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Abstract—Internet of Things (IoT) devices have only 
limited computing resources, which means we need to reduce 
the scale of operation circuits and energy consumption to build 
a neural network (NN). The binarized neural network (BNN) 
and computing-in-memory (CiM) have been proposed to fulfill 
these requirements, and recently, magnetic random access 
memory (MRAM), next-generation memory for CiM-based 
architectures has attracted interest. In this study, we utilize a 
CiM architecture based on an MRAM array to build a BNN on 
the edge side. We also implement an XNOR gate on our 
MRAM array using voltage-controlled magnetic anisotropy 
(VCMA)-based magnetization switching to reduce the scale of 
the multiply-and-accumulate (MAC) operation circuits by half. 
Further, we propose a BNN training algorithm utilizing 
ternary gradients to enable both training and inference on the 
edge side using only binary weights and ternary gradients. 
Experiments on the MNIST dataset showed that our MRAM 
array can achieve an accuracy of around 80%. 
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I. INTRODUCTION 
One of the key challenges in the modern Internet of 

Things (IoT) society is how to build a neural network (NN) 
on the edge side. Since edge devices have only limited 
computing resources, it is first necessary to reduce the scale 
of the operation circuits and energy consumption. On the 
software side, the binarized neural network (BNN) has been 
proposed to address this challenge [1]. A BNN is an NN that 
utilizes binary value inputs, weights, and activations to 
enable multiply-and-accumulate (MAC) operation, which is 
a core operation on an NN, using only XNOR gates and bit 
counts. On the hardware side, computing-in-memory (CiM) 
is the main proposal [2]. CiM is based on the concept that 
memory devices can be utilized not only for memory but 
also as a processor. CiM-based BNN hardware has been 
proposed to implement BNNs on edge devices [3]. Recently, 
magnetic random access memory (MRAM), a next-
generation memory based on the CiM architecture, has been 
attracting interest thanks to its low power consumption and 
fast write operation [4]. 

In this study, we propose a BNN training algorithm that 
utilizes ternary gradients to enable both training and 
inference on an MRAM array using only binary weights and 
ternary gradients. For training the MRAM array, we utilize a 
voltage-controlled magnetic anisotropy (VCMA)-based 
XNOR gate, which is an improved version of the earlier 
VCMA-based XOR gate [5], to reduce the scale of the MAC 
operation circuits. We implemented the proposed BNN 
training algorithm on our MRAM array and evaluated its 
performance on the MNIST dataset. 

 

II. TRAINING AND INFERENCE PHASES OF BNN 

A. Training of BNN 
In the training phase of a BNN, we can use stochastic 

gradient decent (SGD), Adam, or AdaGrad, the same as 
with a regular NN. However, real-valued weights and real-
valued gradients of the weights are necessary to update the  
weights [1]. In addition, batch normalization must be used 
for normalizing the activation values to properly train the 
network [1], [6]. Thus, processing of real numbers is 
necessary in the BNN training phase (Fig. 1). On the other 
hand, in the inference phase of the BNN, real-valued 
weights and real-valued gradients are not necessary because 
we do not have to update weights or calculate gradients in 
this phase. However, batch normalization is necessary, so 
we still need real number processing in the inference phase. 

 
Fig. 1. Conventional BNN architecture. In the training phase, real-valued 
weights and real-valued gradients are necessary if SGD, Adam, AdaGrad, 
etc. are used. In the inference phase, only binarized weights are used. 

 

B. Signum function and straight-through estimator 
In a BNN, activation values are binarized by a signum 
function, but since the gradients of the signum function are 
mostly 0 (Fig. 2), they are mostly not propagated in 
backward propagation. We therefore use hard tanh instead 
of the signum function in the backward propagation [1]. 
This approximation is known as a straight-through estimator 
(STE) [1]. The gradient values of hard tanh are 1 if the input 
values are in a closed interval [–1, 1] (Fig. 2), which enables 
the gradients to be moderately propagated in the backward 
propagation.  
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Fig. 2. Straight-through estimator. Signum function mostly does not have 
gradients whereas hard tanh does have gradients in [–1, 1]. 

 

III. SOT AND VCMA 

A. Spin orbit torque 
Spin orbit torque (SOT) is generated on a layered 

structure that consists of a magnetic tunnel junction (MTJ) 
and heavy metal thin film. If an electric current flows 
through the heavy metal layer, a spin current with a 
direction vertical to the electric current is created by the spin 
hall effect (SHE) (Fig. 3-(a)). As a result, a certain spin is 
injected into the free layer of the MTJ, which gives 
magnetization of the free layer torque, so that the 
magnetization is parallel with the injected spin. This torque 
is called SOT (Fig. 3-(b)). The direction of the injected spin 
depends on which direction the electric current flowing in 
the heavy metal layer. Thus, when an appropriate electric 
current is flowing in the heavy metal layer, we can control 
the magnetization direction of the free layer of the MTJ. 
However, on an MTJ that has perpendicular magnetic 
anisotropy (PMA), the direction of the injected spin 
generated by SOT is vertical to the magnetization of the free 
layer, and SOT cannot switch the magnetization of the free 
layer. Thus, the magnetization randomly switches as 
determined by the thermal fluctuation [7]. If we want to  
switch the magnetization deterministically, we need to apply 
an external magnetic field in the direction of the electric 
current to break the symmetry [8]. In addition, when we use 
an electric current that is smaller than a threshold current, 
the magnetization switches stochastically. The switching 
probability depends on the current magnitude [4]. 

 
Fig. 3. Spin orbit torque. (a) The SOT-MRAM cell structure has  a heavy 
metal layer, a free layer with a magnetization that can switch, an oxide 
layer, and a pinned layer with a magnetization that is fixed. (b) SOT is 
created by spin current originating from SHE, which is generated by 
electric current flows through the heavy metal layer.  

B. Voltage-controlled magnetic anisotropy 
Voltage-controlled magnetic anisotropy (VCMA) is an 

effect that can control the interfacial magnetic anisotropy of 
ferromagnetic thin film with PMA when a bias voltage is 
applied to it [9] (Fig. 4-(a)). On ferromagnetic thin film, in a 
stable state, the direction of the magnetization is either up or 
down, and there is an energy barrier between up and down 
states. We  therefore apply energy to the ferromagnetic thin 
film that is larger than the energy barrier. The magnitude of 
this energy barrier is in proportion to the interfacial 
magnetic anisotropy. As a result, on ferromagnetic thin film 
with PMA, we can control the magnitude of the energy 
barrier by means of the VCMA effect (Fig. 4-(b)). If we 
apply a threshold voltage to ferromagnetic thin film with 
PMA that modulates the energy barrier to around 0, its 
magnetization can go back and forth between the up and 
down states and if an extra horizontal magnetic field is 
applied to it, the magnetization begins precession around 
this extra field (Fig. 4-(c)). If we stop the bias voltage 
halfway through the precession period, the magnetization is 
switching [10] (Fig. 4-(d)). We use this switching method 
on the free layer of the MTJ to enable the MRAM write 
operation. However, this switching method can only reverse 
the state of the magnetization, so we need to keep the 
previous state to memorize the optional value on MRAM. 

 
Fig. 4. VCMA effect. (a) VCMA-MRAM cell structure. (b) Energy barrier 
controlled by applied voltage. (c) Magnetization and applied voltage pulse 
of the free layer when threshold voltage is applied to the MRAM cell (pulse 
width = 3 ns). (d) Magnetization and applied voltage pulse of the free layer 
when threshold voltage is applied the MRAM cell (pulse width = half of 
precession period). 

 

IV. PROPOSED ALGORITHM AND  MRAM CELL 

A. BNN training algorithm using ternary gradients 
When training a BNN, real-valued weights and real-

valued gradients are generally used in update operation, and 
batch normalization is used in the forward propagation. In 
this study, we propose a new BNN training algorithm 
utilizing ternary gradients to reduce these real-value 
calculations. 

In our proposal, we use only binary inputs, binary 
weights, and ternary gradients, so real-valued weights and 
real-valued gradients never appear in either the training or 
the inference phase. We introduce three new techniques into 
the BNN training algorithm, as follows. 
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The first is to ternarize gradients. In our proposal, after 
every calculation of gradients, the gradients are ternarized to 
{–1, 0, +1} (Fig. 5). Thus, in backward propagation, the 
gradients propagating to the back are always “–1” or “0” or 
“+1”. However, we implement backward propagation of the 
loss function layer and the softmax layer at the same time,  
using cross entropy error as the loss function, which means 
the results of backward propagation of the loss function 
layer and the softmax layer is difference in value between 
the teacher data and the output data. This difference 
propagates back after ternarizing. In other words, if the 
teacher data equal the output data, “0” propagates back, and 
if the teacher data do not equal the output data, “–1” or “+1” 
propagates back, as determined by the sign of the difference.  

 
Fig. 5. Proposed BNN architecture. The gradients are ternarized every 
layer. 

 
The second technique is  to improve the STE. In general 

STE, hard tanh is used instead of the signum function so that 
gradients can exit in closed interval [–1, 1]. In our proposal, 
we change the range in which the gradients are exist, to 
close interval [–n, n]. In this case, the gradients whose value 
is 1/n exist (Fig. 6). In our algorithm, we do not use batch 
normalization, which means the distribution of the 
activation values might be biased and, our training thus 
involves the risk of losing the gradients. Thus, we use a new 
STE and n as a hyperparameter to control the ease of 
gradient propagation. 

 

 
Fig. 6. Proposed straight-through estimator, where gradients exist in close 
interval [–n, n].  

 

The third technique is to update the parameters 
stochastically. If we use only binary weights and ternary 
gradients without real-valued weights or real-valued 
gradients, the binary weight is either reversed or kept. Thus, 
when the value of a ternary gradient equals the value of a  
binary weight, the value of the binary weight is reversed, 
and in other cases, the value of the binary weight is kept the 
same (TABLE I). However, if all the binary weights that 
equal ternary gradients are reversed, the structure of the  
network would change too much. We therefore decide that if 
the binary weights equal the ternary gradients, the binary 
weights are reversed stochastically to absorb the change of 
the network. We utilize this reverse probability as a 
hyperparameter to train the network. 

TABLE I.  TRUTH TABLE OF UPDATE PHASE OF ALGORITHM 

Previous weight Ternary gradient New weight 

–1 –1 +1 

–1 0 –1 

–1 +1 –1 

+1 –1 +1 

+1 0 +1 

+1 +1 –1 

 

B. MRAM cell on BNN 
The BNN enables the XNOR gate and bit count to 

implement MAC operation because the inputs, weights, and 
activations are binarized values. Conventionally, an 
MRAM-based XNOR gate requires two complementary 
MRAM cells [3]. An MRAM cell-based XOR gate using 
VCMA magnetization switching has thus been proposed [5]. 

In our work, we utilize an MRAM cell-based XNOR 
gate based on this MRAM cell-based XOR gate, as shown 
in Fig. 7-(a). 

 
Fig. 7. Structure and each phase of our MRAM cell.  (a) Cell structure. (b) 
XNOR (multiply) operation. (c) Read (accumulate) operation. (d) Weight 
update operation.  
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Fig. 7-(b) shows the MRAM cell in the XNOR 
(multiply) operation phase. In this phase, WL1 and WL2 are 
active (red line), BL2 represents input value, BL1 is VDD, 
and the current value of the MRAM cell represents the 
weights value. When the input value is “–1” (i.e., BL2 is 
low level (= GND)), VDD is applied. If we set VDD to the  
VCMA threshold voltage, the magnetization of the free 
layer of the MRAM is reversed (i.e., the current value of 
MRAM is reversed). In contract, when the input value is 
“+1” (i.e., BL2 is high level (= VDD)), no voltage is applied, 
the magnetization of the free layer is kept the same (i.e., the 
current value of MRAM is maintained). This operation is 
essentially the same as the XNOR operation (TABLE II), 
and by using this method, we can build an XNOR gate using 
only one MRAM cell. However, after this XNOR operation, 
the current value of the MRAM vanishes and, we need to 
add the same input to the MRAM cell to restore the current 
value. After this operation, the MRAM cell has multiple 
inputs and weights. 

TABLE II.  TRUTH TABLE OF XNOR PHASE 

Current MRAM 
value (= weight) Input (= BL2) New MRAM value 

–1 –1 +1 

–1 +1 –1 

+1 –1 –1 

+1 +1 +1 

 
Fig. 7-(c) shows the operation of our MRAM cell in the 

read (accumulate) operation phase. In this phase, WL1 is 
active (red line) and BL1 is set to the read voltage. The 
magnitude of the read current depends on the value that the 
MRAM cell memorizes: specifically, due to tunnel 
magnetoresistance (TMR) effect, a large read current flows 
if the value is “+1” and a small read current flows if the 
value is “–1” because of the read current corresponds to the 
value of the MRAM cell. 

Fig. 7-(d) shows the operation of our MRAM cell in the 
weight updating phase. In this phase, we first need to restore 
the weight value (i.e., the previous value of the MRAM). 
This is done by means of XNOR operation in which the 
same input value in the previous XNOR operation phase is 
input again. After restoring operation, the value of the 
MRAM cell (i.e., the value of the weights) is updated in 
accordance with the propagated ternary gradients. In this 
step, WL1 is active (red line). The electric current flowing 
through the heavy metal layer of the MRAM cell 
corresponds to the ternary gradient; in other words, the 
electric current that generates SOT can write “+1” to the 
MRAM cell correspond to “+1” and write “–1”  to the one 
corresponds to “–1”, and no electric current corresponds to 
“0”. For example, assume the direction of BL2 to SL is the 
“–1” electric current direction and the reverse direction is 
the “+1” electric current direction (in reality, the relation 
between the direction of the electric current and the 
direction of SOT depends on the direction of the external 
magnetic field). Considering this assumption, when BL2 is 
high level and SL is low level, the electric current flows 
from BL2 to SL; in other words, the “–1” electric current 
flows to the heavy metal layer and an SOT that can switch 
the magnetization to “–1” is generated. In contract, when 
BL2 is low level and SL is high level, the electric current 
flows from SL to BL2; in other words, the “+1” electric 

current flows to the heavy metal layer and an SOT that can 
switch the magnetization to “+1” is generated. In addition, 
when BL2 and SL are the same level, no electric current 
flows through the heavy metal layer and no SOT is 
generated. Thus, BL2 corresponds to the ternary gradient 
while SL corresponds to complementary value of the 
gradients. As shown in TABLE III, when the weight equals 
the gradient, an SOT that can reverse the value of the weight 
is generated, and opposite case, an effective SOT to reverse 
the weight is not generated. Thus, if we set the appropriate 
magnitude of the electric current, we can control the SOT 
writing probability; in other words, we can control the 
probability of updating the weight value to train our BNN. 

TABLE III.  TRUTH TABLE OF UPDATE PHASE 

Weights Gradient 
(= BL2) 

Complementary 
value of the 

gradient 
(= SL) 

Direction of SOT 

–1 –1 (= L) +1  (= H) +1 

–1 0 (= SL) 0 (= BL2) – 

–1 +1  (= H) –1 (= L) –1 

+1 –1 (= L) +1 (= H) +1 

+1 0 (= SL) 0 (= BL2) – 

+1 +1 (= H) –1 (= L) –1 

 
 On the BNN, in the training phase, we use all the phases 
of our MRAM cell, while in the inference phase, we use 
only the XNOR operation phase and read operation phase. 
Thus, we can use the MRAM cell in both the training phase 
and inference phase on the BNN. 

V. BNN BASED ON MRAM ARRAY 
 In an NN, MAC operation of inputs (activations) and 
weights are expressed by the matrix product of an input 
vector and weight matrix. The CiM-based NN concept is 
that this weight matrix is memorized in a memory array and 
an input signal is represented as an input vector. In this 
study, we use the MRAM array (Fig. 8) and perform 
multiply and update operations on each MRAM cell 
(Section IV B) while the accumulate operation is done on 
each MRAM array column. The matrix product of the input 
vector and weight matrix is output as a vector containing an 
element that is the sum of the element-wise product of the 
input vector and a column of the weight matrix. The XNOR 
(multiply) operation on our MRAM cell corresponds to this 
element-wise product and the read (accumulate) operation 
on our MRAM array correspond to summation of this 
element wise product. In the read (accumulate) operation on 
our MRAM array, the read current flows through all of the 
MRAM cells in a column of the MRAM array. Thus,  the 
summation of the read current of the MRAM cells in a 
column of the MRAM array flows through the SL of the 
MRAM array, and this sum current represents the sum of 
the element-wise product of the input vector and a column 
of the weight matrix. This sum current is then compared 
with a threshold current by a sense amp (SA) to output a 
binarized value “–1” or “+1”. The SA operates as a signum 
function to output binarized activation values and propagate 
them to the next layer. Thus, we can use the MRAM array in 
both training phase and inference phase on the BNN. 
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Fig. 8. Our MRAM array. It is initialized by the weight matrix, and 
memorizes multiply result after XNOR operation. 

 

VI. SIMULATION RESULTS 

A. MAC operation on a small-scale MRAM array 
 We simulate a MAC operation on our MRAM array using 
a 3 × 3 MRAM array. Fig. 9 shows the input vector and the  
weight matrix. After the XNOR operation, our MRAM array 
memorizes a new 3 × 3 matrix (lower part of Fig. 9).  

 
Fig. 9. Example of 3 × 3 weight matrix used in XNOR opearation. 

 
Fig. 10.   Simulation results of XNOR operation using 3 × 3 MRAM array. 

Fig. 10 shows the simulation results depicted as the time 
evolution of the z component of the magnetization of the 
free layer of our MRAM cell on the 3 × 3 MRAM array. 
When the value of the y axis of the plot is –1, the MRAM 
cell memorizes “–1”, and when it is 1, the MRAM cell 
memorizes “+1”. In the first 1 ns, no operation is performed 

on the MRAM array, and between 1 ns and 4 ns, the XNOR 
operation is active. As we can see in Fig. 10, in the first 1 ns, 
the MRAM array memorizes the weight matrix (as shown in 
lower part of Fig. 9), and after XNOR operation finishes 
(after 4 ns), the MRAM array memorizes the XNOR result 
(as shown in upper part of Fig. 9). These results demonstrate 
that the MRAM array operates as XNOR gates correctly. 
 

B. Weight update on a small-scale MRAM array 
 Next, we simulate a weights update operation on our 
MRAM array using a 3 × 3 MRAM array. Fig. 11 shows the  
current weight matrix and the ternary gradient matrix. After 
the update operation, weight matrix is updated by the 
ternary gradient matrix. In the case shown here, red 
elements of the weight matrix are reversed stochastically. 

 
Fig. 11.   Example of 3 × 3 weight and gradient matrix used in update  
opearation. 

 
Fig. 12.   Simulation results of update operation using 3 × 3 MRAM array. 

Fig. 12 shows the simulation results depicted as the time 
evolution of the z component of the magnetization of the 
free layer of our MRAM cell on the 3 × 3 MRAM array. In 
the first 1 ns, no operation is performed on the MRAM array, 
and between 1 ns and 4 ns, the update operation is active. As 
we can see in Fig. 12, in the first 1 ns, the MRAM array 
memorizes the weight matrix (as shown Fig. 11), and after 
the update operation finishes (after 4 ns), the red elements of 
the weight matrix (as shown in Fig. 11) are reversed 
stochastically (note that in this case, only W12 is reversed, 
and other red elements have magnetization fluctuation but 
do not achieve magnetization switching). These results 
demonstrate that the MRAM array operates the stochastic 
update correctly. 
 

C. BNN training using MNIST dataset 
 Finally, we simulate MNIST dataset training on our 
MRAM array using our BNN training algorithm. Fig. 13 
compares the accuracy of MNIST dataset training using our 
BNN training algorithm on our MRAM array with that 

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 314



using a general BNN training algorithm [1] (which does not 
on an MRAM array). Each BNN has an input layer, a 
hidden layer, and an output layer containing 784, 3,136, and 
ten neurons, respectively. 

 
Fig. 13.   Result of simulated training with MNIST dataset. 

After training for 50 epochs, our algorithm showed an 
accuracy of around 80% and a faster training speed than the 
conventional algorithm, as shown in Fig. 13. TABLE IV 
lists the accuracy of each BNN after training for 50 epochs. 

TABLE IV.  SIMULATED TAINING ACCURACY OF CONVENTIONAL AND 
PROPOSED ALGORITHMS 

 Conventional Proposed 

Test 88.43 % 82.79 % 

Train 87.88 % 82.34 % 

 

VII. CONCLUSION 
 In this study, we proposed a BNN training algorithm 
using ternary gradients and applied it to an MRAM array-
based BNN training/inference machine. Our algorithm 
consists of three key elements: ternary gradients, an 
improved STE, and stochastic weight updating. In the 
training phase, we use only binary weights and ternary 
gradients and do not use real-valued weights or real-valued 
gradients necessary in conventional algorithms. In our 
MRAM array, we utilize VCMA magnetization switching to 

reduce the scale of the MAC operation circuits by half 
compared to SOT-based MAC operation. We also 
implement SOT stochastic switching to update weights and 
thereby enable training on the MRAM array.  
 Our experimental results using the MNIST dataset 
demonstrate that our MRAM array can achieve an accuracy 
of around 80%. A BNN training/inference machine can 
therefore be built on the edge side based on the MRAM 
array thanks to our BNN training algorithm and the smaller 
MAC operation circuit based on the MRAM array using 
VCMA magnetization switching.  
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