

BNN Training Algorithm with Ternary Gradients
and BNN based on MRAM Array
Yuya Fujiwara

Department of Electric Engineering
Tokyo University of Science

Tokyo, Japan
4322544@ed.tus.ac.jp

Takayuki Kawahara
Department of Electric Engineering

Tokyo University of Science
Tokyo, Japan

kawahara@ee.kagu.tus.ac.jp

Abstract—Internet of Things (IoT) devices have only
limited computing resources, which means we need to reduce
the scale of operation circuits and energy consumption to build
a neural network (NN). The binarized neural network (BNN)
and computing-in-memory (CiM) have been proposed to fulfill
these requirements, and recently, magnetic random access
memory (MRAM), next-generation memory for CiM-based
architectures has attracted interest. In this study, we utilize a
CiM architecture based on an MRAM array to build a BNN on
the edge side. We also implement an XNOR gate on our
MRAM array using voltage-controlled magnetic anisotropy
(VCMA)-based magnetization switching to reduce the scale of
the multiply-and-accumulate (MAC) operation circuits by half.
Further, we propose a BNN training algorithm utilizing
ternary gradients to enable both training and inference on the
edge side using only binary weights and ternary gradients.
Experiments on the MNIST dataset showed that our MRAM
array can achieve an accuracy of around 80%.

Keywords—MRAM, BNN, SOT, VCMA

I. INTRODUCTION
One of the key challenges in the modern Internet of

Things (IoT) society is how to build a neural network (NN)
on the edge side. Since edge devices have only limited
computing resources, it is first necessary to reduce the scale
of the operation circuits and energy consumption. On the
software side, the binarized neural network (BNN) has been
proposed to address this challenge [1]. A BNN is an NN that
utilizes binary value inputs, weights, and activations to
enable multiply-and-accumulate (MAC) operation, which is
a core operation on an NN, using only XNOR gates and bit
counts. On the hardware side, computing-in-memory (CiM)
is the main proposal [2]. CiM is based on the concept that
memory devices can be utilized not only for memory but
also as a processor. CiM-based BNN hardware has been
proposed to implement BNNs on edge devices [3]. Recently,
magnetic random access memory (MRAM), a next-
generation memory based on the CiM architecture, has been
attracting interest thanks to its low power consumption and
fast write operation [4].

In this study, we propose a BNN training algorithm that
utilizes ternary gradients to enable both training and
inference on an MRAM array using only binary weights and
ternary gradients. For training the MRAM array, we utilize a
voltage-controlled magnetic anisotropy (VCMA)-based
XNOR gate, which is an improved version of the earlier
VCMA-based XOR gate [5], to reduce the scale of the MAC
operation circuits. We implemented the proposed BNN
training algorithm on our MRAM array and evaluated its
performance on the MNIST dataset.

II. TRAINING AND INFERENCE PHASES OF BNN

A. Training of BNN
In the training phase of a BNN, we can use stochastic

gradient decent (SGD), Adam, or AdaGrad, the same as
with a regular NN. However, real-valued weights and real-
valued gradients of the weights are necessary to update the
weights [1]. In addition, batch normalization must be used
for normalizing the activation values to properly train the
network [1], [6]. Thus, processing of real numbers is
necessary in the BNN training phase (Fig. 1). On the other
hand, in the inference phase of the BNN, real-valued
weights and real-valued gradients are not necessary because
we do not have to update weights or calculate gradients in
this phase. However, batch normalization is necessary, so
we still need real number processing in the inference phase.

Fig. 1. Conventional BNN architecture. In the training phase, real-valued
weights and real-valued gradients are necessary if SGD, Adam, AdaGrad,
etc. are used. In the inference phase, only binarized weights are used.

B. Signum function and straight-through estimator
In a BNN, activation values are binarized by a signum
function, but since the gradients of the signum function are
mostly 0 (Fig. 2), they are mostly not propagated in
backward propagation. We therefore use hard tanh instead
of the signum function in the backward propagation [1].
This approximation is known as a straight-through estimator
(STE) [1]. The gradient values of hard tanh are 1 if the input
values are in a closed interval [–1, 1] (Fig. 2), which enables
the gradients to be moderately propagated in the backward
propagation.

TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON)
31 Oct - 3 Nov 2023. Chiang Mai, Thailand

WedA2XC.3

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 310

Fig. 2. Straight-through estimator. Signum function mostly does not have
gradients whereas hard tanh does have gradients in [–1, 1].

III. SOT AND VCMA

A. Spin orbit torque
Spin orbit torque (SOT) is generated on a layered

structure that consists of a magnetic tunnel junction (MTJ)
and heavy metal thin film. If an electric current flows
through the heavy metal layer, a spin current with a
direction vertical to the electric current is created by the spin
hall effect (SHE) (Fig. 3-(a)). As a result, a certain spin is
injected into the free layer of the MTJ, which gives
magnetization of the free layer torque, so that the
magnetization is parallel with the injected spin. This torque
is called SOT (Fig. 3-(b)). The direction of the injected spin
depends on which direction the electric current flowing in
the heavy metal layer. Thus, when an appropriate electric
current is flowing in the heavy metal layer, we can control
the magnetization direction of the free layer of the MTJ.
However, on an MTJ that has perpendicular magnetic
anisotropy (PMA), the direction of the injected spin
generated by SOT is vertical to the magnetization of the free
layer, and SOT cannot switch the magnetization of the free
layer. Thus, the magnetization randomly switches as
determined by the thermal fluctuation [7]. If we want to
switch the magnetization deterministically, we need to apply
an external magnetic field in the direction of the electric
current to break the symmetry [8]. In addition, when we use
an electric current that is smaller than a threshold current,
the magnetization switches stochastically. The switching
probability depends on the current magnitude [4].

Fig. 3. Spin orbit torque. (a) The SOT-MRAM cell structure has a heavy
metal layer, a free layer with a magnetization that can switch, an oxide
layer, and a pinned layer with a magnetization that is fixed. (b) SOT is
created by spin current originating from SHE, which is generated by
electric current flows through the heavy metal layer.

B. Voltage-controlled magnetic anisotropy
Voltage-controlled magnetic anisotropy (VCMA) is an

effect that can control the interfacial magnetic anisotropy of
ferromagnetic thin film with PMA when a bias voltage is
applied to it [9] (Fig. 4-(a)). On ferromagnetic thin film, in a
stable state, the direction of the magnetization is either up or
down, and there is an energy barrier between up and down
states. We therefore apply energy to the ferromagnetic thin
film that is larger than the energy barrier. The magnitude of
this energy barrier is in proportion to the interfacial
magnetic anisotropy. As a result, on ferromagnetic thin film
with PMA, we can control the magnitude of the energy
barrier by means of the VCMA effect (Fig. 4-(b)). If we
apply a threshold voltage to ferromagnetic thin film with
PMA that modulates the energy barrier to around 0, its
magnetization can go back and forth between the up and
down states and if an extra horizontal magnetic field is
applied to it, the magnetization begins precession around
this extra field (Fig. 4-(c)). If we stop the bias voltage
halfway through the precession period, the magnetization is
switching [10] (Fig. 4-(d)). We use this switching method
on the free layer of the MTJ to enable the MRAM write
operation. However, this switching method can only reverse
the state of the magnetization, so we need to keep the
previous state to memorize the optional value on MRAM.

Fig. 4. VCMA effect. (a) VCMA-MRAM cell structure. (b) Energy barrier
controlled by applied voltage. (c) Magnetization and applied voltage pulse
of the free layer when threshold voltage is applied to the MRAM cell (pulse
width = 3 ns). (d) Magnetization and applied voltage pulse of the free layer
when threshold voltage is applied the MRAM cell (pulse width = half of
precession period).

IV. PROPOSED ALGORITHM AND MRAM CELL

A. BNN training algorithm using ternary gradients
When training a BNN, real-valued weights and real-

valued gradients are generally used in update operation, and
batch normalization is used in the forward propagation. In
this study, we propose a new BNN training algorithm
utilizing ternary gradients to reduce these real-value
calculations.

In our proposal, we use only binary inputs, binary
weights, and ternary gradients, so real-valued weights and
real-valued gradients never appear in either the training or
the inference phase. We introduce three new techniques into
the BNN training algorithm, as follows.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 311

The first is to ternarize gradients. In our proposal, after
every calculation of gradients, the gradients are ternarized to
{–1, 0, +1} (Fig. 5). Thus, in backward propagation, the
gradients propagating to the back are always “–1” or “0” or
“+1”. However, we implement backward propagation of the
loss function layer and the softmax layer at the same time,
using cross entropy error as the loss function, which means
the results of backward propagation of the loss function
layer and the softmax layer is difference in value between
the teacher data and the output data. This difference
propagates back after ternarizing. In other words, if the
teacher data equal the output data, “0” propagates back, and
if the teacher data do not equal the output data, “–1” or “+1”
propagates back, as determined by the sign of the difference.

Fig. 5. Proposed BNN architecture. The gradients are ternarized every
layer.

The second technique is to improve the STE. In general

STE, hard tanh is used instead of the signum function so that
gradients can exit in closed interval [–1, 1]. In our proposal,
we change the range in which the gradients are exist, to
close interval [–n, n]. In this case, the gradients whose value
is 1/n exist (Fig. 6). In our algorithm, we do not use batch
normalization, which means the distribution of the
activation values might be biased and, our training thus
involves the risk of losing the gradients. Thus, we use a new
STE and n as a hyperparameter to control the ease of
gradient propagation.

Fig. 6. Proposed straight-through estimator, where gradients exist in close
interval [–n, n].

The third technique is to update the parameters
stochastically. If we use only binary weights and ternary
gradients without real-valued weights or real-valued
gradients, the binary weight is either reversed or kept. Thus,
when the value of a ternary gradient equals the value of a
binary weight, the value of the binary weight is reversed,
and in other cases, the value of the binary weight is kept the
same (TABLE I). However, if all the binary weights that
equal ternary gradients are reversed, the structure of the
network would change too much. We therefore decide that if
the binary weights equal the ternary gradients, the binary
weights are reversed stochastically to absorb the change of
the network. We utilize this reverse probability as a
hyperparameter to train the network.

TABLE I. TRUTH TABLE OF UPDATE PHASE OF ALGORITHM

Previous weight Ternary gradient New weight

–1 –1 +1

–1 0 –1

–1 +1 –1

+1 –1 +1

+1 0 +1

+1 +1 –1

B. MRAM cell on BNN
The BNN enables the XNOR gate and bit count to

implement MAC operation because the inputs, weights, and
activations are binarized values. Conventionally, an
MRAM-based XNOR gate requires two complementary
MRAM cells [3]. An MRAM cell-based XOR gate using
VCMA magnetization switching has thus been proposed [5].

In our work, we utilize an MRAM cell-based XNOR
gate based on this MRAM cell-based XOR gate, as shown
in Fig. 7-(a).

Fig. 7. Structure and each phase of our MRAM cell. (a) Cell structure. (b)
XNOR (multiply) operation. (c) Read (accumulate) operation. (d) Weight
update operation.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 312

Fig. 7-(b) shows the MRAM cell in the XNOR
(multiply) operation phase. In this phase, WL1 and WL2 are
active (red line), BL2 represents input value, BL1 is VDD,
and the current value of the MRAM cell represents the
weights value. When the input value is “–1” (i.e., BL2 is
low level (= GND)), VDD is applied. If we set VDD to the
VCMA threshold voltage, the magnetization of the free
layer of the MRAM is reversed (i.e., the current value of
MRAM is reversed). In contract, when the input value is
“+1” (i.e., BL2 is high level (= VDD)), no voltage is applied,
the magnetization of the free layer is kept the same (i.e., the
current value of MRAM is maintained). This operation is
essentially the same as the XNOR operation (TABLE II),
and by using this method, we can build an XNOR gate using
only one MRAM cell. However, after this XNOR operation,
the current value of the MRAM vanishes and, we need to
add the same input to the MRAM cell to restore the current
value. After this operation, the MRAM cell has multiple
inputs and weights.

TABLE II. TRUTH TABLE OF XNOR PHASE

Current MRAM
value (= weight) Input (= BL2) New MRAM value

–1 –1 +1

–1 +1 –1

+1 –1 –1

+1 +1 +1

Fig. 7-(c) shows the operation of our MRAM cell in the

read (accumulate) operation phase. In this phase, WL1 is
active (red line) and BL1 is set to the read voltage. The
magnitude of the read current depends on the value that the
MRAM cell memorizes: specifically, due to tunnel
magnetoresistance (TMR) effect, a large read current flows
if the value is “+1” and a small read current flows if the
value is “–1” because of the read current corresponds to the
value of the MRAM cell.

Fig. 7-(d) shows the operation of our MRAM cell in the
weight updating phase. In this phase, we first need to restore
the weight value (i.e., the previous value of the MRAM).
This is done by means of XNOR operation in which the
same input value in the previous XNOR operation phase is
input again. After restoring operation, the value of the
MRAM cell (i.e., the value of the weights) is updated in
accordance with the propagated ternary gradients. In this
step, WL1 is active (red line). The electric current flowing
through the heavy metal layer of the MRAM cell
corresponds to the ternary gradient; in other words, the
electric current that generates SOT can write “+1” to the
MRAM cell correspond to “+1” and write “–1” to the one
corresponds to “–1”, and no electric current corresponds to
“0”. For example, assume the direction of BL2 to SL is the
“–1” electric current direction and the reverse direction is
the “+1” electric current direction (in reality, the relation
between the direction of the electric current and the
direction of SOT depends on the direction of the external
magnetic field). Considering this assumption, when BL2 is
high level and SL is low level, the electric current flows
from BL2 to SL; in other words, the “–1” electric current
flows to the heavy metal layer and an SOT that can switch
the magnetization to “–1” is generated. In contract, when
BL2 is low level and SL is high level, the electric current
flows from SL to BL2; in other words, the “+1” electric

current flows to the heavy metal layer and an SOT that can
switch the magnetization to “+1” is generated. In addition,
when BL2 and SL are the same level, no electric current
flows through the heavy metal layer and no SOT is
generated. Thus, BL2 corresponds to the ternary gradient
while SL corresponds to complementary value of the
gradients. As shown in TABLE III, when the weight equals
the gradient, an SOT that can reverse the value of the weight
is generated, and opposite case, an effective SOT to reverse
the weight is not generated. Thus, if we set the appropriate
magnitude of the electric current, we can control the SOT
writing probability; in other words, we can control the
probability of updating the weight value to train our BNN.

TABLE III. TRUTH TABLE OF UPDATE PHASE

Weights Gradient
(= BL2)

Complementary
value of the

gradient
(= SL)

Direction of SOT

–1 –1 (= L) +1 (= H) +1

–1 0 (= SL) 0 (= BL2) –

–1 +1 (= H) –1 (= L) –1

+1 –1 (= L) +1 (= H) +1

+1 0 (= SL) 0 (= BL2) –

+1 +1 (= H) –1 (= L) –1

 On the BNN, in the training phase, we use all the phases
of our MRAM cell, while in the inference phase, we use
only the XNOR operation phase and read operation phase.
Thus, we can use the MRAM cell in both the training phase
and inference phase on the BNN.

V. BNN BASED ON MRAM ARRAY
 In an NN, MAC operation of inputs (activations) and
weights are expressed by the matrix product of an input
vector and weight matrix. The CiM-based NN concept is
that this weight matrix is memorized in a memory array and
an input signal is represented as an input vector. In this
study, we use the MRAM array (Fig. 8) and perform
multiply and update operations on each MRAM cell
(Section IV B) while the accumulate operation is done on
each MRAM array column. The matrix product of the input
vector and weight matrix is output as a vector containing an
element that is the sum of the element-wise product of the
input vector and a column of the weight matrix. The XNOR
(multiply) operation on our MRAM cell corresponds to this
element-wise product and the read (accumulate) operation
on our MRAM array correspond to summation of this
element wise product. In the read (accumulate) operation on
our MRAM array, the read current flows through all of the
MRAM cells in a column of the MRAM array. Thus, the
summation of the read current of the MRAM cells in a
column of the MRAM array flows through the SL of the
MRAM array, and this sum current represents the sum of
the element-wise product of the input vector and a column
of the weight matrix. This sum current is then compared
with a threshold current by a sense amp (SA) to output a
binarized value “–1” or “+1”. The SA operates as a signum
function to output binarized activation values and propagate
them to the next layer. Thus, we can use the MRAM array in
both training phase and inference phase on the BNN.

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 313

Fig. 8. Our MRAM array. It is initialized by the weight matrix, and
memorizes multiply result after XNOR operation.

VI. SIMULATION RESULTS

A. MAC operation on a small-scale MRAM array
 We simulate a MAC operation on our MRAM array using
a 3 × 3 MRAM array. Fig. 9 shows the input vector and the
weight matrix. After the XNOR operation, our MRAM array
memorizes a new 3 × 3 matrix (lower part of Fig. 9).

Fig. 9. Example of 3 × 3 weight matrix used in XNOR opearation.

Fig. 10. Simulation results of XNOR operation using 3 × 3 MRAM array.

Fig. 10 shows the simulation results depicted as the time
evolution of the z component of the magnetization of the
free layer of our MRAM cell on the 3 × 3 MRAM array.
When the value of the y axis of the plot is –1, the MRAM
cell memorizes “–1”, and when it is 1, the MRAM cell
memorizes “+1”. In the first 1 ns, no operation is performed

on the MRAM array, and between 1 ns and 4 ns, the XNOR
operation is active. As we can see in Fig. 10, in the first 1 ns,
the MRAM array memorizes the weight matrix (as shown in
lower part of Fig. 9), and after XNOR operation finishes
(after 4 ns), the MRAM array memorizes the XNOR result
(as shown in upper part of Fig. 9). These results demonstrate
that the MRAM array operates as XNOR gates correctly.

B. Weight update on a small-scale MRAM array
 Next, we simulate a weights update operation on our
MRAM array using a 3 × 3 MRAM array. Fig. 11 shows the
current weight matrix and the ternary gradient matrix. After
the update operation, weight matrix is updated by the
ternary gradient matrix. In the case shown here, red
elements of the weight matrix are reversed stochastically.

Fig. 11. Example of 3 × 3 weight and gradient matrix used in update
opearation.

Fig. 12. Simulation results of update operation using 3 × 3 MRAM array.

Fig. 12 shows the simulation results depicted as the time
evolution of the z component of the magnetization of the
free layer of our MRAM cell on the 3 × 3 MRAM array. In
the first 1 ns, no operation is performed on the MRAM array,
and between 1 ns and 4 ns, the update operation is active. As
we can see in Fig. 12, in the first 1 ns, the MRAM array
memorizes the weight matrix (as shown Fig. 11), and after
the update operation finishes (after 4 ns), the red elements of
the weight matrix (as shown in Fig. 11) are reversed
stochastically (note that in this case, only W12 is reversed,
and other red elements have magnetization fluctuation but
do not achieve magnetization switching). These results
demonstrate that the MRAM array operates the stochastic
update correctly.

C. BNN training using MNIST dataset
 Finally, we simulate MNIST dataset training on our
MRAM array using our BNN training algorithm. Fig. 13
compares the accuracy of MNIST dataset training using our
BNN training algorithm on our MRAM array with that

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 314

using a general BNN training algorithm [1] (which does not
on an MRAM array). Each BNN has an input layer, a
hidden layer, and an output layer containing 784, 3,136, and
ten neurons, respectively.

Fig. 13. Result of simulated training with MNIST dataset.

After training for 50 epochs, our algorithm showed an
accuracy of around 80% and a faster training speed than the
conventional algorithm, as shown in Fig. 13. TABLE IV
lists the accuracy of each BNN after training for 50 epochs.

TABLE IV. SIMULATED TAINING ACCURACY OF CONVENTIONAL AND
PROPOSED ALGORITHMS

 Conventional Proposed

Test 88.43 % 82.79 %

Train 87.88 % 82.34 %

VII. CONCLUSION
 In this study, we proposed a BNN training algorithm
using ternary gradients and applied it to an MRAM array-
based BNN training/inference machine. Our algorithm
consists of three key elements: ternary gradients, an
improved STE, and stochastic weight updating. In the
training phase, we use only binary weights and ternary
gradients and do not use real-valued weights or real-valued
gradients necessary in conventional algorithms. In our
MRAM array, we utilize VCMA magnetization switching to

reduce the scale of the MAC operation circuits by half
compared to SOT-based MAC operation. We also
implement SOT stochastic switching to update weights and
thereby enable training on the MRAM array.
 Our experimental results using the MNIST dataset
demonstrate that our MRAM array can achieve an accuracy
of around 80%. A BNN training/inference machine can
therefore be built on the edge side based on the MRAM
array thanks to our BNN training algorithm and the smaller
MAC operation circuit based on the MRAM array using
VCMA magnetization switching.

REFERENCES
[1] M. Courbariaux I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized Neural Network: Training Neural Network with Weights
and Activations Constrained to +1 or –1”, arXiv preprint, arXiv:
1602.02830, Feb. 2016

[2] H. Jiang, X. Peng, S. Huang, and S. Yu, “CIMAT: A Computing-in-
Memory Architecture for On-chip Training Based on Transpose
SRAM Arrays”, IEEE Trans. Computers, vol. 69, no. 7, July 2020

[3] H. Wang, W. Kang, B. Pan, H. Zhang, E. Deng, and W. Zhao,
“Spintronic Computing-in-Memory Architecture Based on Voltage-
Controlled Spin-Orbit Torque Devices for Binary Neural Network”,
IEEE Trans. Electron Devices, vol. 68, no. 10, Oct. 2021

[4] Y. Kishi, A. Yamada, M. Ke, and T. Kawahara, “Examination of
Magnetization Switching Behavior by Bi-Directional Read of Spin-
Orbit-Torque MRAM”, IEEE Trans. Magnetics, vol. 58, no.5, May
2022

[5] Akhikesh Jaiswal, Amogh Agrawal, and Kaushik Roy, “In-situ, In-
Memory Stateful Vector Logic Operations based on Voltage
Controlled Magnetic Anisotropy”, nature Sci Rep 8, 5738 (2018)

[6] Sergy Iofee, and Christian Szegedy, “Batch Normalization:
Accelerating Deep Neural Training by Reducing Internal Covariate
Shift”, arXiv: 1502.03167, Mar. 2016

[7] M. Kazemi, Graham E. Rowlands, S. Shi, Robert A. Buhrman, and
Edy G. Friedman, “All-Spin-Orbit Switching of Perpendicular
Magnetization”, IEEE Trans. Electron Devices, vol. 63, no. 11, Nov.
2016

[8] X. Han, X. Wang, C. Wan, G. Yu, and X. Lv, “Spin-orbit torques:
Materials, physics, and devices”, Appl. Phys. Lett. 118, 120502
(2021)

[9] W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, “Modeling and
Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for
the Next-Generation Low-Power and High-Speed MRAM
Application”, IEEE Trans. NanoTechnology, vol. 16 no. 3, May 2017

[10] Venkata Pavan Kumar Miriyala, Xuanyao Fong, and Gengchiau
Liang, “Influence of Size and Shape on Performance of VCMA-
Based MTJs”, IEEE Trans. Electron Devices, vol.66, no. 2, Feb. 2019

979-8-3503-0219-6/23/$31.00 ©2023 IEEE 315

