum [1] 44.56 18.89
HITS-based Attentional Neural Model [28] 42.79 15.86
PEGASUS-XBASE-CORD19 39.68 17.15
PEGASUS-XBASE-arXiv-CORD19 38.07 18.22
PEGASUS-XBASE-arXiv 36.65 12.84

C. Comparison With Other Sequence-To-Sequence Summa-
rizers

To test our third hypothesis, we compare our two check-
points, PEGASUS-XBASE-CORD19 and PEGASUS-XBASE-
arXiv-CORD19, with other sequence-to-sequence summa-
rizers. The results of this experiment indicate that ear-
lier non-transformer-based summarizers still outperform our
transformer-based COVID-19 summarizers, thus denying our
third hypothesis.

Results on the performance of the two checkpoints and
the other seq2seq summarizers are shown in Table IV. (Note
that these earlier works do not indicate their R-L and R-
LSums scores.) COVIDSum [1] achieves higher R-1 and R-2
scores than the PEGASUS-X checkpoints. The HITS-based
Attentional Neural Model [28] has a higher R-1 score than
the best-performing PEGASUS-X checkpoint.

We observe that previous works still generally score higher
than our two checkpoints. Moreover, the HITS-based Atten-
tional Neural Model has a lower R-2 score possibly due to
its RNN-based decoder.

It is important to note that due to our lack of time
and memory resources, we stopped the finetuning of the
PEGASUS-XBASE-CORD19 and PEGASUS-XBASE-arXiv-
CORD19 checkpoints at a training loss of approximately
0.559 and 0.451 respectively, and the models were still
learning as implied by their continuously decreasing training
loss. We recommend for future works to finetune PEGASUS-
X on the CORD-19 dataset for more epochs to achieve a
lower final training loss and thus higher performance.

V. CONCLUSION

To contribute to the advancement of abstractive summa-
rization for COVID-19 research, we finetuned a state-of-the-
art transformer, PEGASUS-X, on CORD-19. More specifi-
cally, our contributions are two new checkpoints: PEGASUS-
XBASE-CORD19 and PEGASUS-XBASE-arXiv-CORD19. Re-
sults show that these checkpoints perform better than other
transformers finetuned on more general research datasets
such as arXiv and PubMed. Our experiments demonstrate
the following insights. First, finetuning on a smaller yet
more specific dataset like CORD-19 may enhance the perfor-
mance of a transformer in domain-specific abstractive sum-
marization. Additionally, because the difference between the
performance of PEGASUS-XBASE-CORD19 and PEGASUS-
XBASE-arXiv-CORD19 is relatively small, we find that it
may be more computationally efficient to finetune a model
immediately on a more specific dataset rather than on a
general dataset first when there are no publicly available
checkpoints to train. Second, our PEGASUS-X CORD-19
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checkpoints perform better than already existing transformers
finetuned on generic research datasets, implying the need for
abstractive summarizers specifically trained on COVID-19
datasets. Lastly, earlier seq2seq summarizers still generally
perform better than our PEGASUS-X checkpoints. However,
it is important to note that the performance of our check-
points in the third experiment is limited due to our lack
of GPU resources. Hence, future works can improve our
PEGASUS-X checkpoints by finetuning these models for
more epochs when resources permit.
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