
Hardware-Optimized Deep Learning Model for
FPGA-based Character Recognition

Prajwal S Rao
Electronics and Communication

NITK Surathkal
Mangalore, India

prajwalsrao1998@gmail.com

Aparna Pulikala
Electronics and Communication

NITK Surathkal
Mangalore, India

p.aparnadinesh@nitk.edu.in

Abstract—Deep neural networks (DNNs) are widely used
algorithms in machine learning. Even though most of the
deep learning applications are driven by software solutions,
there has been significant research and development aimed
at optimizing these algorithms over the years. However, when
considering hardware implementation applications, it becomes
essential to optimize the design not only in software but also
in hardware. In this paper, we present a straightforward yet
effective Convolutional Neural Network architecture that is
meticulously optimized both in hardware and software for char-
acter recognition applications. The implemented accelerator was
realized on a Xilinx Zynq XC7Z020CLG484 FPGA using a high-
level synthesis tool. To enhance performance, the accelerator
employs an optimized fixed-point data type and applies loop
parallelization techniques combining 2D convolution and 2D
max pooling operations. The hardware efficiency of the proposed
DNN is compared with some of the existing architectures in
terms of hardware utilization.

Index Terms—Machine Learning, Convolutional Neural Net-
work, Subsampling, Field Programmable Logic Array.

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as powerful
algorithms within the field of machine learning, finding
widespread use in various applications. While software-
driven solutions have dominated the implementation of deep
learning applications, significant efforts have been made to
optimize these algorithms over the years. However, when it
comes to hardware implementation applications, it becomes
crucial to not only optimize the software but also carefully
consider the hardware design. Hardware optimization encom-
passes several key parameters, including execution time, ac-
curacy, area, power consumption, and the efficient utilization
of hardware resources such as memory, lookup tables (LUTs),
and digital signal processors (DSPs). Achieving optimal
performance in terms of these parameters is essential for
hardware-based implementations. CNN is a neural network
architecture popularly used for image-based applications. In
recent years, a number of optimization techniques are pro-
posed aim to enhance the performance and efficiency of CNN
accelerators by exploring optimized data types and network
architectures. In this paper, we present a novel approach to
optimize the design of Convolutional Neural Network (CNN)

architectures for character recognition applications. Our ap-
proach focuses on achieving a balance between hardware
and software optimization, ensuring efficient utilization of
both. We specifically propose a straightforward yet effective
CNN architecture that has been meticulously optimized for
hardware and software performance. A typical CNN architec-
ture comprises three essential blocks, each serving a specific
purpose: 2D Convolution: This block employs a filter, also
known as a kernel or feature detector, to perform a 2D convo-
lution operation. The output of this operation is referred to as
a feature map. The primary objective of this block is to extract
relevant features or attributes from the input image. 2D Sub-
sampling: Spatial invariance is a crucial property of neural
networks, which means that objects can appear anywhere in
the image, regardless of their position relative to the camera
(i.e., distance or angle). To achieve spatial invariance and
facilitate other tasks such as reducing image size for further
computation and noise reduction, subsampling techniques
are employed in this block. Fully Connected Layers: The
features obtained from the convolution operations need to be
mapped to specific classes or objects for classification. In this
block, fully connected layers, also known as dense layers, are
utilized. Each feature is combined with appropriate weights,
ensuring that a particular feature carries a certain amount of
importance when classifying it into a specific class.

These three blocks collectively form the backbone of a
CNN architecture, enabling the extraction of relevant fea-
tures, achieving spatial invariance, and mapping features
to their respective classes for accurate classification. Effi-
cient memory utilization is a critical consideration when
implementing a CNN model on hardware. The storage of
values between layers is essential, and the way we han-
dle intermediate images can impact memory requirements.
Conventionally, storing intermediate images after both the
convolution and subsampling operations would increase the
number of memory elements needed. However, by carefully
considering the sequence of operations, we can optimize
memory usage.

In our design, we strategically combine the convolution
and subsampling layers to minimize memory requirements.
Instead of storing the intermediate image after each operation,
we save it once after both the convolution and subsampling

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA2J.4

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 237

Fig. 1. Proposed CNN Architecture

operations have been executed. This approach significantly
reduces the memory resources needed, as convolution and
subsampling occur consecutively. By streamlining the mem-
ory usage in this manner, our design achieves efficient
hardware implementation of the CNN model, ensuring op-
timal utilization of memory elements while preserving the
necessary information for subsequent processing stages.

The rest of the paper is organized as follows. The proposed
CNN architecture is described in Section II. Next, the pro-
posed hardware design is explained in Section III. The results
are presented and discussed in Section V. Finally, conclusions
are drawn in Section VI.

II. PROPOSED CNN ARCHITECTURE

TABLE I
PROPOSED ARCHITECTURE SPECIFICATION.

Layer type Feature
map size

Number of
parameters

Total
parameters

Conv-1 28x28x3 5x5x3 +
3 78

Max pool-1 14x14x3 —- —-

Conv-2 10x10x9 5x5x3x9 +
9 684

Max pool-2 5x5x9 —- —-

Conv-3 1x1x20 5x5x9x20 +
20 4520

Flatten 1x20 —- —-

Dense-1 1x100 20x100 +
100 2100

Dense-2 1x60 100x60 +
60 6060

Dense-3 1x26 60x26 +
26 1586

15028

The proposed architecture for character recognition, as
shown in Fig. 1, has been designed with efficiency and
resource optimization in mind. The specifications of this
architecture are outlined in Table I, which includes the output
feature map size, the number of parameters involved in each
layer, and the total number of parameters used in the entire

architecture. Implementing the LeNet architecture for char-
acter recognition would require a total of 77,586 parameters,
which in turn necessitates 77,586 registers to store these
values. The architectural details of LeNet-5 can be seen in
[5]. Additionally, due to the increased number of kernels in
each layer, there will be a higher demand for addition and
multiplication modules. However, the reduced architecture
presented here offers a significant improvement, as it contains
only 15,028 parameters, which is five times fewer than
the original architecture. The advantages of employing a
lighter architecture are manifold. Firstly, a substantial amount
of memory is saved while maintaining the same level of
accuracy. This reduction in memory requirements can lead to
cost savings, especially when implementing the architecture
on hardware. Moreover, the reduced architecture contributes
to minimizing latency since there are fewer operations to be
computed throughout the neural network’s lifetime, conse-
quently improving the overall computational efficiency.

III. HARDWARE DESIGN IMPLEMENTATION

Character recognition using Convolutional Neural Net-
works (CNNs) on Field-Programmable Gate Arrays (FPGAs)
is a popular application that leverages the power of deep
learning and hardware acceleration. In this context, character
recognition refers to the task of accurately identifying and
classifying characters or symbols within an input image.
CNNs are particularly well-suited for this task due to their
ability to automatically learn and extract relevant features
from images. The CNN architecture consists of convolutional
layers, pooling layers, and fully connected layers. These
layers enable the network to extract features, downsample
the input, and classify the characters. The CNN model is
trained using labeled character images to learn the appropriate
weights and biases for accurate classification. This process
involves feeding the training data through the network,
comparing the predicted output with the actual labels, and
adjusting the network parameters to minimize the prediction
errors.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 238

Fig. 2. Overall block diagram implemented on FPGA

The trained CNN model is implemented on an FPGA
using high-level synthesis tools. The design is optimized
for hardware efficiency, memory utilization, and computation
speed. The FPGA’s parallel processing capabilities enable
the efficient execution of the CNN operations, improving
inference performance. Once the CNN model is deployed
on the FPGA, it can perform real-time character recognition.
Input images are fed into the FPGA, and the CNN processes
them to extract features and classify the characters. The
output provides the identified characters or symbols. Fig.
2 shows the overall block diagram of CNN for character
recognition on FPGA.

A. Implementation of 2D convolution and 2D subsampling
Layer

Fig. 3. Illustration of combined 2D convolution and 2D subsampling

Our objective is to combine the 2D convolution and 2D
subsampling operations for improved efficiency. To accom-
plish this, we require four convoluted values to be available
for subsampling. To meet this requirement, we adopt a par-
allel approach, performing two convolutions simultaneously:
one for odd lines and another for even lines. The schematic
in Figure 3 illustrates this process. In the first cycle, Conv-
1 (depicted in green) and Conv-2 (shown in yellow) are
computed, while in the subsequent cycle, Conv-3 (represented
in blue) and Conv-4 (displayed in red) are calculated. Once
all four values are computed, we store only one value based
on the specific subsampling technique being utilized.

This parallel computation strategy optimizes the processing
time, allowing for the simultaneous calculation of convolu-
tions and facilitating the availability of the required four val-
ues for subsampling. By efficiently managing the convolution
and subsampling operations in this manner, we enhance the
overall performance and effectiveness of the system

We have 4 sub-blocks inside this block for easy operations
of Convolution operations:-

1) Buffer module: This block is to provide appropriate
image pixel values which will be used in Convolution
operation.

2) Convolution Block: Two such blocks are used. One to
perform odd line convolution and another to perform
even line convolution.

3) Activation function: The output of a convolution is
passed through the activation function.

4) Subsampling: Based on mean or max pooling, this
block gives out one value for every four values it takes
in.

We need a reconfigurable 2D convolution block and [6] is a
work which explains in detail about building a reconfigurable
block. [4] work speaks about unifying the convolution and
maxpooling blocks, modifications to this work is imple-
mented in our design.

B. Implementation of Fully Connected Layers

Fig. 4. Hardware design of single neuron structure

A fully Connected Layer (FCN) operates by leveraging
neurons that perform weighted computations on the outputs
of the previous layer. In this layer, each neuron is associated
with a specific set of weights that are multiplied by the
outputs of all the neurons in the preceding layer. During the
training process, the weights associated with each neuron in

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 239

the network are optimized, allowing for accurate predictions
or classifications.

Fig. 4 illustrates the hardware implementation of a neuron
within this layer. It comprises a storage element that holds
all the weights corresponding to the neuron, along with
a simple Multiply-Accumulate (MAC) unit for computing
the dot product of the previous neuron values and the
weights. The resulting dot product, after bias addition, is
then forwarded to an activation function block. This hardware
block can be replicated as necessary based on the number of
neurons present in the particular layer. Additionally, we have
the flexibility to include any desired number of these fully
connected layers within our architecture.

IV. FIXED POINT REPRESENTATION

Binary data representation for hardware implementation
can be achieved through two methods: Fixed point rep-
resentation and Floating point representation. Fixed point
representation involves a fixed number of bits for integers
and a fixed number of bits for representing fractions. On
the other hand, floating point representation utilizes a fixed
number of bits for the mantissa and the exponential part of
the number.

For this particular case, fixed point representation was
employed. During the training process, the model was trained
based on the CNN architecture, resulting in weights and
biases that were found to be within the range of (-4, 4). To
represent this range of integers, only 3 bits are required: one
for sign representation and the other two for representing
the integer value. Additionally, 13 bits were allocated to
represent the fractional part of the weight and bias values.
Consequently, a total of 16 bits is necessary to store a single
weight or bias value in hardware, encompassing both the
integer and fractional parts. By employing this fixed point
representation scheme, the model’s weights and biases can
be effectively stored and utilized in hardware. This approach
strikes a balance between accuracy and memory efficiency, as
it optimally utilizes a 16-bit register to represent each weight
or bias value.

V. RESULTS

The dataset used for the implementation of this work is the
MNIST dataset which can be obtained from [1]. The dataset
contains a large amount of A-Z handwritten Alphabets.

A. Software
The training of the CNN model was done in Python with

Colab as the environment. The model was built as proposed
using the dataset. The dataset was divided into 80-10-10
for training, validation, and testing respectively. Some of the
hyperparameters used for training the model are:

1) Activation function: ReLU activation function was used
for all the layers except the last layer. For the last layer
softmax activation function was used.

2) Loss function: “Categorical cross-entropy” was used as
the loss function.

3) Optimiser: Adam optimizer was used for our approach.
We trained the model for 25 epochs and the variation

of Loss across the epochs is shown in Fig. 5. Variation of
Accuracy across epochs can be analyzed in Fig. 6. At the
end of 25 epochs, we got an overall accuracy of 98.84%.

Fig. 5. Loss curve of the model

Fig. 6. Accuracy curve of the model

B. Hardware

The proposed CNN model was tested on the Zynq XC7
Z020CLG484 FPGA board. When evaluating VLSI or hard-
ware projects, it is customary to compare their resource
utilization. Key parameters include the utilization of DSPs
for addition and multiplication operations, LUTs for storage
and retrieval, and various other resources. Table II provides
a comprehensive comparison of different works that have
implemented CNNs on various FPGAs. The memory uti-
lization of these projects is quantified by the consumption
of Flip-Flops and Block RAMs (BRAMs). Additionally, the
utilization of resources for addition and multiplication can
be measured by examining the consumption of DSP blocks.
These utilization metrics offer insights into the efficiency and
resource requirements of each implementation.

By analyzing resource utilization, we gain a better un-
derstanding of the effectiveness and efficiency of different
hardware projects that have implemented CNNs on various
FPGAs. This information is crucial for evaluating trade-offs
between resource usage, computational power, and memory
requirements, enabling informed decision-making throughout
the design and implementation processes.

The memory used to store weights and biases is reduced
because the architecture is much lighter. Hence, the number
of LUTs and FFs is reduced compared to other work. The
design does not save images immediately after convolu-
tion, and this decreases memory utilization. The number
of multiplication and addition modules will determine the
number of DSPs used by the design. Although the lightweight

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 240

TABLE II
COMPARISON OF UTILIZATION REPORT OF SOME OTHER WORKS

References [8] [2] [3] [7] Our work
FPGA Virttex-7 Artix-7 Zynq-ZC702 Cyclone 10 Zynq 7020
DSP 638 0 95 274 200
FF 66348 106400 27664 48765 6554

LUT 51125 15769 388361 12588 7772
Accuracy 96.8 90 99 97.57 98.84

architecture needs fewer DSP blocks because of parallel
convolution operations, we need extra DSP units. Hence, even
by reducing the parameters significantly, we have ensured a
good accuracy.

VI. CONCLUSION

The modifications made to the CNN architecture were
specifically tailored to the requirements of character recog-
nition. Our primary objective was to achieve maximum
accuracy while utilizing minimal resources. To accomplish
this, we conducted extensive experimentation by varying the
number of kernels in the CNN architecture and conducting
multiple data training trials. In the hardware implementation,
we took advantage of the sequential nature of the operations
and optimized the memory usage. Rather than storing inter-
mediate images directly after convolution, we combined the
convolution and subsampling processes to minimize memory
wastage. This approach allowed us to achieve efficient mem-
ory utilization and reduced the overall memory requirements.
Additionally, as the architecture was made more lightweight,
the memory used for storing weights and biases in the Look-
Up Table (LUT) was also reduced. Consequently, the number
of addition and multiplication operations was significantly
reduced as well.

Looking ahead, we can expand our goals by tackling more
complex problems that can be solved using CNNs. This
would involve exploring more advanced CNN architectures
that can be effectively optimized for improved performance.
By pushing the boundaries of CNN design, we can further
enhance the capabilities and efficiency of our solutions.

REFERENCES

[1] “A-Z Handwritten Alphabets in .csv format —
kaggle.com,” https://www.kaggle.com/datasets/
sachinpatel21/az-handwritten-alphabets-in-csv-format,
[Accessed 29-May-2023].

[2] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient
and high-throughput fpga-based accelerator for convolu-
tional neural networks,” in 2016 13th IEEE International
Conference on Solid-State and Integrated Circuit Tech-
nology (ICSICT). IEEE, 2016, pp. 624–626.

[3] D. Giardino, M. Matta, F. Silvestri, S. Spanò, and
V. Trobiani, “Fpga implementation of hand-written num-
ber recognition based on cnn,” International Journal on
Advanced Science, Engineering and Information Tech-
nology, vol. 9, no. 1, pp. 167–171, 2019.

[4] H. Irmak, F. Corradi, P. Detterer, N. Alachiotis, and
D. Ziener, “A dynamic reconfigurable architecture for
hybrid spiking and convolutional fpga-based neural net-
work designs,” Journal of Low Power Electronics and
Applications, vol. 11, no. 3, p. 32, 2021.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[6] H. Ström, “A parallel fpga implementation of image
convolution,” 2016.

[7] R. Xiao, J. Shi, and C. Zhang, “Fpga implementation
of cnn for handwritten digit recognition,” in 2020 IEEE
4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), vol. 1. IEEE,
2020, pp. 1128–1133.

[8] Y. Zhou and J. Jiang, “An fpga-based accelerator im-
plementation for deep convolutional neural networks,” in
2015 4th International Conference on Computer Science
and Network Technology (ICCSNT), vol. 1. IEEE, 2015,
pp. 829–832.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 241

