
  

  

Abstract— Major depressive disorder (MDD) is a psychiatric 

disorder but currently defined by symptoms rather than 

biological mechanism. This in turn sets a huge barrier to effective 

diagnosis and treatment planning. Investigations were done 

through neuropathogenesis and neuroimaging analysis as an 

effort to identify discriminative biomarkers for MDD while 

understanding the biological dependencies. The literature 

suggested that microRNA or miRNA transcripts are more likely 

to deliver substantial predictive power in diagnosis and 

antidepressant treatment response (ATR) prediction. Yet, there 

presents discrepancy in unique markers, and such discrepancy 

might be due to the small sample size over some of the reported 

studies. This study utilized miRNA as a predictor to model MDD 

ATR using k-nearest neighbour (kNN). The shortlisted miRNA 

through feature selection techniques scored 71.20%, 68.13%, 

72.13%, and 84.07% for three response levels in accuracy, 

sensitivity, specificity, and precision, respectively. Synthetic 

Minority Oversampling TEchnique (SMOTE) was then applied 

to the shortlisted miRNA and three response levels reported at 

least 98% in each of the mentioned performance metric. 

 
Clinical Relevance— The discovery of miRNA candidates in 

this study could potentially narrow down the collections of blood 

miRNA samples for the treatment response prediction. 

I. INTRODUCTION 

Major depressive disorder (MDD) as a type of psychiatric 
disorder, inflicts significant changes in mood and experience 
in psychophysiological turnovers (e.g., disturbance in sleep, 
appetite, suicidal thoughts) for at least 2 weeks to an individual 
[1]. Severe episodes of MDD could induce unproductiveness, 
guiltiness and hopelessness that eventually guides to mortality. 
Common practice in psychiatric diagnosis of MDD refers to 
Diagnostic and Statistical Manual of Mental Disorders (DSM) 
before treatment trials [2]. However, a study involving trained 
physicians had revealed an astoundingly high misdiagnosis 
rate of 65.9% among 229 MDD patients using Mini 
International Neuropsychiatric Interview (MINI) [3]. This 
reflects that assessment-based clinical diagnostic method is 
rather subjective and unreliable under certain circumstances. 
The implications after MDD clinical submission lies upon the 
complexity of patient’s treatment and its response, which 
includes but not limited to psychotherapy and 
pharmacotherapy [4]. Pharmacotherapy is presently the most 
effective treatment however its responsiveness is not 
guaranteed and rather sceptical towards treatment resistant 
depression (TRD) [1], [2], [5] – [7]. ATR across MDDs with 
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various drugs and doses takes up to 10 weeks of trial before the 
responsiveness gets to be determined, as advocated in [7]. 

MDD treatment might sound complex, but present studies 
involving genes had revealed its huge prospect to stipulate the 
foundation of MDD ATR [8]. Multiple evidence on pre- and 
post-treatment alterations on gene-expression regulator 
(hereinafter referred as miRNA) supported the narrative of 
genes is correlated to MDD ATR [9] – [11]. While miRNA 
could be a potential biomarker and therapeutically beneficial 
when it is being targeted for regulation, the replicability of the 
studies remained a challenge due to heterogeneity in MDD 
demographics [9]. The issue is further highlighted whereby 
comorbidities and confounding elements (e.g., depression 
severity) could contribute to changes in miRNA levels for 
MDD ATR [12]. 

The sparse collective information of miRNA based MDD 
ATR however does not affect the artificial intelligence (AI) 
ability in improving ATR predictability. Meta-analysis from 
[13], [14] suggested machine learning (ML) could be a potent 
approach to discriminate MDD treatment responder. Initiates 
on modelling ATR with depressive symptom-based predictive 
model showed how AI-guided treatment could steer the 
outcome of treatment [15]. Early investigation involving genes 
as predictors in ML models reported similar results [16]. Qi et 
al. [17] further exploited miRNA in ATR profiling through 
various ML approaches and analyses to seek for possibility in 
establishing miRNAs as a reliable predictor. While the 
reproducibility of unique miRNAs across cohorts of 
independent datasets for ATR profiling showed problematic 
persistency, multiple studies still encourage its utilization in 
AI/ML [18] – [20]. 

For this study, feature selection algorithms Chi2, Kruskal 
Wallis, and ANOVA are leveraged to shortlist the best 
performing miRNA with kNN model. Then SMOTE is 
incorporated to study the changes in performance if the pool of 
data becomes larger. The flow of implementation is depicted 
in Fig. 1 and is executed in MATLAB R2023A.  

II. METHODOLOGY 

A. Dataset 

A total of 726 blood miRNA was collected from 70 
clinically diagnosed MDD patients, by psychiatrist in 
compliance with fifth edition DSM (DSM-V). All procedures 
comply with the Declaration of Helsinki’s ethical standards 

Gabrielle W. N. Tay, is with Department of Psychological Medicine, Yong 
Loo Lin School of Medicine, National University of Singapore (e-mail: 

gtwn@nus.edu.sg). 

Cheng-Kai Lu is with the Electrical Engineering Department, National 
Taiwan Normal University, Taipei City, Taiwan (e-mail: cklu@ntnu.edu.tw). 

Tong Boon Tang is with the Centre for Intelligent Signal and Imaging 

Research, University Teknologi PETRONAS, Perak, Malaysia (e-mail: 
tongboon.tang@utp.edu.my). 

Modelling Major Depressive Disorder Antidepressant Treatment 

Response: A miRNA-based Machine Learning Study 

Lok Hua Lee, Cyrus S. H. Ho, Gabrielle W. N. Tay, Cheng-Kai Lu, Senior Member, IEEE, and Tong 

Boon Tang, Senior Member, IEEE 

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

FriMo1XC.5

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 1133



  

and the approval was granted by the Domain Specific Review 
Board of the National Healthcare Group, Singapore (protocol 
number 2019/00141). The recruited individuals age between 
21 to 49 years old, and the gender composition of both entities 
are 16 males and 54 females. Only 52 out of the 70 are eligible 
for further analysis after data cleaning. They are further broken 
down into non-responder (NR), partial-responder (PR) and 
responder (R) groups for three group analysis. The responder 
annotation is performed by professional clinicians in 
comparative to changes in Hamilton Depression Rating Scale 
(HAM-D) scores before and after a medication trial. The 
definition of response group refers to percentage of reduction 
in HAM-D score where below 25% is NR, in between 25% and 
50% is PR, and above 50% is R. That sums up to 24 NR, 15 
PR and 13 R. Each raw miRNA data comes with different 
scales of values; hence, some preprocessing is required before 
proceeding. 

B. Data preprocessing 

Outliers of each column of sampled miRNA are identified 
and excluded from being recognized as min-max value for data 
normalization process. Element that is more than three scaled 
median absolute deviation (MAD) from the median is 
considered as outlier in this context. The rest of the data is 
normalized into a range of 0 to 1 by columns while the outliers 
are being resubstituted and normalized using previously 
identified min-max values. Normalized outliers where values 
below 0 and beyond 1 are topped at value 0 or 1. The outliers 

are not excluded from the analysis to conserve the particularly 
small sample size. 

C. Feature selection 

Raw data contains 726 miRNA which poses a potential 
redundancy for a prediction of 52 subjects and may collapse 
into “curse of dimensionality”. To avoid that, the data is 
subjected to feature selection to identify the best possible 
miRNAs as features in classifying the groups. Algorithms 
include parametric evaluation (ANOVA), and non-parametric 
evaluation (Chi2 and Kruskal Wallis) are considered. The 
selection of first n number of miRNA is configured, where n = 
5 to 25 at a step size of 5 (selection size is predetermined 
considering the importance scores does not vary beyond the 
number). The identification of most predictive miRNA is 
executed concurrently with the kNN model development and 
is selected based on performance evaluation as below. kNN 
was particularly selected for this study to benefit the unknown 
data distribution of current dataset (e.g., linear, non-linear) 
from the algorithm’s non-boundary properties and its 
simplicity in hyperparameter tuning.  

D. Model optimization strategy 

All the initial kNN models are trained with 1000 iterations 
with Bayesian optimization and 5-fold cross validation for 
single run to identify the best distance metric and weight. Then, 
the distance metric and its weight are inherited for the fine-
tuning process running at 100 iterations to obtain the best 
number of neighbours k. The fine-tuning process is repeated 
five times to obtain an averaged performance. 

E. Performance evaluation 

All kNN models are 5-fold cross validated and evaluated 
with performance metrics of accuracy, sensitivity, precision, 
and specificity that generally provides a good picture of how 
well the model performs across the groups. The min-max of 
each metric is also included with the averaged metrics to better 
assess the model’s generalizability. It is also worth noting that 
the presented results are validation-based metrics as the sample 
size is simply not capable of rendering any meaningful train-
test splitting. 

F. Data generation 

To simulate the performance of the shortlisted miRNA in a 
larger sample size manner, a classic tabular data generation 
method is adopted [21]. SMOTE (with different number of k, 
ranging from 1 to 10 in step size of 1), is applied to the 

 

Fig. 1. Grand scheme of proposed methodology 

 

Fig. 2. Implementation of SMOTE algorithm 
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shortlisted miRNAs and generate synthetic data to scale each 
responding group into at least 100 samples; as closer as the 
algorithm possibly could. The data is later split into train-test 
set according to 80/20 rule, where 80% are training data and 
20% are testing. The data is generated before splitting to 
produce relevant interpolations from this size of data. The 
execution is as illustrated in Fig. 2.  

III. RESULT AND DISCUSSION 

A.  Feature selection result for three group analysis 

Fig. 3, 4 and 5 shows the model performance of Chi2, 
Kruskal Wallis, and ANOVA respectively for three group 
analysis. MiRNAs selected using Chi2 and Kruskal Wallis 
does not have any sign of significant improvement over the 
baseline model (using all 726 miRNAs), and some are even 
worse. This indicates that for three group analysis, it is not 
possible to perform group separation with kNN based on the 
decisions from binning of occurrence frequency of each 
miRNA (working mechanism of Chi2) and median of each 
miRNA (working mechanism of Kruskal Wallis). In other 
words, they might be important for the responder groups 
considering the p-values of respective hypotheses and 
discriminable up to certain extent, but the data points simply 
do not have enough separability in feature space when those 
measures (i.e., occurrence frequency, median) are considered. 
ANOVA on the other hand, a mean-based testing algorithm, 
shows respectable improvement in prediction when first 5 
miRNAs are selected. In fact, the overall accuracy is improved 
by 19.20%, from 50.00% of baseline to 69.20%. Similarly, 
other metrics are improved by at least 10.78%. This indicates 
that the shortlisted miRNAs are not only important on a p-
value perspective, but also much denser in feature space, 
allowing the kNN model to discriminate the groups relatively 
well. To further narrow down the number of miRNAs, another 
round of selection is performed at n = 1 to 4 for ANOVA and 
the results are as in Fig. 5. Slight improvement in all 
performance metrics when n = 3 compared with n = 5 is 

observed, except for specificity where it is marginally dropped 
by 2.64% with a major decrease in the variations between 
groups (the min-max values). The comparison of performance 
for all feature selection algorithms are illustrated in Fig. 6. 
Those of selected miRNAs by ANOVA are hsa-miR-550b-2-
5p, hsa-miR-125a-5p, and hsa-miR-374b-3p in descending 
order of their importance scores. 

B.  SMOTE number of k analysis 

A series of investigation is carried out on the selection of 
number k of this classic interpolation method, SMOTE, to 
create synthetic data based on the shortlisted miRNA above. 
SMOTE performs linear interpolation based on its random 
selection of nearest neighbour data points and the total number 
of nearest neighbours provided for selection is controlled by 
the parameter k. The validation and testing results of different 
numbers of k being applied are depicted in Fig. 7. Both the 
averaged training and testing performance indexes are 
observed to be declining as the number of k increases. That 
also comes with increasing variation between the groups (the 
min-max values) that is not favoured for a generalized model. 
One could arguably claim that further increasing the number 
of interpolated data at higher number of k could lead to a 
similar performance as of current result for k = 1. However, 
results from a larger pool of synthetic data could just be an 
ignorance to the fact that higher number of k creates a more 
sparsely and densely distributed feature space, which might not 
resemble any close real-world distribution. The comparison of 
model performance from baseline to SMOTE is summarized 
in Fig. 8.  

C.  State-of-the-art comparison 

To the best of our knowledge, there is no study that 
attempted to model miRNA for MDD ATR. The closest 
possibly we found is utilizing genetics information to perform 
the binary predictions (NR vs. R) [16], [22]. Based on Table I, 
as the types of predictors increases, some of the performance 

 

Fig. 3. Performance of miRNAs selected by Chi2 for n = 5 to 25. Averaged 
values of three groups are plotted on the bar with respective min-max values.  

The best performing selection is highlighted in green. 

 

 

Fig. 4. Performance of miRNAs selected by Kruskal Wallis for n = 5 to 25. 
Averaged values of three groups are plotted on the bar with respective min-

max values. The best performing selection is highlighted in green. 

 

 

Fig. 5. Performance of miRNAs selected by ANOVA for n = 1 to 25. 

Averaged values of three groups are plotted on the bar with respective min-

max values. The best performing selection is highlighted in green. 

 

 

Fig. 6. Performance comparison of all feature selection algorithms. Best 

performing n miRNAs are selected based on the best averaged values at 

considerably low variation among groups. 
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metrics starts to get improved. Although the proposed model 
(k = 22) without SMOTE does not surpass any of the state-of-
the-art models, it still performs relatively well. The results 
obtained by Joyce et al. [16] could be factored by the large 
dataset (348 subjects) being utilized in their multivariate study. 
Based on that, it is expected that the current study shall see 
improvements as more predictors being introduced in future 
studies.  

IV. CONCLUSION 

To summarize the work, a new framework has been 
proposed to predict three groups of MDD ATR. With the 
miRNAs (hsa-miR-550b-2-5p, hsa-miR-125a-5p, and hsa-
miR-374b-3p) selected by ANOVA, the kNN model achieved 
scores of 71.20%, 68.13%, 72.13%, and 84.07% in accuracy, 
sensitivity, specificity, and precision, respectively. The 
performance is boosted to 98.40% in accuracy, sensitivity, and 
specificity, and 99.17% in precision when SMOTE is used to 
create larger pool of data for the prediction to happen. While 

the SMOTE result appears promising, it is still subjected to 
further investigation to obtain a more precise explanation on 
the application’s behaviour. The shortlisted miRNAs shall 
have a more in-depth study on their neurogenesis pathways 
before it could be clinically adopted for antidepressant 
treatment response prediction. 
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Fig. 8. Performance comparison from baseline to SMOTE application 

 

 

Fig. 7. Validation/training and testing performance using SMOTE with different number of k. The best performing number of neighbours is k = 1 (highlighted 

in green). 

TABLE I.  STATE-OF-THE-ART COMPARISON 

Author Method Feature 
Performance metric 

Acc. 

(%) 

Sen. 

(%) 

Spec. 

(%) 

Prec. 

(%) 

Joyce et al. 

[16] 

PR w/ 

FS 

M/G/C

V 77.50 71.00 88.00 - 

Lin et al. 
[22] 

BE w/ 
FS SNP/CV - 76.51 71.14 - 

Kautzky et 

al. [23] 

RF w/ 

FS CV/PC 69.00 - - - 

Proposed 
kNN w/ 

FS miRNA 71.20 68.13 72.13 84.07 

Proposed 

(SMOTE, 

k = 1) 

kNN w/ 

FS miRNA 98.40 98.40 98.40 99.17 

PR = penalized regression; FS = feature selection; M = metabolomic; G = genes; CV = clinical variable; 

BE = boosting ensemble; SNP = single nucleotide polymorphism; RF = random forest; PC = physical 

comorbidity 
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